
Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Lehrstuhl für Informatik 2

Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ss-14/movep14/

July 1, 2014

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 1/29

CSL Syntax

Overview

1 CSL Syntax

2 CSL Semantics

3 CSL Model Checking

4 Complexity

5 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 2/29

CSL Syntax

Continuous Stochastic Logic

I CSL is a language for formally specifying properties over CTMCs.
I It is a branching-time temporal logic based on CTL.
I Formula interpretation is Boolean, i.e., a state satisfies a formula or

not.
I Like in PCTL, the main operator is P

J

(Ï)
I where Ï constrains the set of paths and J is a threshold on the

probability.
I it is the probabilistic counterpart of ÷ and ’ path-quantifiers in CTL.

I The new features are a timed version of the next and until-operator.
I •I � asserts that a transition to a �-state can be made at time t œ I.
I �UI asserts that a -state can be reached via �-states at time t œ I.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 3/29

CSL Syntax

CTMCs — A transition system perspective

Continuous-time Markov chain
A CTMC C is a tuple (S, P, r , ÿinit, AP, L) with:

I
S is a countable nonempty set of states

I P : S◊S æ [0, 1], transition probability function s.t. q
s

Õ P(s, s

Õ) = 1
I

r : S æ R>0

, rate assigning function
I ÿinit : S æ [0, 1], the initial distribution with q

sœS

ÿinit(s) = 1

I
AP is a set of atomic propositions.

I
L : S æ 2AP, the labeling function, assigning to state s, the set L(s)
of atomic propositions that are valid in s.

Residence time
The average residence time in state s is 1

r(s) .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 4/29

http://moves.rwth-aachen.de/teaching/ss-14/movep14/

CSL Syntax

CSL syntax [Baier, Katoen & Hermanns, 1999]

Continuous Stochastic Logic: Syntax
CSL consists of state- and path-formulas.

I CSL state formulas over the set AP obey the grammar:

� ::= true
--- a

--- �
1

· �
2

--- ¬�
--- P

J

(Ï)

where a œ AP, Ï is a path formula and J ™ [0, 1], J ”= ? is a
non-empty interval.

I CSL path formulae are formed according to the following grammar:

Ï ::= •I �
--- �

1

UI �
2

where �, �
1

, and �
2

are state formulae and I ™ R>0

an interval.
Abbreviate P[0,0.5](Ï) by P60.5(Ï) and P]0,1](Ï) by P>0

(Ï).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 5/29

CSL Syntax

Continuous Stochastic Logic

I CSL state formulas over the set AP obey the grammar:

� ::= true
--- a

--- �
1

· �
2

--- ¬�
--- P

J

(Ï)

where a œ AP, Ï is a path formula and J ™ [0, 1], J ”= ?.
I CSL path formulae are formed according to the following grammar:

Ï ::= •I �
--- �

1

UI �
2

where �, �
1

, and �
2

are state formulae and I ™ R>0

an interval.

Intuitive semantics
I

s

0

t

0

s

1

t

1

. . . |= �UI if is reached at t œ I and prior to t, � holds.
I

s |= P
J

(Ï) if probability that paths starting in s fulfill Ï lies in J .
Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 6/29

CSL Semantics

Overview

1 CSL Syntax

2 CSL Semantics

3 CSL Model Checking

4 Complexity

5 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 7/29

CSL Semantics

Derived operators

⌃� = true U�

⌃I� = true U I�

P6p

(⇤�) = P>1≠p

(⌃¬�)

P(p,q)(⇤I�) = P[1≠q,1≠p](⌃I¬�)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 8/29

CSL Semantics

Paths in a CTMC

Timed paths
Paths in CTMC C are maximal (i.e., infinite) paths of alternating states
and time instants:

fi = s

0

t

0≠≠æ s

1

t

1≠≠æ s

2

· · ·
such that s

i

œ S and t

i

œ R>0

. Let Paths(C) be the set of paths in C and
Paths

ú(C) the set of finite prefixes thereof.

Notations
I Let fi[i] := s

i

denote the (i+1)-st state along the timed path fi.
I Let fiÈiÍ := t

i

the time spent in state s

i

.
I Let fi@t be the state occupied in fi at time t œ R>0

, i.e. fi@t := fi[i]
where i is the smallest index such that q

i

j=0

fiÈjÍ > t.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 9/29

CSL Semantics

Example properties

I Transient probabilities to be in goal state at time point 4:

P> 0.92

1
⌃=4

goal

2

I With probability > 0.92, a goal state is reached legally:

P> 0.92

(¬ illegal U goal)

I . . . in maximally 137 time units: P> 0.92

!¬ illegal U6 137

goal

"

I . . . once there, remain there almost surely for the next 31 time units:

P> 0.92

1
¬ illegal U 6 137 P=1

(⇤[0,31]
goal)

2

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 10/29

CSL Semantics

CSL semantics (1)
Notation
C, s |= � if and only if state-formula � holds in state s of CTMC C.

Satisfaction relation for state formulas
The satisfaction relation |= is defined for CSL state formulas by:

s |= a i� a œ L(s)

s |= ¬� i� not (s |= �)
s |= � · i� (s |= �) and (s |=)
s |= P

J

(Ï) i� Pr(s |= Ï) œ J

where Pr(s |= Ï) = Pr

s

{ fi œ Paths(s) | fi |= Ï }.

This is as for PCTL, except that Pr is the probability measures on cylinder
sets of timed paths in CTMC C.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 11/29

CSL Semantics

CSL semantics (2)

Satisfaction relation for path formulas
Let fi = s

0

t

0

s

1

t

1

s

2

. . . be an infinite path in CTMC C.
The satisfaction relation |= is defined for state formulas by:

fi |= •I � i� s

1

|= � · t

0

œ I

fi |= �UI i� ÷t œ I. ((’t

Õ œ [0, t). fi@t

Õ |= �) · fi@t |=)

Standard next- and until-operators

I
X� © •I � with I = R>0

.
I �U © �UI with I = R>0

.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/29

CSL Semantics

Measurability

CSL measurability
For any CSL path formula Ï and state s of CTMC C,
the set { fi œ Paths(s) | fi |= Ï } is measurable.

Proof:
Rather straightforward; left as an exercise.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 13/29

CSL Model Checking

Overview

1 CSL Syntax

2 CSL Semantics

3 CSL Model Checking

4 Complexity

5 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 14/29

CSL Model Checking

CSL model checking
CSL model checking problem

Input: a finite CTMC C = (S, P, r , ÿinit, AP, L), state s œ S, and
CSL state formula �

Output: yes, if s |= �; no, otherwise.

Basic algorithm
In order to check whether s |= � do:

1. Compute the satisfaction set Sat(�) = { s œ S | s |= � }.
2. This is done recursively by a bottom-up traversal of �’s parse tree.

I The nodes of the parse tree represent the subformulae of �.
I For each node, i.e., for each subformula of �, determine Sat().
I Determine Sat() as function of the satisfaction sets of its children:

e.g., Sat(
1

·
2

) = Sat(
1

) fl Sat(
2

) and Sat(¬) = S \ Sat().

3. Check whether state s belongs to Sat(�).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/29

CSL Model Checking

Core model checking algorithm
Propositional formulas
Sat(·) is defined by structural induction as follows:

Sat(true) = S

Sat(a) = { s œ S | a œ L(s) }, for any a œ AP

Sat(� ·) = Sat(�) fl Sat()
Sat(¬�) = S \ Sat(�).

Probabilistic operator P
In order to determine whether s œ Sat(P

J

(Ï)), the probability Pr(s |= Ï)
for the event specified by Ï needs to be established. Then

Sat(P
J

(Ï)) =
)
s œ S | Pr(s |= Ï) œ J

*
.

Let us consider the computation of Pr(s |= Ï) for all possible Ï.
Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 16/29

CSL Model Checking

The next-step operator

Recall that: s |= P
J

(•I�) if and only if Pr(s |= •I�) œ J .

Lemma
Pr(s |= •I�) =

1
e

≠r(s)· inf I ≠ e

≠r(s)· sup I

2

¸ ˚˙ ˝
probability to leave s in interval I

·
ÿ

s

ÕœSat(�)

P(s, s

Õ).

Algorithm
Considering the above equation for all states simultaneously yields:

!
Pr(s |= •�)

"
sœS

= bT

I

· P

with b
I

is defined by b

I

(s) = e

≠r(s)· inf I ≠ e

≠r(s)· sup I if s œ Sat(�) and 0
otherwise, and bT

I

is the transposed variant of b
I

.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 17/29

CSL Model Checking

Time-bounded until (1)

Recall that: s |= P
J

(�U6t) if and only if Pr(s |= �U6t) œ J .

Lemma
Let S=1

= Sat(), S=0

= S \ (Sat(�) fi Sat()), and S? = S \ (S=0

fi S=1

). Then:

Pr(s |= �U6t) =

Y
__]

__[

1 if s œ S=1

0 if s œ S=0⁄
t

0

ÿ

s

ÕœS

R(s, s

Õ) · e

≠r(s)·x ·Pr(s Õ |= �U6t≠x) dx otherwise

This is a slight generalisation of the Volterra integral equation system for
timed reachability.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 18/29

CSL Model Checking

Time-bounded until (2)

Let S=1

= Sat(), S=0

= S \ (Sat(�) fi Sat()), and S? = S \ (S=0

fi S=1

). Then:

Pr(s |= �U6t) =

Y
__]

__[

1 if s œ S=1

0 if s œ S=0⁄
t

0

ÿ

s

ÕœS

R(s, s

Õ) · e

≠r(s)·x ·Pr(s Õ |= �U6t≠x) dx otherwise

Recall lemma from the previous lecture
Pr(s |= F U6t

G)¸ ˚˙ ˝
timed reachability in C

= Pr(s |= ⌃=t

G)¸ ˚˙ ˝
in C[F fi G]

= p(t) with p(0) = 1
s¸ ˚˙ ˝

transient prob. in C[F fi G]

.

Phrased using CSL state formulas
Pr(s |= �U6t)¸ ˚˙ ˝

timed reachability in C

= Pr(s |= ⌃=t)¸ ˚˙ ˝
in C[Sat(¬�) fi Sat()]

= p(t) with p(0) = 1
s¸ ˚˙ ˝

C[Sat(¬�) fi Sat()]

.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 19/29

CSL Model Checking

Time-bounded until (3)

Algorithm for checking Pr(s |= �U6t) œ J

1. If t = Œ, then use approach for until (as in PCTL): solve a system of linear
equations.

2. Determine recursively Sat(�) and Sat().

3. Make all states in S \ Sat(�) and Sat() absorbing.

4. Uniformize the resulting CTMC with respect to its maximal rate.

5. Determine the transient probability at time t using s as initial distribution.

6. Return yes if transient probability of all -states lies in J , and no otherwise.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 20/29

CSL Model Checking

Time-bounded until (4)

Possible optimizations

1. Make all states in S \ Sat(÷(�U)) absorbing.

2. Make all states in Sat(’(�U)) absorbing.

3. Replace the labels of all states in S \ Sat(÷(�)) by unique label zero.

4. Replace the labels of all states in Sat(’(�U)) by unique label one.

5. Perform bisimulation minimization on all states.

The last step collapses all states in S \ Sat(÷(�U)) into a single state, and
does the same with all states in Sat(’(�U)).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 21/29

CSL Model Checking

Preservation of CSL-formulas

Bisimulation and CSL-equivalence coincide
Let C be a finitely branching CTMC and s, t states in C. Then:

s ≥
m

t if and only if s and t are CSL-equivalent.

Remarks
If for CSL-formula � we have s |= � but t ”|= �, then it follows s ”≥

m

t. A
single CSL-formula su�ces!

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 22/29

CSL Model Checking

Preservation of CSL-formulas

Weak bisimulation and CSL-without-next-equivalence coincide
Let C be a finitely branching CTMC and s, t states in C. Then:

s ¥
m

t if and only if s and t are CSL-without-next-equivalent.

Here. CSL-without-next is the fragment of CSL where the next-operator
• does not occur.

Remarks
If for CSL-without-next-formula � we have s |= � but t ”|= �, then it
follows s ”¥

m

t.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 23/29

CSL Model Checking

Uniformization and CSL

Uniformization and CSL
For any finite CTMC C with state space S, r > max{ r(s) | s œ S } and �
a CSL-without-next-formula:

Sat

C(�) = Sat

CÕ
(�) where CÕ = unif(r , C).

Uniformization and CSL
For any uniformized CTMC: CSL-equivalence coincides with
CSL-without-next-equivalence.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 24/29

Complexity

Overview

1 CSL Syntax

2 CSL Semantics

3 CSL Model Checking

4 Complexity

5 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 25/29

Complexity

Time complexity

Let |�| be the size of �, i.e., the number of logical and temporal operators in �.

Time complexity of CSL model checking
For finite CTMC C and CSL state-formula �, the CSL model-checking
problem can be solved in time

O!
poly(size(C)) · t

max

· |�| "

where t

max

= max{ t |
1

U 6t
2

occurs in � } with and t

max

= 1 if �
does not contain a time-bounded until-operator.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 26/29

Complexity

Some practical verification times

0

5�
10
5

1�
10
6

1.
5�
10
6

2�
10
6

2.
5�
10
6101

102

103

104

Crowds protocol (DTMC)

Randomised mutex (DTMC)

Workstation cluster (CTMC)

Tandem queue (CTMC)

verication time (in ms)

state space size

I command-line tool MRMC ran on a Pentium 4, 2.66 GHz, 1 GB RAM laptop.
I CSL formulas are time-bounded until-formulas.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 27/29

Summary

Overview

1 CSL Syntax

2 CSL Semantics

3 CSL Model Checking

4 Complexity

5 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 28/29

Summary

Summary

I CSL is a variant of PCTL with timed next and timed until.
I Sets of paths fulfilling CSL path-formula Ï are measurable.
I CSL model checking is performed by a recursive descent over �.
I The timed next operator amounts to a single vector-matrix

multiplication.
I The time-bounded until-operator U6t is solved by uniformization.
I The worst-case time complexity is polynomial in the size of the

CTMC and linear in the size of the formula.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 29/29

	CSL Syntax
	CSL Semantics
	CSL Model Checking
	Complexity
	Summary

