Introduction to Model Checking 2015: Exercise 3.

Supervised by: Dr. Prof. Joost-Pieter Katoen

Hand in before: 13th May Assisted by: Dr. N. Jansen & S. Chakraborty

Exercise 1

Consider the following transition system TS

and the regular safety property

$$P_{safe} = \begin{array}{l} \text{``always if a is valid and } b \land \neg c \text{ was valid somewhere before,} \\ \text{then neither a nor b holds thereafter at least until c holds''} \end{array}$$

As an example, it holds:

$$\{b\}\emptyset\{a,b\}\{a,b,c\} \in pref(P_{safe})$$

$$\{a,b\}\{a,b\}\emptyset\{b,c\} \in pref(P_{safe})$$

$$\{b\}\{a,c\}\{a\}\{a,b,c\} \in BadPref(P_{safe})$$

$$\{b\}\{a,c\}\{a,c\}\{a\} \in BadPref(P_{safe})$$

Questions:

- 1. Define an NFA \mathcal{A} such that $\mathcal{L}(\mathcal{A}) = MinBadPref(P_{safe})$.
- 2. Decide whether $TS \models P_{safe}$ using the $TS \otimes A$ construction. Provide a counterexample if $TS \not\models P_{safe}$.

Exercise 2

(4 Points)

Let us introduce the notion of quantitative fairness $\psi := \stackrel{\cong}{\underset{p}{\exists}} \varphi$, where φ is a linear time property and p is a real number. We are not only interested in something happening (say φ) infinitely often, but also the frequency of the happenings, say p.

For the sake of simplicity consider φ to be a atomic propositions (or their conjunctions). For a finite word x, let $\operatorname{freq}_{\omega}(x)$ be the number of times φ is true in x. For example, $x = \{a\}\{b\}\{a\}\{c\}\{c\}\{c\}\{a\}\{c\}, \{c\}\{a\}\{c\}\}$ $freq_a(x) = 3.$

For an infinite word w, let w_n be the finite prefix of length n, i.e., $w = w_n \cdot v$, where $|w_n| = n$ and $v \in \Sigma^{\omega}$. The semantics of quantitative fairness is as follows:

$$w \models \stackrel{\infty}{\exists}_{p} \varphi \quad iff \quad \lim_{n \to \infty} \inf \left(\frac{1}{n} \operatorname{freq}_{\varphi}(w_{n}) \right) = p$$

For example, the word $w = a^{\omega}$ satisfies $\exists_p^{\infty} a$ with p = 1. Show the following:

- 1. For any word w and letter a, $\lim_{n\to\infty} \inf \frac{1}{n} \operatorname{freg}_a(w_n) \leq 1$.
- 2. Show that $\stackrel{\infty}{\exists}_{p} a$ with p = 1 is not same as $\stackrel{\infty}{\forall} a$. That is, find a word w such that $w \models \stackrel{\infty}{\exists}_{p} a$ and $w \not\models \overset{\infty}{\forall} a.$ ¹

(2 Points)

¹Recall $\stackrel{\infty}{\forall}$ is "for all, but finitely many ..." form lecture slides 7

3. Show that if
$$w \models \overset{\infty}{\exists}_p a$$
 and $w \models \overset{\infty}{\exists}_p b$, where a, b are atomic proposition and $p = 1$, then $w \models \overset{\infty}{\exists}_p (a \land b)$.

Exercise 3 Consider a class of Transition systems imaginatively named as the Lasso Transition systems (LTS). These transition systems have the following property: The out-degree of states in a cycle of the TS is exactly one. The simple LTS $(T_{c,d})$ is shown in figure 1. The length of the path from $s_0 \rightsquigarrow s_l$ is c and the length of the loop $(s_l \rightsquigarrow s_l)$ is d + 1 (the number of distinct states in the loop is d).

Let $L_{\varphi,d'}$ be a linear time property defined as follows:

 $L_{\varphi,d'} = \{ w \in (2^{AP})^{\omega} \mid if w[i] \models \varphi \text{ then } i \text{ is a multiple of } d' \}$

where φ is an atomic proposition. We want to model check a simple LTS $T_{c,d}$ (figure 1) where only state $s_l \models \varphi$, against $L_{\varphi,d'}$.

$$T_{c,d} \models L_{\varphi,d'}$$

The general algorithmic approach would be as follows:

- Make a NFA for $\neg L_{\varphi,d'}^{fin}$. (Since $L_{\varphi,d'}^{fin} = \{w \in (2^{AP})^* \mid if w[i] \models \varphi \text{ then } i \text{ is a multiple of } d'\}$ is regular.) This is the set of BadPref of $L_{\varphi,d'}$
- Take the cross product of the said NFA with $T_{c.d.}$
- Check for empty-ness.

Do the following:

- 1. Show that the time complexity of model checking by the above procedure is O(cd' + dd').
- 2. Find an algorithm that can decide $T_{c,d} \models L_{\varphi,d'}$ in time

 $O(\log c \log d' + \log d \log d')$

(or even better).

Figure 1: A simple lasso transition system $T_{c,d}$