
Semantics and Verification of Software (SS15)
apl. Prof. Dr. Thomas Noll
Dr. Federico Olmedo Christoph Matheja

Exercise Sheet 2: (Big Step) Operational Semantics
Due date: April 28th. You can hand in your solutions at the start of the exercise class.

Exercise 1 (Example of Derivation Tree) 10%
Consider program

c : z := 0; while y≤x do {z := z+1; x := x−y} .

(a) [5%] Describe colloquially the effect of the program.
(b) [5%] Depict the derivation tree for 〈c, σ〉 → σ′, where σ is an initial state with

σ(x)=13 and σ(y)=5. (You need not write derivations for the evaluation relation
of arithmetic or Boolean expressions that show up as side conditions in the rules of
the execution relation.)

Exercise 2 (Language Extension) 10%
Extend the set of rules defining the execution relation → ⊆ (Cmd×Σ) × Σ for incor-
porating statement repeat c until b. (The semantics of the repeat–until construct is not
allowed to depend on the existence of the while–do construct in the language.)

Exercise 3 (Operational Equivalence) 35%
In this exercise, we add some common statements of imperative programming languages
to WHILE and provide their operational semantics. All in all, the new syntax of statements
is given by the following grammar:

c′ ::=c | x+ + | for c, b, c do c | case x of s

s ::=a : c; s | ε
Here a, b, c, x are as in the lecture and ε represents the empty word.

(a) [2.5%] Extend the execution relation→ developed in the lecture by an SOS rule for
the increment operator x+ +.

(b) [7.5%] Extend the execution relation→ developed in the lecture by an SOS rule for
the new construct for c1, b, c2 do c3. For example,
• 〈for x := 0, x ∗ x < y, x := x+ + do y := y+ 2, {x 7→ 2, y 7→ 42}〉 → {x 7→ 8, y 7→

58} and
• 〈for x := 1, x < y, x := x ∗ y do y := y + y, {x 7→ 0, y 7→ 1}〉 → {x 7→ 1, y 7→ 1}.

(c) [10%] Let c1 be the program y := 2; x := 1; while x < y do {x := x ∗ 4; y := y + 1}
and c2 be the program forx := 1; y := 2, x < y, y++ dox := x∗4. Show that c1 and
c2 are operationally equivalent, i.e. for each σ ∈ Σ, 〈c1, σ〉 → σ′ ⇔ 〈c2, σ〉 → σ′.

(d) [5%] Extend the execution relation → developed in the lecture by an SOS rule for
the new construct case x of s. Informally, this construct executes command c where
c is the first occurence of a pair a : c in s such that x equals the value of a.

(e) [10%] Provide a recursive function transx that takes a sequence s and transforms
it into a statement c in the original WHILE language such that for all σ ∈ Σ,
〈case x of s, σ〉 → σ′ if and only if 〈transx(s), σ〉 → σ′. Prove the correctness of
your provided function.

Page 1 of 2

Exercise 4 (Terminating Loops) 10%
Show that if there exists state σ′ such that 〈while b do c, σ〉 → σ′, then 〈b, σ′〉 → false.
Proof should proceed by induction over the structure of the derivation tree.

Exercise 5 (Program Behaviour) 35%
For this exercise we consider a variant of the WHILE language without if–then–else state-
ments and that contains repeat–until loops rather than while–do loops. Items (a) through
(c) should adopt this language and item (c) should rely on the semantics of repeat–until
loops provided in Exercise 2.

(a) [5%] Define a recursive function mod : Cmd→ P(Var) that computes the set of vari-
ables written by a program (i.e. those variables in the left hand side of assignments).

(b) [5%] Define a recursive function dep : Cmd→ P(Var) that computes the set of vari-
ables read by a program (i.e. those variables in the right hand side of assignments
or in the guard of loops). You can assume that function fv : AExp∪BExp→ P(Var)
(which computes the set of variables in arithmetic and Boolean expressions) is al-
ready given.

(c) [20%] Prove that the behaviour of a program is determined by the set of variables
it reads. To formally state this claim, we require the auxiliary relation =R between
program states given by clause

σ1 =R σ2 , ∀x ∈ R • σ1(x) = σ2(x) .

Said otherwise, two states are related by =R iff they assign the same value to
variables in R. Now our main claim (to prove) can be stated as follows:
Consider program c and a pair of initial states σ1 and σ2 with σ1 =dep(c) σ2. Then
for every pair of final states σ′1 and σ′2 such that 〈c, σ1〉 → σ′1 and 〈c, σ2〉 → σ′2, it
holds σ′1 =mod(c) σ

′
2.

Proof should proceed by induction over the structure of the derivation tree. For the
proof you can rely, if necessary, on the following two auxiliary results (you need not
prove them):
1. 〈c, σ〉 → σ′ ∧ x /∈ mod(c) =⇒ σ′(x) = σ(x) .

2. σ1 =dep(c) σ2 =⇒ (∃σ′1 • 〈c, σ1〉 → σ′1 ⇔ ∃σ′2 • 〈c, σ2〉 → σ′2) .

(d) [5%] Does the result in (c) remain valid if we include if–then–else statements in the
language? Justify your answer.

Page 2 of 2

