Introduction to Model Checking 2015: Exercise 5.

Supervised by: Dr. Prof. Joost-Pieter Katoen

Exercise 1

Consider the GNBA $G = (Q, \Sigma, \delta, Q_0, \mathcal{F})$: $Q = q_0, q, q_2, \Sigma = \{A, B\}, \ \delta = \{(q_0, A, q_1), (q_1, B, q_1), (q_1, B, q_2), (q_2, B, q_0), (q_1, B, q_0)\}, \ Q_0 = \{q_0\} \ and \ \mathcal{F} = \{\{q_1\}, \{q_2\}\}.$ Construct an equivalent NBA.

Exercise 2

Recall the topological closure defined in the Exercise sheet 3.

$$\mathsf{cl}: \mathcal{P}(\Sigma^{\omega}) \to \mathcal{P}(\Sigma^{\omega}), \text{ where } \mathsf{cl}(A) = \{t \mid \forall x \prec t. \ \exists t': \ x \cdot t' \in A\}.$$

Show the following:

- 1. If L is ω -regular then show that cl(L) is also ω -regular. Hint: Consider the Büchi automaton for L and construct the Büchi automaton for cl(L).
- 2. For a ω -regular language L, construct the ω -regular language cl(A) (complement of cl(L)). Remark: You can argue that Büchi automata can be complemented, but complementation of Büchi automata is highly non-trivial. Fortunately, there is a very simple way to construct $\overline{cl(L)}$. Can you find it?
- 3. Prove the decomposition theorem for ω -regular languages. That is, every ω -regular set can be decomposed into two ω -regular sets one of which is Safe and the other is Live.

Exercise 3

 $(2 \ points)$

(1 Points)

(2+2+1 points)

Let e be a boolean function (acyclic) with n input bits and n output bits, and f be a boolean formula with n + m variables. For any number i, let i_{\flat} be the binary encoding of i. This defines a transition system $T_{e,f} = (S, \rightarrow, AP, L)$, where the set of states $S = \{v_0, v_1, \ldots, v_{2^n-1}\}$ and $AP = \{a_0, \ldots, a_{2^m-1}\},$ $(v_i, v_j) \in \rightarrow iff \ e(i_{\flat}) = j_{\flat}$, and $a_i \in L(v_j)$ iff $f(j_{\flat}, i_{\flat})$ is true. Graph represented thus, are called succinct graphs.

Consider the following succinct graph $T_{e,f} = (S, \rightarrow, AP, L)$, (where S, \rightarrow, AP, L are as defined before) for which e and f has the following properties:

$$e(i_{\flat}) = i_{\flat} + 1 \quad the '+' is a boolean addition on n bits, particularly (1...1) + 1 = (0...0).$$
(1)

$$\forall v_j \in S, \quad \forall a_i \in AP: \quad f(j_{\flat}, i_{\flat}) \implies f(j_{\flat}, i'_{\flat}) \quad \text{for } i' \ge i. \tag{2}$$

Assume e and f are defined by polynomial number of gates. I.e., the number of gates in e and f is $(n+m)^k$ for some constant k.

- 1. Given $T_{e,f}$ (e, f with properties 1 and 2) and $a \in AP$, find an algorithm to check whether $T_{e,f}$ satisfies "infinitely often a".
- 2. The algorithm runs in $O(n \cdot (n+m)^k)$ time.

Hint: Checking weather a boolean formula is satisfiable for a given input can be done in polynomial (linear) time. Observe that the transition system has 2^n states, so the usual DFS will not yield the desired complexity bounds.

Exercise 4

Which of the following statements are correct? Prove the statement or give a counter example.

- 1. $\Diamond \Box a \to \Box \Diamond b \equiv \Box (a \mathsf{U}(\sim a \lor b))$
- 2. $\Box \Diamond a \to \Box \Diamond b \equiv \Box (a \to \Diamond b)$
- 3. $(aUb)Uc \equiv aU(bUc)$
- 4. $(\Box a \to a) \land (\Box a \to \Box \Box a).$

Exercise 5

Show that for any succinctly represented TS, $T_{e,f}$ (not restricted to properties 1,2), finding whether $T_{e,f}$ satisfies the property "infinitely often a" can be done in PSPACE.

(2 points)

(Bonus 10 points)