Overview

Introduction Modelling parallel systems Linear Time Properties **Regular Properties** Linear Temporal Logic (LTL) Computation-Tree Logic **Equivalences and Abstraction** bisimulation CTL, CTL*-equivalence computing the bisimulation quotient abstraction stutter steps simulation relations

Recall: CTL*

CTL* state formulas $\Phi ::= true | a | \Phi_1 \land \Phi_2 | \neg \Phi | \exists \varphi$ **CTL*** path formulas $\varphi ::= \Phi | \varphi_1 \land \varphi_2 | \neg \varphi | \bigcirc \varphi | \varphi_1 \mathsf{U} \varphi_2$

Recall: CTL*

CTL* state formulas

$$\Phi ::= true | a | \Phi_1 \land \Phi_2 | \neg \Phi | \exists \varphi$$
CTL* path formulas

$$\varphi ::= \Phi | \varphi_1 \land \varphi_2 | \neg \varphi | \bigcirc \varphi | \varphi_1 \mathsf{U} \varphi_2$$

derived operators:

• ◊, □, ... as in **LTL**

Recall: CTL*

CTL* state formulas

$$\Phi ::= true | a | \Phi_1 \land \Phi_2 | \neg \Phi | \exists \varphi$$
CTL* path formulas

$$\varphi ::= \Phi | \varphi_1 \land \varphi_2 | \neg \varphi | \bigcirc \varphi | \varphi_1 \mathsf{U} \varphi_2$$

derived operators:

- ◊, □, ... as in **LTL**
- universal quantification: $\forall \varphi \stackrel{\text{def}}{=} \neg \exists \neg \varphi$

CTL* state formulas $\Phi ::= true | a | \Phi_1 \land \Phi_2 | \neg \Phi | \exists \varphi$ **CTL*** path formulas $\varphi ::= \Phi | \varphi_1 \land \varphi_2 | \neg \varphi | \bigcirc \varphi | \varphi_1 \mathsf{U} \varphi_2$

CTL: sublogic of CTL*

Recall: CTL* and CTL

CTL* state formulas $\Phi ::= true | a | \Phi_1 \land \Phi_2 | \neg \Phi | \exists \varphi$ **CTL*** path formulas $\varphi ::= \Phi | \varphi_1 \land \varphi_2 | \neg \varphi | \bigcirc \varphi | \varphi_1 \mathsf{U} \varphi_2$

CTL: sublogic of CTL*

• with path quantifiers \exists and \forall

Recall: CTL* and CTL

CTL* state formulas $\Phi ::= true | a | \Phi_1 \land \Phi_2 | \neg \Phi | \exists \varphi$ **CTL*** path formulas $\varphi ::= \Phi | \varphi_1 \land \varphi_2 | \neg \varphi | \bigcirc \varphi | \varphi_1 \mathsf{U} \varphi_2$

CTL: sublogic of CTL*

- with path quantifiers \exists and \forall
- restricted syntax of path formulas:

Recall: CTL* and CTL

CTL* state formulas $\Phi ::= true | a | \Phi_1 \land \Phi_2 | \neg \Phi | \exists \varphi$ **CTL*** path formulas $\varphi ::= \Phi | \varphi_1 \land \varphi_2 | \neg \varphi | \bigcirc \varphi | \varphi_1 \mathsf{U} \varphi_2$

CTL: sublogic of CTL*

- with path quantifiers \exists and \forall
- restricted syntax of path formulas:
 - * no boolean combinations of path formulas
 - * arguments of temporal operators \bigcirc and U are state formulas

CTL equivalence

CTLEQ5.2-1

CTL equivalence

CTLEQ5.2-1

Let s_1, s_2 be states of a TS T without terminal states

CTLEQ5.2-1

Let s_1, s_2 be states of a TS \mathcal{T} without terminal states

 s_1, s_2 are **CTL** equivalent if for all **CTL** formulas Φ : $s_1 \models \Phi$ iff $s_2 \models \Phi$

CTLEQ5.2-1

Let s_1, s_2 be states of a TS \mathcal{T} without terminal states

 s_1, s_2 are **CTL** equivalent if for all **CTL** formulas Φ : $s_1 \models \Phi$ iff $s_2 \models \Phi$

CTLEQ5.2-1

Let s_1, s_2 be states of a TS T without terminal states

 s_1, s_2 are CTL equivalent if for all CTL formulas Φ : $s_1 \models \Phi$ iff $s_2 \models \Phi$

 $s_{1}, s_{2} \text{ are}$ not **CTL** equivalent $s_{1} \models \exists \bigcirc (\exists \bigcirc a \land \exists \bigcirc b)$ $s_{2} \not\models \exists \bigcirc (\exists \bigcirc a \land \exists \bigcirc b)$ Let s_1, s_2 be states of a TS \mathcal{T} without terminal states

 s_1, s_2 are **CTL** equivalent if for all **CTL** formulas Φ : $s_1 \models \Phi$ iff $s_2 \models \Phi$

analogous definition for CTL* and LTL

Let s_1, s_2 be states of a TS T without terminal states

 s_1 , s_2 are **CTL** equivalent if for all **CTL** formulas Φ : $s_1 \models \Phi$ iff $s_2 \models \Phi$ s_1 , s_2 are **CTL*** equivalent if for all **CTL*** formulas Φ : $s_1 \models \Phi$ iff $s_2 \models \Phi$ s_1, s_2 are LTL equivalent if for all LTL formulas φ : $\mathbf{s_1} \models \varphi$ iff $\mathbf{s_2} \models \varphi$

- = **CTL** equivalence
- = **CTL*** equivalence

- = **CTL** equivalence
- = **CTL*** equivalence

 \leftarrow for finite TS

Let \mathcal{T} be a finite TS without terminal states, and s_1 , s_2 states in \mathcal{T} . Then:

$s_1 \sim_T s_2$

- iff s1 and s2 are CTL equivalent
- iff s1 and s2 are CTL* equivalent

For arbitrary (possibly infinite) transition systems without terminal states:

For arbitrary (possibly infinite) transition systems without terminal states:

If s_1 , s_2 are states with $s_1 \sim_T s_2$ then for all CTL* formulas Φ : $s_1 \models \Phi$ iff $s_2 \models \Phi$

Bisimulation equivalence \Rightarrow CTL* equivalence arms

TLEQ5.2-3

show by structural induction on CTL* formulas:

(a) if s₁, s₂ are states with s₁ ~_T s₂ then for all CTL* state formulas Φ:
s₁ ⊨ Φ iff s₂ ⊨ Φ
(b) if π₁, π₂ are paths with π₁ ~_T π₂ then for all CTL* path formulas φ:
π₁ ⊨ φ iff π₂ ⊨ φ

Bisimulation equivalence \Rightarrow CTL* equivalence CTL*

show by structural induction on CTL* formulas:

 $\pi_1 \sim_{\mathcal{T}} \pi_2 \iff \pi_1$ and π_2 are statewise bisimulation equivalent

Bisimulation equivalence \Rightarrow CTL* equivalence _{crueq5.2-3}

statewise bisimulation equivalent paths:

<mark>Տլ</mark> ↓	$\sim_{\mathcal{T}}$	<mark>∽</mark> 2 ↓
s ₁₁	$\sim_{\mathcal{T}}$	s ₁₂
↓ <i>S</i> 21	$\sim_{\mathcal{T}}$	↓ <i>S</i> 22
↓ <i>s</i> ₃₁	$\sim_{\mathcal{T}}$	↓ <i>s</i> ₃₂
↓ 		↓
Ť		Ť
bath π_1		path π_2

Bisimulation equivalence \Rightarrow CTL* equivalence _{ctleq5.2-5}

For all CTL* state formulas Φ and path formulas φ : (a) if $\mathbf{s_1} \sim_{\mathcal{T}} \mathbf{s_2}$ then: $\mathbf{s_1} \models \Phi$ iff $\mathbf{s_2} \models \Phi$ (b) if $\pi_1 \sim_{\mathcal{T}} \pi_2$ then: $\pi_1 \models \varphi$ iff $\pi_2 \models \varphi$

Bisimulation equivalence \Rightarrow CTL* equivalence _{ctleq5.2-5}

For all CTL* state formulas Φ and path formulas φ : (a) if $\mathbf{s_1} \sim_{\mathcal{T}} \mathbf{s_2}$ then: $\mathbf{s_1} \models \Phi$ iff $\mathbf{s_2} \models \Phi$ (b) if $\pi_1 \sim_{\mathcal{T}} \pi_2$ then: $\pi_1 \models \varphi$ iff $\pi_2 \models \varphi$

Proof by structural induction

Bisimulation equivalence \Rightarrow CTL* equivalence _{ctleq5.2-5}

For all CTL* state formulas Φ and path formulas φ : (a) if $\mathbf{s_1} \sim_T \mathbf{s_2}$ then: $\mathbf{s_1} \models \Phi$ iff $\mathbf{s_2} \models \Phi$ (b) if $\pi_1 \sim_T \pi_2$ then: $\pi_1 \models \varphi$ iff $\pi_2 \models \varphi$

Proof by structural induction

base of induction:

(a)
$$\Phi = true$$
 or $\Phi = a \in AP$

(b)
$$\boldsymbol{\varphi} = \boldsymbol{\Phi}$$
 for some state formula $\boldsymbol{\Phi}$

s.t. statement (a) holds for Φ

Bisimulation equivalence \Rightarrow CTL* equivalence CTLeq5.2-5

For all CTL* state formulas Φ and path formulas φ : (a) if $\mathbf{s_1} \sim_{\mathcal{T}} \mathbf{s_2}$ then: $\mathbf{s_1} \models \Phi$ iff $\mathbf{s_2} \models \Phi$ (b) if $\pi_1 \sim_{\mathcal{T}} \pi_2$ then: $\pi_1 \models \varphi$ iff $\pi_2 \models \varphi$

Proof by structural induction

step of induction:

(a) consider
$$\Phi = \Phi_1 \wedge \Phi_2$$
, $\neg \Psi$ or $\exists \varphi$ s.t.

(a) holds for Φ_1, Φ_2, Ψ (b) holds for φ

 $\begin{array}{ll} \text{(b)} & \text{consider } \varphi = \varphi_1 \wedge \varphi_2, \ \neg \varphi', \ \bigcirc \varphi', \ \varphi_1 \, \mathsf{U} \, \varphi_2 \ \text{s.t.} \\ & \text{(a) holds for } \varphi_1, \varphi_2, \varphi' \end{array}$

CTLEQ5.2-4

CTLEQ5.2-4

If $s_1 \sim_T s_2$ then for all $\pi_1 \in Paths(s_1)$ there exists $\pi_2 \in Paths(s_2)$ with $\pi_1 \sim_T \pi_2$

CTLEQ5.2-4

If $s_1 \sim_T s_2$ then for all $\pi_1 \in Paths(s_1)$ there exists $\pi_2 \in Paths(s_2)$ with $\pi_1 \sim_T \pi_2$

CTLEQ5.2-4

correct.

correct.

If s_1 , s_2 not **CTL** equivalent then there exists a **CTL** formula Φ with

$$s_1 \models \Phi \land s_2 \not\models \Phi$$

or $s_1 \not\models \Phi \land s_2 \models \Phi$

correct.

If s_1 , s_2 not **CTL** equivalent then there exists a **CTL** formula Φ with

 $s_1 \models \Phi \land s_2 \not\models \Phi$

or $s_1 \not\models \Phi \land s_2 \models \Phi \implies s_1 \models \neg \Phi \land s_2 \not\models \neg \Phi$

correct.

If s_1 , s_2 are <u>not</u> **LTL** equivalent then there exists a **LTL** formula φ with $s_1 \models \varphi$ and $s_2 \not\models \varphi$

correct.

If s_1 , s_2 are <u>not</u> **LTL** equivalent then there exists a **LTL** formula φ with $s_1 \models \varphi$ and $s_2 \not\models \varphi$

wrong.

correct.

If s_1 , s_2 are <u>not</u> **LTL** equivalent then there exists a **LTL** formula φ with $s_1 \models \varphi$ and $s_2 \not\models \varphi$

wrong.

correct.

If s_1 , s_2 are <u>not</u> **LTL** equivalent then there exists a **LTL** formula φ with $s_1 \models \varphi$ and $s_2 \not\models \varphi$

wrong.

 $Traces(s_2) \subset Traces(s_1)$

correct.

If s_1 , s_2 are <u>not</u> **LTL** equivalent then there exists a **LTL** formula φ with $s_1 \models \varphi$ and $s_2 \not\models \varphi$

wrong.

 $Traces(s_2) \subset Traces(s_1)$

hence: $\mathbf{s_1} \models \varphi$ implies $\mathbf{s_2} \models \varphi$

CTL equivalence \implies bisimulation equivalence CTLEQ5.2-7A

CTL equivalence \implies bisimulation equivalence _{ctleg5.2-74}

If \mathcal{T} is a finite TS then, for all states s_1 , s_2 in \mathcal{T} :

if s_1 , s_2 are **CTL** equivalent then $s_1 \sim_T s_2$

CTL equivalence \implies bisimulation equivalence _{ctleg5.2-74}

If \mathcal{T} is a finite TS then, for all states s_1 , s_2 in \mathcal{T} :

if s_1 , s_2 are **CTL** equivalent then $s_1 \sim_T s_2$

CTL equivalence \implies bisimulation equivalence _{ctleg5.2-74}

If \mathcal{T} is a finite TS then, for all states s_1 , s_2 in \mathcal{T} : if s_1 , s_2 are **CTL** equivalent then $s_1 \sim_T s_2$

Proof show that

 $\mathcal{R} \stackrel{\text{def}}{=} \left\{ \left(\mathbf{s}_1, \mathbf{s}_2 \right) : \mathbf{s}_1, \mathbf{s}_2 \text{ satisfy the same } \mathsf{CTL} \text{ formulas} \right\}$ is a bisimulation

CTL equivalence \implies bisimulation equivalence CTLEQ5.2-7A

If \mathcal{T} is a finite TS then, for all states s_1 , s_2 in \mathcal{T} : if s_1 , s_2 are **CTL** equivalent then $s_1 \sim_T s_2$

Proof show that

 $\mathcal{R} \stackrel{\text{def}}{=} \{ (s_1, s_2) : s_1, s_2 \text{ satisfy the same CTL formulas } \}$ is a bisimulation, i.e., for all $(s_1, s_2) \in \mathcal{R}$:

(1) $L(s_1) = L(s_2)$

(2) if $s_1 \rightarrow t_1$ then there exists a transition $s_2 \rightarrow t_2$ s.t. $(t_1, t_2) \in \mathcal{R}$

 $\begin{array}{l}
\widehat{=} \{a\} \\
 \widehat{=} \{b\} \\
 \widehat{=} \emptyset \\
 \widehat{=} \emptyset$

CTLEQ5.2-7

bisimulation equivalence $\sim_{\mathcal{T}} = \{(v_1, v_2), (w_1, w_2), ...\}$

CTLEQ5.2-7

bisimulation equivalence $\sim_{\mathcal{T}} = \{(v_1, v_2), (w_1, w_2), ...\}$

but **u**₁ ≁_T **u**₂

CTLEQ5.2-7

bisimulation equivalence $\sim_{\mathcal{T}} = \{(v_1, v_2), (w_1, w_2), ...\}$

but $u_1 \not\sim_T u_2$ as $u_1 \rightarrow \{w_1, w_2\}$ $u_2 \not\rightarrow \{w_1, w_2\}$

CTLEQ5.2-7

bisimulation equivalence $\sim_{\mathcal{T}} = \{(v_1, v_2), (w_1, w_2), ...\}$

CTL master formulas: $w_1, w_2 \models ?$ $v_1, v_2 \models ?$ $u_1 \models ?$ $u_2 \models ?$

CTLEQ5.2-7

bisimulation equivalence $\sim_{\mathcal{T}} = \{(v_1, v_2), (w_1, w_2), ...\}$

CTLEQ5.2-7

bisimulation equivalence $\sim_{\mathcal{T}} = \{(v_1, v_2), (w_1, w_2), ...\}$

CTLEQ5.2-7

bisimulation equivalence $\sim_{\mathcal{T}} = \{(v_1, v_2), (w_1, w_2), ...\}$

CTL master formulas: $w_1, w_2 \models b$ $v_1, v_2 \models \neg a \land \neg b$ $u_1 \models (\exists \bigcirc b) \land a$ $u_2 \models ?$

CTLEQ5.2-7

bisimulation equivalence $\sim_{\mathcal{T}} = \{(v_1, v_2), (w_1, w_2), ...\}$

CTL master formulas: $w_1, w_2 \models b$ $v_1, v_2 \models \neg a \land \neg b$ $u_1 \models (\exists \bigcirc b) \land a$ $u_2 \models (\neg \exists \bigcirc b) \land a$

 $AP = \{blue, red\}$

CTLEQ5.2-8

 $AP = \{blue, red\}$

 $s_1 \sim_T s_2 \not\sim_T u$

 $AP = \{blue, red\}$

 $s_1 \sim_T s_2 \not\sim_T \mathbf{u}$

CTLEQ5.2-8

 $AP = \{blue, red\}$

 $s_1 \sim_T s_2 \not\sim_T \mathbf{u}$

$$AP = \{blue, red\}$$

$$s_1 \sim_T s_2 \not\sim_T u$$

$$AP = \{blue, red\}$$

$$s_1 \sim_T s_2 \not\sim_T u$$

CTL equivalence \implies bisimulation equivalence CTLEQ5.2-7B

If \mathcal{T} is a finite TS then, for all states s_1 , s_2 in \mathcal{T} :

if s_1 , s_2 are **CTL** equivalent then $s_1 \sim_T s_2$

CTL equivalence \implies bisimulation equivalence CTLEQ5.2-7B

If \mathcal{T} is a finite TS then, for all states s_1 , s_2 in \mathcal{T} : if s_1 , s_2 are **CTL** equivalent then $s_1 \sim_T s_2$

• wrong for infinite TS

CTL equivalence \implies bisimulation equivalence CTLEQ5.2-7B

If \mathcal{T} is a finite TS then, for all states s_1 , s_2 in \mathcal{T} : if s_1 , s_2 are **CTL** equivalent then $s_1 \sim_T s_2$

- wrong for infinite TS
- but also holds for finitely branching TS •

CTL equivalence \implies bisimulation equivalence $_$

CTLEQ5.2-7

If \mathcal{T} is a finite TS then, for all states s_1 , s_2 in \mathcal{T} : if s_1 , s_2 are **CTL** equivalent then $s_1 \sim_{\mathcal{T}} s_2$

- wrong for infinite TS
- but also holds for finitely branching TS

possibly infinite-state TS such that

- * the number of initial states is finite
- for each state the number of successors is finite

CTL equivalence \implies bisimulation equivalence _{cTLEQ5.2-7}

Let $T = (S, Act, \rightarrow, S_0, AP, L)$ be finitely branching.

CTL equivalence \implies bisimulation equivalence _{ctleg5.2-7}

Let $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ be finitely branching.

- * S_0 is finite * Post(s) is finite for all $s \in S$

CTL equivalence \implies bisimulation equivalence CTLEQ5.2-7C

Let $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ be finitely branching.

* S_0 is finite * Post(s) is finite for all $s \in S$

Then, for all states s_1 , s_2 in T:

if s_1 , s_2 are **CTL** equivalent then $s_1 \sim_{\mathcal{T}} s_2$
CTL equivalence \implies bisimulation equivalence _{cTLEQ5.2-7c}

Let $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ be finitely branching.

* S_0 is finite * Post(s) is finite for all $s \in S$

Then, for all states s_1 , s_2 in T:

if s_1 , s_2 are **CTL** equivalent then $s_1 \sim_{\mathcal{T}} s_2$

Proof: as for finite TS.

CTL equivalence \implies bisimulation equivalence CTLEQ5.2-7C

Let $T = (S, Act, \rightarrow, S_0, AP, L)$ be finitely branching.

* S_0 is finite * Post(s) is finite for all $s \in S$

Then, for all states s_1 , s_2 in T:

if s_1 , s_2 are **CTL** equivalent then $s_1 \sim_{\mathcal{T}} s_2$

Proof: as for finite TS. Amounts showing that

 $\mathcal{R} \stackrel{\text{def}}{=} \left\{ \left(\mathbf{s}_1, \mathbf{s}_2 \right) : \mathbf{s}_1, \mathbf{s}_2 \text{ satisfy the same CTL formulas} \right\}$ is a bisimulation.

CTL equivalence \implies bisimulation equivalence _{ctleg5.2-7D}

If \mathcal{T} is a finitely branching TS then for all states s_1 , s_2 : if s_1 , s_2 are **CTL** equivalent then $s_1 \sim_{\mathcal{T}} s_2$

Proof: show that

 $\mathcal{R} \stackrel{\text{def}}{=} \left\{ \left(\mathbf{s}_{1}, \mathbf{s}_{2} \right) : \mathbf{s}_{1}, \mathbf{s}_{2} \text{ satisfy the same CTL formulas} \right\}$ is a bisimulation, i.e., for $(\mathbf{s}_{1}, \mathbf{s}_{2}) \in \mathcal{R}$: (1) $\mathcal{L}(\mathbf{s}_{1}) = \mathcal{L}(\mathbf{s}_{2})$ (2) if $\mathbf{s}_{1} \rightarrow \mathbf{t}_{1}$ then there exists a transition $\mathbf{s}_{2} \rightarrow \mathbf{t}_{2}$ s.t. $(\mathbf{t}_{1}, \mathbf{t}_{2}) \in \mathcal{R}$

CTLEQ5.2-2-SUM

Let \mathcal{T} be a finite TS without terminal states, and s_1 , s_2 states in \mathcal{T} . Then:

```
\begin{array}{l} s_1 \sim_{\mathcal{T}} s_2 \\ \text{iff} \quad s_1 \text{ and } s_2 \text{ are } \mathsf{CTL} \quad \text{equivalent} \\ \text{iff} \quad s_1 \text{ and } s_2 \text{ are } \mathsf{CTL}^* \text{ equivalent} \end{array}
```

CTLEQ5.2-2-SUM

Let \mathcal{T} be a finitely branching TS without terminal states, and s_1 , s_2 states in \mathcal{T} . Then:

```
s_1 \sim_T s_2
iff s_1 and s_2 are CTL equivalent
iff s_1 and s_2 are CTL* equivalent
```


CTL/CTL* and bisimulation for TS

CTL/CTL* and bisimulation for TS

so far: we considered

- **CTL/CTL*** equivalence
- bisimulation equivalence $\sim_{\mathcal{T}}$

for the states of a single transition system ${\mathcal T}$

CTL/CTL* and bisimulation for TS

If T_1 , T_2 are finitely branching TS over *AP* without terminal states then:

Does the following statements hold for finite TS without terminal states ?

CTL equivalence is finer than LTL equivalence

correct.

correct.

CTL equivalence = CTL* equivalence LTL is sublogic of CTL*

correct.

LTL equivalence is finer than CTL equivalence

correct.

LTL equivalence is finer than CTL equivalence

wrong.

correct.

LTL equivalence is finer than CTL equivalence

wrong.

correct.

LTL equivalence is finer than CTL equivalence

wrong.

s₁, **s**₂ are trace equivalent

correct.

 $\ensuremath{\mathsf{LTL}}$ equivalence is finer than $\ensuremath{\mathsf{CTL}}$ equivalence

wrong.

s₁, s₂ are trace equivalentand LTL equivalent

correct.

 $\ensuremath{\mathsf{LTL}}$ equivalence is finer than $\ensuremath{\mathsf{CTL}}$ equivalence

wrong.

 s_1 , s_2 are trace equivalent

and LTL equivalent

$$s_1 \models \exists \bigcirc (\exists \bigcirc a \land \exists \bigcirc b)$$
$$s_2 \not\models \exists \bigcirc (\exists \bigcirc a \land \exists \bigcirc b)$$

Summary: equivalences

Summary: equivalences

CTLEQ5.2-11

Let \mathcal{T} be a finite TS without terminal states and s_1 , s_2 states of \mathcal{T} .

If s_1 , s_2 satisfy the same $CTL_{\setminus U}$ formulas then $s_1 \sim_{\mathcal{T}} s_2$.

CTLEQ5.2-11

Let \mathcal{T} be a finite TS without terminal states and s_1 , s_2 states of \mathcal{T} .

If s_1 , s_2 satisfy the same $CTL_{\setminus U}$ formulas then $s_1 \sim_T s_2$.

where $CTL_{\cup U} \cong CTL$ without until operator U

CTLEQ5.2-11

Let \mathcal{T} be a finite TS without terminal states and s_1 , s_2 states of \mathcal{T} .

If s_1 , s_2 satisfy the same $CTL_{\setminus U}$ formulas then $s_1 \sim_T s_2$.

where $CTL_{\cup U} \cong CTL$ without until operator U

correct.

CTLEQ5.2-11

Let \mathcal{T} be a finite TS without terminal states and s_1 , s_2 states of \mathcal{T} .

If s_1 , s_2 satisfy the same $CTL_{\setminus U}$ formulas then $s_1 \sim_T s_2$.

where $\mathsf{CTL}_{\setminus \mathsf{U}} \cong \mathsf{CTL}$ without until operator U

correct. see the proof

"CTL equivalence \implies bisimulation equivalence"

Let \mathcal{T} be a finite TS without terminal states and s_1 , s_2 states of \mathcal{T} .

If s_1 , s_2 satisfy the same $CTL_{\setminus U}$ formulas then $s_1 \sim_T s_2$.

Proof. Show that CTL_{U} equivalence is a bisimulation

Let \mathcal{T} be a finite TS without terminal states and s_1 , s_2 states of \mathcal{T} .

If s_1 , s_2 satisfy the same $CTL_{\setminus U}$ formulas then $s_1 \sim_T s_2$.

Proof. Show that CTL_{U} equivalence is a bisimulation

• labeling condition only uses atomic propositions

Let \mathcal{T} be a finite TS without terminal states and s_1 , s_2 states of \mathcal{T} .

If s_1 , s_2 satisfy the same $CTL_{\setminus U}$ formulas then $s_1 \sim_T s_2$.

Proof. Show that CTL_{U} equivalence is a bisimulation

- labeling condition only uses atomic propositions
- simulation condition can be established by CTL\U master formulas of the form:

Let \mathcal{T} be a finite TS without terminal states and s_1 , s_2 states of \mathcal{T} .

If s_1 , s_2 satisfy the same $CTL_{\setminus U}$ formulas then $s_1 \sim_T s_2$.

Proof. Show that CTL_{U} equivalence is a bisimulation

- labeling condition only uses atomic propositions
- simulation condition can be established by CTL\U master formulas of the form:

$$\exists \bigcirc \Phi_C$$
 where $\Phi_C = \bigwedge_D \Phi_{C,D}$
CTL_{V} -equivalence \Rightarrow bisimulation equivalence CTLEQ5.2-11

Let \mathcal{T} be a finite TS without terminal states and s_1 , s_2 states of \mathcal{T} .

If s_1 , s_2 satisfy the same $CTL_{\setminus U}$ formulas then $s_1 \sim_T s_2$.

Proof. Show that CTL_{U} equivalence is a bisimulation

- labeling condition only uses atomic propositions
- simulation condition can be established by CTL\U master formulas of the form:

$$\exists \bigcirc \Phi_C \quad \text{where} \quad \Phi_C = \bigwedge_D \Phi_{C,D}$$

and
$$Sat(\Phi_{C,D}) \subseteq C \setminus D$$

CTLEQ5.2-12

Let T be a finite TS without terminal states.

 \mathcal{T} and its bisimulation quotient \mathcal{T}/\sim satisfy the same CTL* formulas.

CTLEQ5.2-12

Let T be a finite TS without terminal states.

 \mathcal{T} and its bisimulation quotient \mathcal{T}/\sim satisfy the same CTL* formulas.

correct.

CTLEQ5.2-12

Let T be a finite TS without terminal states.

 \mathcal{T} and its bisimulation quotient \mathcal{T}/\sim satisfy the same CTL* formulas.

correct. Recall that $T \sim T/\sim$

 \mathcal{T} and its bisimulation quotient \mathcal{T}/\sim satisfy the same CTL* formulas.

correct. Recall that $T \sim T/\sim$ as $\mathcal{R} = \{(s, [s]) : s \in S\}$

is a bisimulation for $(T, T/\sim)$

here: $[s] = \sim_T$ -equivalence class of state s

Let T be a finite TS without terminal states and let *fair* be a **CTL** fairness assumption.

If $s_1 \sim_T s_2$ then for all **CTL** formulas Φ : $s_1 \models_{fair} \Phi$ iff $s_2 \models_{fair} \Phi$

Let T be a finite TS without terminal states and let *fair* be a **CTL** fairness assumption.

If $s_1 \sim_T s_2$ then for all **CTL** formulas Φ : $s_1 \models_{fair} \Phi$ iff $s_2 \models_{fair} \Phi$

correct

Let T be a finite TS without terminal states and let *fair* be a **CTL** fairness assumption.

If $s_1 \sim_T s_2$ then for all **CTL** formulas Φ : $s_1 \models_{fair} \Phi$ iff $s_2 \models_{fair} \Phi$

correct, as ⊨_{fair} is "CTL*-definable"

Let T be a finite TS without terminal states and let *fair* be a **CTL** fairness assumption.

If
$$s_1 \sim_T s_2$$
 then for all CTL formulas Φ :
 $s_1 \models_{fair} \Phi$ iff $s_2 \models_{fair} \Phi$
correct, as \models_{fair} is "CTL*-definable"
 \uparrow
For each CTL* state formula Φ there exists a
CTL* formula Ψ s.t. $s \models \Psi$ iff $s \models_{fair} \Phi$

Let T be a finite TS without terminal states and let *fair* be a **CTL** fairness assumption.

If $s_1 \sim_T s_2$ then for all CTL formulas Φ : $s_1 \models_{fair} \Phi$ iff $s_2 \models_{fair} \Phi$ correct, as \models_{fair} is "CTL*-definable" \uparrow For each CTL* state formula Φ there exists a CTL* formula Ψ s.t. $s \models \Psi$ iff $s \models_{fair} \Phi$

Example: for $\Phi = \exists \Box (a \land \forall \Diamond b)$

Let T be a finite TS without terminal states and let *fair* be a **CTL** fairness assumption.

If $s_1 \sim_{\mathcal{T}} s_2$ then for all **CTL** formulas Φ : $s_1 \models_{fair} \Phi$ iff $s_2 \models_{fair} \Phi$ **correct**, as \models_{fair} is "**CTL***-definable" For each **CTL*** state formula Φ there exists a **CTL*** formula Ψ s.t. $s \models \Psi$ iff $s \models_{fair} \Phi$

Example: for $\Phi = \exists \Box (a \land \forall \Diamond b)$ $\Psi = \exists (fair \land \Box (a \land \forall (fair \rightarrow \Diamond b)))$

If $s_1 \sim_T s_2$ then for all LT properties $E \subseteq (2^{AP})^{\omega}$: $s_1 \models E$ iff $s_2 \models E$

If $s_1 \sim_T s_2$ then for all LT properties $E \subseteq (2^{AP})^{\omega}$: $s_1 \models E$ iff $s_2 \models E$

correct.

If $s_1 \sim_T s_2$ then for all **LT** properties $E \subseteq (2^{AP})^{\omega}$: $s_1 \models E$ iff $s_2 \models E$

correct.

Note that:

(1) $s_1 \sim_{\mathcal{T}} s_2 \implies Traces(s_1) = Traces(s_2)$

If $s_1 \sim_T s_2$ then for all LT properties $E \subseteq (2^{AP})^{\omega}$: $s_1 \models E$ iff $s_2 \models E$

correct.

Note that:

- (1) $s_1 \sim_T s_2 \implies Traces(s_1) = Traces(s_2)$
- (2) $s \models E \iff Traces(s) \subseteq E$

Let \mathcal{F} be an action-based strong fairness assumption e.g., strong fairness for a single action α

If $s_1 \sim_T s_2$ then for all **LT** properties $E \subseteq (2^{AP})^{\omega}$: $s_1 \models_F E$ iff $s_2 \models_F E$

CTLEQ5.2-15

Let \mathcal{F} be an action-based strong fairness assumption e.g., strong fairness for a single action α

If $s_1 \sim_{\mathcal{T}} s_2$ then for all **LT** properties $E \subseteq (2^{AP})^{\omega}$: $s_1 \models_{\mathcal{F}} E$ iff $s_2 \models_{\mathcal{F}} E$

wrong.

CTLEQ5.2-15

Let \mathcal{F} be an action-based strong fairness assumption e.g., strong fairness for a single action α

If $s_1 \sim_{\mathcal{T}} s_2$ then for all **LT** properties $E \subseteq (2^{AP})^{\omega}$: $s_1 \models_{\mathcal{F}} E$ iff $s_2 \models_{\mathcal{F}} E$

wrong.

 $\mathcal{F} \cong$ strong fairness assumption for action α

CTLEQ5.2-15

Let \mathcal{F} be an action-based strong fairness assumption e.g., strong fairness for a single action α

If $s_1 \sim_T s_2$ then for all **LT** properties $E \subseteq (2^{AP})^{\omega}$: $s_1 \models_F E$ iff $s_2 \models_F E$

wrong.

 $E \cong \Diamond red$

 $\mathcal{F} \cong$ strong fairness assumption for action α

CTLEQ5.2-15

Let \mathcal{F} be an action-based strong fairness assumption e.g., strong fairness for a single action α

If $s_1 \sim_T s_2$ then for all **LT** properties $E \subseteq (2^{AP})^{\omega}$: $s_1 \models_F E$ iff $s_2 \models_F E$

wrong.

s₂ ⊭_{*F*} *E*

 $S_1 \models_{\mathcal{F}} E$

 $E \cong \Diamond red$

 $\mathcal{F} \cong$ strong fairness assumption for action α

CTLEQ5.2-16

Let \mathcal{F} be an action-based strong fairness assumption

If $s_1 \sim_T s_2$ then for all LT properties $E \subseteq (2^{AP})^{\omega}$: $s_1 \models_F E$ iff $s_2 \models_F E$

wrong.

If $s_1 \sim_T s_2$ then for all safety properties $E \subseteq (2^{AP})^{\omega}$: $s_1 \models_F E$ iff $s_2 \models_F E$

CTLEQ5.2-16

Let \mathcal{F} be an action-based strong fairness assumption

If $s_1 \sim_T s_2$ then for all LT properties $E \subseteq (2^{AP})^{\omega}$: $s_1 \models_F E$ iff $s_2 \models_F E$

wrong.

If $s_1 \sim_T s_2$ then for all safety properties $E \subseteq (2^{AP})^{\omega}$: $s_1 \models_F E$ iff $s_2 \models_F E$

correct.

CTLEQ5.2-16

Let \mathcal{F} be an action-based strong fairness assumption

If $s_1 \sim_T s_2$ then for all LT properties $E \subseteq (2^{AP})^{\omega}$: $s_1 \models_F E$ iff $s_2 \models_F E$

wrong.

If $s_1 \sim_T s_2$ then for all safety properties $E \subseteq (2^{AP})^{\omega}$: $s_1 \models_{\mathcal{F}} E$ iff $s_2 \models_{\mathcal{F}} E$

correct.

• realizable fairness irrelevant for safety properties

CTLEQ5.2-16

Let \mathcal{F} be an action-based strong fairness assumption

If $s_1 \sim_T s_2$ then for all LT properties $E \subseteq (2^{AP})^{\omega}$: $s_1 \models_F E$ iff $s_2 \models_F E$

wrong.

If $s_1 \sim_T s_2$ then for all safety properties $E \subseteq (2^{AP})^{\omega}$: $s_1 \models_{\mathcal{F}} E$ iff $s_2 \models_{\mathcal{F}} E$

correct.

- realizable fairness irrelevant for safety properties
- strong action-based fairness assumptions are realizable