Introduction to Model Checking 2015: Exercise 6.

Supervised by: Dr. Prof. Joost-Pieter Katoen

Exercise 1 The linear time temporal logic (LTL) that we have seen in the lecture has the syntax:

 $\varphi ::= a \mid \sim \varphi \mid \varphi \land \varphi \mid \mathsf{X}\varphi \mid \varphi \mathsf{U}\varphi$

where a is an atomic proposition, and the tense operator X represent the neXttime and U represents the Until. Convert the following English sentences to appropriate LTL formulas. Please take them seriously!

- "You will be awarded no marks for the exercise if you do not hand in your transcript before the due date".
 S.C.
- 2. "Things will get worse before it get any better, unless it doesn't".
- 3. "Fool me once shame on you, fool me twice shame on me".
- 4. "Begin at the beginning," the King said, very gravely, "and go on till you come to the end: then stop."
 L.C.
- 5. "I become insane, with long intervals of horrible sanity." E.A.P.

Remark: You can make up atomic proposition of your own choosing.

Exercise 2 Consider the linear temporal logic with the following syntax:

$$\varphi ::= a \mid \sim \varphi \mid \varphi \land \varphi \mid \mathsf{X}\varphi \mid \varphi \mathsf{U}\varphi \mid \mathsf{G}\varphi$$

where the tense operator G denotes the construct Generally. In this exercise we will study the axiomatization of the logic. The axioms are as follows:

Prop :	propositional Tautologies		
K _X :	$X(\varphi \rightarrow \psi)$	\rightarrow	$X \varphi ightarrow X \psi$
$Func_{X}$:	$\sim {\sf X} arphi$	\leftrightarrow	$X\sim arphi$
FP_G :	${\sf G}arphi$	\leftrightarrow	$\varphi \land XG\varphi$
FP_U :	$arphi$ U ψ	\leftrightarrow	$\psi \lor (\varphi \land X(\varphi U\psi))$

The induction rules are as follows:

And two deduction rules: Modus Ponens: If $\vdash \psi$ and $\vdash \psi \rightarrow \varphi$ then $\vdash \psi$, and Generalization: if $\vdash \varphi$ then $\vdash \mathsf{G}\varphi$. A theorem can be proved using the axioms and induction rules. For example: Theorem 4 : $\mathsf{G}\varphi \rightarrow \mathsf{G}\mathsf{G}\varphi$ can be proven as follows:

\vdash	${\rm G}\varphi \ \rightarrow$	$arphi \wedge XG arphi$	FP_{G}
\vdash	${\rm G}\varphi \ \rightarrow$	XGarphi	\land Elimination
\vdash	${\rm G}\varphi \ \rightarrow$	$Garphi\wedgeXGarphi$	
\vdash	${\rm G}\varphi \ \rightarrow$	GGarphi	Induction rule I_{G}

Now you prove the following theorems: (You will do well to forget the intuitive meaning of the operators and just follow the axioms and rules).

- 1. Distributive Law X: $X(a \wedge b) \rightarrow Xa \wedge Xb$.
- 2. Distributive Law G: $G(a \wedge b) \rightarrow Ga \wedge Gb$.
- $3. \ \mathsf{K}_{\mathsf{G}} \colon \mathsf{G}(a \to b) \ \to \ \mathsf{G}a \to \mathsf{G}b.$
- *4.* Commutative Law XG: $XGa \leftrightarrow GXa$.
- 5. $a \mathsf{U}(b \land \mathsf{G}(c \to a)) \to \mathsf{G}(c \to a) \land c \mathsf{U}b.$