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Exercise 1 (Point 4)
The processes are numbered P0 and P1. For convenience, when representing Pi,
we use Pj to denote the other process; that is, j equals 1 − j. A solution to
critical section problem must satisfy the following three requirements.

1. Mutual Exclusion. If Pi is executing in its critical section, then no
other processes can execute in their critical section.

2. Progress. If no process is executing in its critical section and there exist
some processes that wish to enter their critical section, then the selection
of the processes that will enter the critical section next cannot be postponed
indefinitely.

3. Bounded Waiting. A bound must exist on the number of times that
other processes are allowed to enter their critical sections after a process
has made a request to enter its critical section and before that request is
granted.

1. Consider Peterson’s solution to critical section problem for two processes
with two shared data items.

int turn;
boolean flag[2];

do {

flag[i]=True;
turn = j;

while (flag[j] && turn == j);

Critical section

flag[i]= False

Remainder Section
}while(True);

(a) Draw the program graph.
(b) Deduce from the program graph that, mutual exclusion, progress and

bounded waiting holds.
(c) What is the bound of the bounded waiting?

2. Consider the following simple solution with one shared variable,

int turn;
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do {

turn = i;
while ( turn == j);

Critical section

Remainder Section

}while(True);

(a) Draw the program graph.

(b) Verify using the program graph, whether mutual exclusion, progress
and bounded waiting holds.

3. Consider the following little less simple solution with one shared variable,

int turn;

do {

turn = i;
while ( turn == j);

Critical section

Remainder Section

}while(True);

turn =j

(a) Draw the program graph.

(b) Verify using the program graph, whether mutual exclusion, progress
and bounded waiting holds.

Exercise 2 (Point 3)

1. Show that, in general, the handshaking ‖H operator is not associative, i.e.

(T1‖HT2)‖H′T3 6= T1‖H(T2‖H′T3)

2. Show that the handshaking operator ‖ that forces transition systems to
synchronize over their common actions is associative. That is, show that

(T1‖T2)‖T3 = T1‖(T2‖T3)

where T1,T2,T3 are arbitrary (finite) transition systems.
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Hint: One approach to prove the above statement is to show that the transition
system on the left hand side is isomorphic to the transition system on the right
hand side of the equation. For this observe that the state space of both systems
is S1 × S2 × S3 (even though not necessarily all states are reachable). You can
define a mapping that relates those states of the two transition systems that
are equal component wise, i.e. 〈〈s1, s2〉, s3〉 ≈ 〈s1, 〈s2, s3〉〉. From here argue
why this mapping is a bijection and why it preserves the transition relation.
When you argue about a transition with some action α you need to make a case
distinction:

1.) α ∈ Act1\(Act2 ∪Act3)

2.) α ∈ (Act1 ∩Act2)\Act3

3.) α ∈ Act1 ∩Act2 ∩Act3

You may dismiss all other cases because they are symmetric. Also keep in mind
that a state can have several successors for one action.

Exercise 3 (Point 3)
In channel systems, values can be transferred from one process to another pro-
cess. According to the lecture, the set of transitions of a program graph PG =
(Loc,Act,Effect,→, Loc0, g0) over (Var,Chan) is defined as

→ ⊆ Loc× (Cond(V ar)× Act)× Loc ∪ Loc× Comm× Loc

where Comm = {c!v, c?x | c ∈ Chan, v ∈ dom(c), x ∈ Var with dom(x) ⊇
dom(c)}.
Here we consider two extensions to this definition. Give a formal definition
of the transition system semantics of a channel system CS = [PG1| · · · |PGn]
where

1. In asynchronous communication a channel shall always accept a sent value.
If the channel is full it will simply drop the oldest element from its FIFO
queue.

2. In synchronous message passing a channel may broadcast a value. That
is, if several processes are willing to receive a value from a channel they
will all receive it (instead of only one of them).
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