Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ss-14/movep14/

July 10, 2014

Overview

What are Markov automata?

2 Parallel composition and hiding

3 Bisimulation

A process algebra for Markov automata

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

What are Markov automata?

Model-based performance evaluation

- Analyse performance metrics based on an abstract system model
 - ▶ formalisms: stochastic Petri nets, queueing networks, SANs, ...
- The prevailing paradigm is continuous-time randomness
 - exponential distributions, i.e., continuous-time Markov processes
- Complexity of systems requires compositional approach
 - reflecting system architecture
- Enormous model sizes require compositional abstraction mechanisms
 - like bisimulation minimization
- Nondeterminism is at heart of compositionality

We need: Compositional Continuous-Time Markov Chains

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems 2/2

What are Markov automata?

Markov automata

A Markov automaton *M* is a tuple $(S, Act, \rightarrow, \Rightarrow, s_0)$ where

- ▶ *S* is a nonempty set of states with initial state $s_0 \in S$
- Act is a set of actions; τ is an internal action
- ▶ \rightarrow \subseteq *S* × *Act* × *Distr*(*S*) is a set of action transitions
- ► ⇒ ⊆ $S \times \mathbb{R}_{>0} \times S$ is a set of Markovian transitions such that there is at most one $r \in \mathbb{R}_{>0}$ with $s \stackrel{r}{\Longrightarrow} s'$

Thus:

MA are probabilistic automata (with action-labeled transitions) extended with Markovian transitions that are labeled with rates of exponential distributions. Any CTMC is an MA; any PA is an MA.

[Eisentraut et al., 2010]

Markov automata

What are Markov automata

ig and Verification of Probabilistic Syst

Markov automata

Classification of states

- ▶ *s* is Markovian if $MT(s) \neq \emptyset$ and $IT(s) = \emptyset$
- ▶ *s* is interactive if $MT(s) = \emptyset$ and $IT(s) \neq \emptyset$
- ▶ *s* is hybrid if $MT(s) \neq \emptyset$ and $IT(s) \neq \emptyset$
- s is timelock if $MT(s) = IT(s) = \emptyset$

For Markovian state *s*, let:

- $\mathbf{R}(s, s') = \sum \left\{ \lambda \mid s \stackrel{\lambda}{\Longrightarrow} s' \right\}$ be the rate to move from s to s',
- $r(s) = \sum_{s' \in S} \mathbf{R}(s, s')$ be the exit rate of s
- $\mathbf{P}(s, s') = \frac{\mathbf{R}(s, s')}{r(s)}$ is the probability to move from s to s'

Markov automata

- A Markov automaton *M* is a tuple $(S, Act, \rightarrow, \Longrightarrow, s_0)$ where
 - ▶ *S* is a nonempty set of states with initial state $s_0 \in S$
- Act is a set of actions; τ is an internal action
- $\rightarrow \subseteq S \times Act \times Distr(S)$ is a set of action transitions
- $\blacktriangleright \implies \subseteq S \times \mathbb{R}_{>0} \times S \text{ is a set of Markovian transitions}$ such that there is at most one $r \in \mathbb{R}_{>0}$ with $s \stackrel{r}{\Longrightarrow} s'$
- 1. IT(s) is the set of interactive transitions that leave s.
- 2. MT(s) is the set of Markovian transitions that leave s.

Joost-Pieter Katoer

Modeling and Verification of Probabilistic Systems 6/2

What are Markov automata?

Maximal progress assumption

Maximal progress

- 1. Internal (action) transitions are labeled with the action τ .
- 2. These transitions will not be subject to interaction.
- 3. They cannot be delayed by other components.
- 4. Thus, internal interactive transitions can trigger immediately.
- 5. But, the probability to execute Markovian transitions immediately is zero.

Maximal progress assumption

Internal transitions take precedence over Markovian ones.

loost-Pieter Katoer

 (s_1) a (u_1) 1 $\frac{1}{3}$

Modeling and Verification of Probabilistic Systems

b

What are Markov automata?

Maximal progress

But as visible actions may be subject to delaying by other components:

Joost-Pieter Katoen

Parallel composition and hiding

Modeling and Verification of Probabilistic Systems

Parallel composition

The *composition* of M_1 and M_2 with $A = (Act_1 \cap Act_2) \setminus \{\tau\}$ is:

$$M_1 \mid \mid M_2 = (S_1 \times S_2, Act_1 \cup Act_2, \rightarrow, \Longrightarrow, (s_{0,1}, s_{0,2}))$$

where \rightarrow and \Longrightarrow are defined as the smallest relations satisfying:

$$(SYNC) \xrightarrow{s_1 \xrightarrow{\alpha} 1 \mu_1 \text{ and } s_2 \xrightarrow{\alpha} 2 \mu_2 \text{ and } \alpha \in A} (s_1, s_2) \xrightarrow{\alpha} \mu_1 \cdot \mu_2$$

$$(ASYNC) \xrightarrow{s_1 \xrightarrow{\alpha} 1 \mu_1 \text{ and } \alpha \notin A} (s_1, s_2) \xrightarrow{\alpha} \mu_1 \cdot \{s_2 \mapsto 1\}$$

$$(DELAY) \xrightarrow{s_1 \xrightarrow{\lambda} 1 s_1'} (s_1, s_2) \xrightarrow{AND} \xrightarrow{s_1 \xrightarrow{\lambda} 1 s_1 \text{ and } s_2 \xrightarrow{\lambda'} 2 s_2} (s_1, s_2) \xrightarrow{\lambda + \lambda'} (s_1, s_2)$$

Overview

What are Markov automata?

3 Bisimulation

A process algebra for Markov automata

Parallel composition and hiding

Modeling and Verification of Probabilistic System

Compatibility

Joost-Pieter Katoen

Parallel composition is compatible with parallel composition on PA: || is PA-composition, if the MAs are PAs

Parallel composition and hidin

Parallel composition: examples

Modeling and Verification of Probabilistic Syster

Modeling and Verification of Probabilistic Systems

Hiding

Hiding

Joost-Pieter Katoen

Overview

3 Bisimulation

Joost-Pieter Katoen

What are Markov automata?

2 Parallel composition and hiding

4 A process algebra for Markov automata

The *hiding* of MA $M = (S, Act, \rightarrow, \Longrightarrow, s_0)$ wrt. the set $A \subseteq Act \setminus \{\tau\}$ of actions is the MA $M \setminus A = (S, Act \setminus A, \rightarrow', \Longrightarrow, s_0)$ where \rightarrow' is the smallest relation defined by:

1. $s \xrightarrow{\alpha} \mu$ and $\alpha \notin A$ implies $s \xrightarrow{\alpha}' \mu$, and

2. $s \xrightarrow{\alpha} \mu$ and $\alpha \in A$ implies $s \xrightarrow{\tau} \mu$.

- Hiding transforms α -transitions with $\alpha \in A$ into τ -transitions.
- Turning an α-transition emanating from state s into a τ-transition may change the semantics of the MA, as now —due to maximal progress— never a Markovian transition in s will be taken.

Bisimulation

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

15/22

Bisimulation

Bisimulation – Congruence

Bisimulation – Example

Bisimulation

Joost-Pieter Katoen	Modeling and Verification of Probabilistic Systems	18/22

Bisimulation

Compatibility

 \sim is compatible with bisimilarity (\sim_p) on PA: \sim equals \sim_p , if the MAs are PAs

Congruence

- \sim is a congruence wrt. parallel composition and hiding. Thus:
- 1. $M \sim M'$ implies $\forall N. M \parallel N \sim M' \parallel N$
- 2. $M \sim M'$ implies $\forall A \subseteq Act \setminus \{\tau\}$. $M \setminus A \sim M' \setminus A$.

	A process algebra for Markov automata	
Overview		A process algeb
What are Markov automata?		

Parallel composition and hiding

3 Bisimulation

A process algebra for Markov automata

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

A process algebra for Markov automata

ra for MA

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems