Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ss-14/movep14/

July 1, 2014

Overview

Joost-Pieter Katoen

CSL Syntax
 CSL Semantics
 CSL Model Checking
 Complexity
 Summary

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

CSL Syntax

Continuous Stochastic Logic

CSL is a language for formally specifying properties over CTMCs.

- It is a branching-time temporal logic based on CTL.
- Formula interpretation is Boolean, i.e., a state satisfies a formula or not.
- Like in PCTL, the main operator is $\mathbb{P}_{J}(\varphi)$
 - where φ constrains the set of paths and J is a threshold on the probability.
 - ▶ it is the probabilistic counterpart of \exists and \forall path-quantifiers in CTL.
- ► The new features are a timed version of the next and until-operator.
 - $\bigcirc^{l} \Phi$ asserts that a transition to a Φ -state can be made at time $t \in I$.
 - $\Phi U^{I}\Psi$ asserts that a Ψ -state can be reached via Φ -states at time $t \in I$.

CSL Svntax

Modeling and Verification of Probabilistic Syste

CTMCs — A transition system perspective

Continuous-time Markov chain

- A CTMC C is a tuple $(S, \mathbf{P}, r, \iota_{init}, AP, L)$ with:
 - ► *S* is a countable nonempty set of states
 - ▶ $\mathbf{P}: S \times S \rightarrow [0, 1]$, transition probability function s.t. $\sum_{s'} \mathbf{P}(s, s') = 1$
 - ▶ $r: S \to \mathbb{R}_{>0}$, rate assigning function
 - ▶ $\iota_{\text{init}}: S \rightarrow [0, 1]$, the initial distribution with $\sum_{s \in S} \iota_{\text{init}}(s) = 1$
 - ► AP is a set of atomic propositions.
 - $L: S \rightarrow 2^{AP}$, the labeling function, assigning to state *s*, the set L(s) of atomic propositions that are valid in *s*.

Residence time

The average residence time in state s is $\frac{1}{r(s)}$.

CSL syntax

CSL Syntax

[Baier, Katoen & Hermanns, 1999]

Continuous Stochastic Logic: Syntax

- CSL consists of state- and path-formulas.
- ► CSL *state formulas* over the set *AP* obey the grammar:

$$\Phi ::= \mathsf{true} \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \mathbb{P}_{\mathsf{J}}(\varphi)$$

where $a \in AP$, φ is a path formula and $J \subseteq [0, 1]$, $J \neq \emptyset$ is a non-empty interval.

CSL path formulae are formed according to the following grammar:

$$\varphi ::= \bigcirc' \Phi \mid \Phi_1 \cup' \Phi_2$$

CSL Semantics

where Φ , Φ_1 , and Φ_2 are state formulae and $I \subseteq \mathbb{R}_{\geq 0}$ an interval. Abbreviate $\mathbb{P}_{[0,0.5]}(\varphi)$ by $\mathbb{P}_{\leq 0.5}(\varphi)$ and $\mathbb{P}_{[0,1]}(\varphi)$ by $\mathbb{P}_{>0}(\varphi)$.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Overview

2 CSL Semantics

3 CSL Model Checking

4 Complexity

5 Summary

Continuous Stochastic Logic

▶ CSL *state formulas* over the set *AP* obey the grammar:

$$\Phi ::= true \left| \begin{array}{c} a \end{array} \right| \left| \begin{array}{c} \Phi_1 \land \Phi_2 \end{array} \right| \left| \begin{array}{c} \neg \Phi \end{array} \right| \left| \begin{array}{c} \mathbb{P}_J(\varphi) \end{array} \right|$$

where $a \in AP$, φ is a path formula and $J \subseteq [0, 1]$, $J \neq \emptyset$.

CSL path formulae are formed according to the following grammar:

 $\varphi ::= \bigcirc' \Phi \mid \Phi_1 \cup' \Phi_2$

where $\Phi,\,\Phi_1,\,\text{and}\,\,\Phi_2$ are state formulae and $\textbf{\textit{I}}\subseteq\mathbb{R}_{\geqslant0}$ an interval.

Intuitive semantics

- ► $s_0 t_0 s_1 t_1 ... \models \Phi \cup^I \Psi$ if Ψ is reached at $t \in I$ and prior to t, Φ holds.
- $s \models \mathbb{P}_{J}(\varphi)$ if probability that paths starting in s fulfill φ lies in J.

Joost-Pieter Katoen

CSL Semantics

Modeling and Verification of Probabilistic Systems

Derived operators

 $\Diamond \Phi = \operatorname{true} U \Phi$

 $\Diamond' \Phi = \operatorname{true} U' \Phi$

$$\mathbb{P}_{\leq p}(\Box \Phi) = \mathbb{P}_{>1-p}(\Diamond \neg \Phi)$$

 $\mathbb{P}_{(p,q)}(\Box'\Phi) = \mathbb{P}_{[1-q,1-p]}(\Diamond'\neg\Phi)$

CSL Semantics

Paths in a CTMC

Timed paths

Paths in CTMC C are maximal (i.e., infinite) paths of alternating states and time instants:

$$\pi = s_0 \xrightarrow{t_0} s_1 \xrightarrow{t_1} s_2 \cdots$$

such that $s_i \in S$ and $t_i \in \mathbb{R}_{>0}$. Let $Paths(\mathcal{C})$ be the set of paths in \mathcal{C} and $Paths^*(\mathcal{C})$ the set of finite prefixes thereof.

Notations

- Let $\pi[i] := s_i$ denote the (i+1)-st state along the timed path π .
- Let $\pi \langle i \rangle := t_i$ the time spent in state s_i .
- Let $\pi @t$ be the state occupied in π at time $t \in \mathbb{R}_{\geq 0}$, i.e. $\pi @t := \pi[i]$ where *i* is the smallest index such that $\sum_{i=0}^{i} \pi \langle j \rangle > t$.

Joost-Pieter Katoen

CSL Semantics

Modeling and Verification of Probabilistic Systems

CSL semantics (1)

Notation

 \mathcal{C} , $\mathbf{s} \models \Phi$ if and only if state-formula Φ holds in state \mathbf{s} of CTMC \mathcal{C} .

Satisfaction relation for state formulas

The satisfaction relation \models is defined for CSL state formulas by:

 $s \models a \qquad \text{iff} \quad a \in L(s)$ $s \models \neg \Phi \qquad \text{iff} \quad \text{not} \ (s \models \Phi)$ $s \models \Phi \land \Psi \qquad \text{iff} \quad (s \models \Phi) \text{ and} \ (s \models \Psi)$ $s \models \mathbb{P}_{J}(\varphi) \qquad \text{iff} \quad Pr(s \models \varphi) \in J$

where $Pr(s \models \varphi) = Pr_s \{ \pi \in Paths(s) \mid \pi \models \varphi \}.$

This is as for PCTL, except that Pr is the probability measures on cylinder sets of timed paths in CTMC C.

Example properties

• Transient probabilities to be in *goal* state at time point 4:

 $\mathbb{P}_{\geq 0.92}\left(\Diamond^{=4} \text{ goal}\right)$

• With probability \ge 0.92, a goal state is reached legally:

 $\mathbb{P}_{\geq 0.92}$ (¬ illegal U goal)

- ► ... in maximally 137 time units: $\mathbb{P}_{\geq 0.92} (\neg \text{ illegal } U^{\leq 137} \text{ goal})$
- \blacktriangleright ... once there, remain there almost surely for the next 31 time units:

$$\mathbb{P}_{\geq 0.92}\left(\neg \textit{illegal } \cup ^{\leq 137} \mathbb{P}_{=1}(\Box^{[0,31]} \textit{ goal})\right)$$

Joost-Pieter Katoen

Modeling and Verification of Probabilistic System

CSL Semantics

CSL semantics (2)

Satisfaction relation for path formulas

Let $\pi = s_0 t_0 s_1 t_1 s_2 \dots$ be an infinite path in CTMC C.

The satisfaction relation \models is defined for state formulas by:

 $\pi \models \bigcirc^{I} \Phi \quad \text{iff} \quad s_1 \models \Phi \land t_0 \in I$

 $\pi \models \Phi \cup \forall \Psi \quad \text{iff} \quad \exists t \in I. \ ((\forall t' \in [0, t). \pi @t' \models \Phi) \land \pi @t \models \Psi)$

Standard next- and until-operators

- $X\Phi \equiv \bigcirc^{I} \Phi$ with $I = \mathbb{R}_{\geq 0}$.
- ► $\Phi \cup \Psi \equiv \Phi \cup^{I} \Psi$ with $I = \mathbb{R}_{\geq 0}$.

CSL Semantics

Measurability

For any CSL path formula φ and state *s* of CTMC *C*, the set { $\pi \in Paths(s) \mid \pi \models \varphi$ } is measurable.

Proof:

Rather straightforward; left as an exercise.

Overview

CSL Syntax
 CSL Semantics
 CSL Model Checking
 Complexity
 Summary

CSL Model Checkin

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

13/29

CSL Model Checking

CSL model checking

CSL model checking problem

Input: a finite CTMC $C = (S, \mathbf{P}, r, \iota_{init}, AP, L)$, state $s \in S$, and CSL state formula Φ

Output: yes, if $s \models \Phi$; no, otherwise.

Basic algorithm

In order to check whether $s \models \Phi$ do:

1. Compute the satisfaction set $Sat(\Phi) = \{ s \in S \mid s \models \Phi \}.$

- 2. This is done recursively by a bottom-up traversal of Φ 's parse tree.
 - The nodes of the parse tree represent the subformulae of Φ .
 - For each node, i.e., for each subformula Ψ of Φ , determine $Sat(\Psi)$.
 - ▶ Determine $Sat(\Psi)$ as function of the satisfaction sets of its children: e.g., $Sat(\Psi_1 \land \Psi_2) = Sat(\Psi_1) \cap Sat(\Psi_2)$ and $Sat(\neg \Psi) = S \setminus Sat(\Psi)$.
- 3. Check whether state *s* belongs to $Sat(\Phi)$.

CSL Model Checking

Modeling and Verification of Probabilistic System

Core model checking algorithm

Propositional formulas

Joost-Pieter Katoen

 $Sat(\cdot)$ is defined by structural induction as follows:

 $\begin{array}{rcl} Sat(\mathrm{true}) &=& S\\ Sat(a) &=& \{s \in S \mid a \in L(s)\}, \text{ for any } a \in AP\\ Sat(\Phi \land \Psi) &=& Sat(\Phi) \cap Sat(\Psi)\\ Sat(\neg \Phi) &=& S \setminus Sat(\Phi). \end{array}$

Probabilistic operator \mathbb{P}

In order to determine whether $s \in Sat(\mathbb{P}_{J}(\varphi))$, the probability $Pr(s \models \varphi)$ for the event specified by φ needs to be established. Then

$$Sat(\mathbb{P}_{J}(\varphi)) = \{s \in S \mid Pr(s \models \varphi) \in J\}.$$

Let us consider the computation of $Pr(s \models \varphi)$ for all possible φ .

CSL Model Checkin

The next-step operator

 $Pr(s \models \bigcirc^{I} \Phi) = (e^{-r(s) \cdot \inf I} -$

Recall that: $s \models \mathbb{P}_{I}(\bigcirc^{I} \Phi)$ if and only if $Pr(s \models \bigcirc^{I} \Phi) \in J$.

$$\underbrace{e^{-r(s)\cdot \sup l}}_{s'\in Sat(\Phi)}$$

 $\mathbf{P}(s, s')$.

probability to leave s in interval /

Algorithm

Considering the above equation for all states simultaneously yields:

$$(Pr(s \models \bigcirc \Phi))_{s \in S} = \mathbf{b}_{l}^{T} \cdot \mathbf{F}$$

with **b**_l is defined by $b_l(s) = e^{-r(s) \cdot \inf l} - e^{-r(s) \cdot \sup l}$ if $s \in Sat(\Phi)$ and 0 otherwise, and \mathbf{b}_{l}^{T} is the transposed variant of \mathbf{b}_{l} .

loost-Pieter Katoen

Modeling and Verification of Probabilistic System

CSL Model Checking

Time-bounded until (2)

Let
$$S_{=1} = Sat(\Psi)$$
, $S_{=0} = S \setminus (Sat(\Phi) \cup Sat(\Psi))$, and $S_? = S \setminus (S_{=0} \cup S_{=1})$. Then:

$$Pr(s \models \Phi \cup \leq t \Psi) = \begin{cases} 1 & \text{if } s \in S_{=1} \\ 0 & \text{if } s \in S_{=0} \end{cases}$$

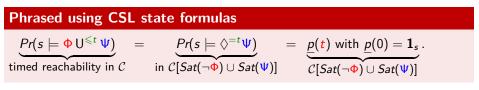
$$\int_0^t \sum_{s' \in S} \mathsf{R}(s, s') \cdot e^{-r(s) \cdot x} \cdot Pr(s' \models \Phi \cup \leq t - x \Psi) \, dx \quad \text{otherwise} \end{cases}$$

Recall lemma from the previous lecture

timed reachability in \mathcal{C}

 $\underbrace{\Pr(s \models \overline{F} \cup^{\leq t} G)}_{\text{imed reachability in } \mathcal{C}} = \underbrace{\Pr(s \models \Diamond^{=t} G)}_{\text{in } \mathcal{C}[F \cup G]} = \underbrace{\underbrace{p(t) \text{ with } \underline{p}(0) = \mathbf{1}_s}_{\text{transient prob. in } \mathcal{C}[F \cup G]}.$

Modeling and Verification of Probabilistic Systems



Time-bounded until (1)

Recall that: $s \models \mathbb{P}_{I}(\Phi \cup U^{\leq t} \Psi)$ if and only if $Pr(s \models \Phi \cup U^{\leq t} \Psi) \in J$.

Lemma
Let
$$S_{=1} = Sat(\Psi)$$
, $S_{=0} = S \setminus (Sat(\Phi) \cup Sat(\Psi))$, and $S_? = S \setminus (S_{=0} \cup S_{=1})$. Then:

$$Pr(s \models \Phi \cup \leq t \Psi) = \begin{cases} 1 & \text{if } s \in S_{=1} \\ 0 & \text{if } s \in S_{=0} \end{cases}$$

$$\int_{0}^{t} \sum_{s' \in S} \mathbf{R}(s, s') \cdot e^{-r(s) \cdot x} \cdot Pr(s' \models \Phi \cup \leq t - x \Psi) dx \text{ otherwise}$$

This is a slight generalisation of the Volterra integral equation system for timed reachability.

loost-Pieter Katoen

Modeling and Verification of Probabilistic System

CSL Model Checking

Time-bounded until (3)

Algorithm for checking $Pr(s \models \bullet \cup \leq t \Psi) \in J$

- 1. If $t = \infty$, then use approach for until (as in PCTL): solve a system of linear equations.
- 2. Determine recursively $Sat(\Phi)$ and $Sat(\Psi)$.
- 3. Make all states in $S \setminus Sat(\Phi)$ and $Sat(\Psi)$ absorbing.
- 4. Uniformize the resulting CTMC with respect to its maximal rate.
- 5. Determine the transient probability at time t using s as initial distribution.
- 6. Return yes if transient probability of all Ψ -states lies in J, and no otherwise.

CSL Model Checking

Time-bounded until (4)

Preservation of CSL-formulas

Possible optimizations

- 1. Make all states in $S \setminus Sat(\exists (\Phi \cup \Psi))$ absorbing.
- 2. Make all states in $Sat(\forall (\Phi \cup \Psi))$ absorbing.
- 3. Replace the labels of all states in $S \setminus Sat(\exists (\Phi \Psi))$ by unique label zero.
- 4. Replace the labels of all states in $Sat(\forall (\Phi \cup \Psi))$ by unique label one.
- 5. Perform bisimulation minimization on all states.

The last step collapses all states in $S \setminus Sat(\exists (\Phi \cup \Psi))$ into a single state, and does the same with all states in $Sat(\forall (\Phi \cup \Psi))$.

Bisimulation and CSL-equivalence coincide

Let C be a finitely branching CTMC and s, t states in C. Then:

 $s \sim_m t$ if and only if s and t are CSL-equivalent.

Remarks

If for CSL-formula Φ we have $s \models \Phi$ but $t \not\models \Phi$, then it follows $s \not\sim_m t$. A single CSL-formula suffices!

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

CSL Model Checking

Preservation of CSL-formulas

Weak bisimulation and CSL-without-next-equivalence coincide

Let C be a finitely branching CTMC and s, t states in C. Then:

 $s \approx_m t$ if and only if s and t are CSL-without-next-equivalent.

Here. CSL-without-next is the fragment of CSL where the next-operator \bigcirc does not occur.

Remarks

If for CSL-without-next-formula Φ we have $s \models \Phi$ but $t \not\models \Phi$, then it follows $s \not\approx_m t$.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems 22/2

CSL Model Checking

Uniformization and CSL

Uniformization and CSL

For any finite CTMC C with state space S, $r \ge \max\{r(s) \mid s \in S\}$ and Φ a CSL-without-next-formula:

$$Sat^{\mathcal{C}}(\Phi) = Sat^{\mathcal{C}'}(\Phi)$$
 where $\mathcal{C}' = unif(r, \mathcal{C})$.

Uniformization and CSL

For any uniformized CTMC: CSL-equivalence coincides with CSL-without-next-equivalence.

Complexity
Overview
CSL Syntax
2 CSL Semantics
3 CSL Model Checking
4 Complexity
5 Summary

Time complexity

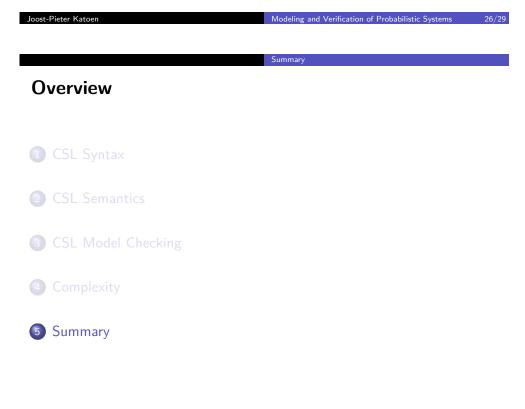
Let $|\Phi|$ be the size of Φ , i.e., the number of logical and temporal operators in Φ .

Time complexity of CSL model checking

For finite CTMC C and CSL state-formula Φ , the CSL model-checking problem can be solved in time

$$\mathcal{O}(\operatorname{\textit{poly}}(\operatorname{\textit{size}}(\mathcal{C})) \cdot t_{\max} \cdot |\Phi|)$$

where $t_{\max} = \max\{t \mid \Psi_1 \cup \forall \Psi_2 \text{ occurs in } \Phi\}$ with and $t_{\max} = 1$ if Φ does not contain a time-bounded until-operator.



<section-header>

Complexity

- ▶ command-line tool MRMC ran on a Pentium 4, 2.66 GHz, 1 GB RAM laptop.
- CSL formulas are time-bounded until-formulas.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Summary

Summary

- ▶ CSL is a variant of PCTL with timed next and timed until.
- Sets of paths fulfilling CSL path-formula φ are measurable.
- CSL model checking is performed by a recursive descent over Φ .
- The timed next operator amounts to a single vector-matrix multiplication.
- The time-bounded until-operator $U^{\leq t}$ is solved by uniformization.
- The worst-case time complexity is polynomial in the size of the CTMC and linear in the size of the formula.

Modeling and Verification of Probabilistic Systems 2