N L — CSL Syntax

Overview

Modeling and Verification of Probabilistic Systems @ CSL Syntax

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ss-14/movepl4/

July 1, 2014

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Continuous Stochastic Logic CTMCs — A transition system perspective

Continuous-time Markov chain
A CTMC C is a tuple (S, P, r, tini, AP, L) with:

» S is a countable nonempty set of states

|
» CSL is a language for formally specifying properties over CTMCs.

> It is a branching-time temporal logic based on CTL.

» P:5xS — [0,1], transition probability function s.t. >, P(s,s’) =1
» Formula interpretation is Boolean, i.e., a state satisfies a formula or b r: S — Rog, rate assigning funcion
. >)
not.
0 . , init - , 1], the initial distributi ith mie(s) =1
» Like in PCTL, the main operator is P;(¢) 7 s 35 = [, G et et o sgsb (s)
» where ¢ constrains the set of paths and J is a threshold on the » AP is a set of atomic propositions.
bability. . . I
probability. > L:S — 24P the labeling function, assigning to state s, the set L(s)

» it is the probabilistic counterpart of 3 and V path-quantifiers in CTL.

. . . of atomic propositions that are valid in s.
» The new features are a timed version of the next and until-operator. Prop

» (! ® asserts that a transition to a ®-state can be made at time t € /.

» & U’V asserts that a W-state can be reached via ®-states at time t € /.

The average residence time in state s is %)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 3/29 Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 4/29

http://moves.rwth-aachen.de/teaching/ss-14/movep14/

CSL Syntax CSL Syntax

CSL syntax [Baier, Katoen & Hermanns, 1999] Continuous Stochastic Logic
[

Continuous Stochastic Logic: Syntax

I g p— R CSL state formulas over the set AP obey the grammar:

» CSL state formulas over the set AP obey the grammar: ® = true ‘ 5 } ®; A by ‘ —d ’ P ()
b n= true ‘ d ‘ ®1 A &y ‘ b ‘ P() where a € AP, ¢ is a path formula and J C [0,1], J # @.

where a € AP, o is a path formula and J C [0,1], J # & is a CSL path formulae are formed according to the following grammar:

non-empty interval.
Py . . p = Q’CD ‘ <D1U’<D2
» CSL path formulae are formed according to the following grammar:

where @, ®1, and &, are state formulae and / C R an interval.

Intuitive semantics

> sptositi... = ® UV if U is reached at t € | and prior to t, ® holds.
» s = P,(p) if probability that paths starting in s fulfill © lies in J.

e o= O o] o, U’ o,

where @, ®1, and ®, are state formulae and / C R an interval.

Abbreviate Pjg .51(¢) by P<o.s(¢) and Pjg () by P=o(e).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Overview Derived operators
OP = trueU ®

© CSL Semantics
<>’CD = trueU/®

Pep(P) = Po1-p(079)

P(pq)(0'®) = Pu_q1-p(0'=®)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 7/29 Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 8/29

Paths in a CTMC

Timed paths

Paths in CTMC C are maximal (i.e., infinite) paths of alternating states
and time instants:
T = Soi>51i>52~"

such that s; € S and t; € R-. Let Paths(C) be the set of paths in C and
Paths*(C) the set of finite prefixes thereof.

» Let 7[i] := s; denote the (i+1)-st state along the timed path .
> Let 7(i) := t; the time spent in state s;.

» Let 7@t be the state occupied in 7 at time t € R, i.e. 70t := 7[/]
where i is the smallest index such that >i_o7(j) > t.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

CSL Semantics

Example properties
1

» Transient probabilities to be in goal state at time point 4:

P> 0.02 (0:4 goal)

» With probability > 0.92, a goal state is reached legally:

P~ 0.092 (— illegal U goal)

» ... in maximally 137 time units: P~ 0.02 (— illegal US13" goal)

> ... once there, remain there almost surely for the next 31 time units:

P> 0.92 (—| illegal U S137]P’:1(D[0’31] goa/))

Joost-Pieter Katoen

CSL semantics (1)

C,s E ¢ if and only if state-formula ¢ holds in state s of CTMC C.

Satisfaction relation for state formulas

The satisfaction relation |= is defined for CSL state formulas by:

skEa iff a€L(s)

sE -9 iff not (s =)

sEP AV iff (sEP)and (s V)
sEP)p) iff PiskEp)ed

where Pr(s =) = Prs{m € Paths(s) | 7 = ¢ }.

This is as for PCTL, except that Pris the probability measures on cylinder
sets of timed paths in CTMC C.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 11/29

Modeling and Verification of Probabilistic Systems

CSL semantics (2)

Satisfaction relation for path formulas

Let m = sp tg sy t1 S2 ... be an infinite path in CTMC C.

The satisfaction relation |= is defined for state formulas by:
Qe iff ssE®PAtel

oV v iff Jtel (V€0 t). 70t | d) A 10t = W)

Standard next- and until-operators

» X0 = O o with I =R>o.
» DUV = oUW with | = Rxg.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/29

CSL Semantics

Measurability

CSL measurability

For any CSL path formula ¢ and state s of CTMC C,
the set { m € Paths(s) | m = ¢ } is measurable.

Rather straightforward; left as an exercise.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

CSL Model Checking

Overview

© CSL Model Checking

CSL Model Checking

CSL model checking
CSL model checking problem

Input: a finite CTMC C = (S, P, r, L, AP, L), state s € S, and
CSL state formula ¢

Output: yes, if s = ®; no, otherwise.

Basic algorithm

In order to check whether s = ¢ do:

1. Compute the satisfaction set Sat(®) ={s€ S|sE o }.
2. This is done recursively by a bottom-up traversal of ®'s parse tree.

» The nodes of the parse tree represent the subformulae of ®.

» For each node, i.e., for each subformula W of ®, determine Sat(V).
» Determine Sat(V) as function of the satisfaction sets of its children:

e.g., Sat(Vy A W,) = Sat(W1) N Sat(V2) and Sat(—W) = S\ Sat(V).
3. Check whether state s belongs to Sat(®).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

CSL Model Checking

Core model checking algorithm

Propositional formulas

Sat(-) is defined by structural induction as follows:

Sat(true) = S
Sat(a) = {seS|acl(s)}, forany ac AP
Sat(P AV) = Sat(P) N Sat(V)
Sat(—=®) = S\ Sat(®).

Probabilistic operator P

In order to determine whether s € Sat(IP,()), the probability Pr(s =)
for the event specified by ¢ needs to be established. Then

Sat(P,(9)) = {s€S|Pris =) € J).
Let us consider the computation of Pr(s |=) for all possible .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 16/29

CSL Model Checking CSL Model Checking

The next-step operator Time-bounded until (1)
| [
Recall that: s |= P,(O'®) if and only if Pr(s = O'®) € J. Recall that: s |=P;(® U<t V) if and only if Pr(s F Ut W) € J.
/ —r(s)-inf/ —r(s)-sup/ / cmma
Pr(s EO'®) = (e —) =Y P(s,$). Let S_; = Sat(V), S_o = S\ (Sat(®) U Sat(V)), and S = S\ (S—o U S_1). Then:
probability to leave s in interval / S 1 if sc S_;

if se S

0
. Prs E®US V) = t
Algorithm / Z R(s,s')- e "O*.Prs’ E dUS™ W) dx otherwise
0

Considering the above equation for all states simultaneously yields: €S

(P(s EO®))yes = b/ P N
with by is defined by by(s) = e r(s)-infl _ g=r(s)-supl if ¢ Sat(®) and 0 This is a slight generalisation of the Volterra integral equation system for

otherwise, and b/ is the transposed variant of b;. timed reachability.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

CSL Model Checking CSL Model Checking

Time-bounded until (2) Time-bounded until (3)

|
Let S—1 = Sat(V), S—o = S\ (Sat(P) U Sat(V)), and S = S\ (S=0 U 5=1). Then:

1 if s €S Algorithm for checking Pr(s = U) € J
. 0 if se€ S5
Pr(s = d US‘ W) = /‘L Z R(s,s') - e &% Pr(s’ = dUS* W) dx otherwise 1. Ift :t.oo, then use approach for until (as in PCTL): solve a system of linear
M equations.

s'eS

2. Determine recursively Sat(®) and Sat(V).
3. Make all states in S\ Sat(®) and Sat(V) absorbing.
Pr(s = F USt G) = PrsE{O7'G) = p(t) with p(0) = 1 4. Uniformize the resulting CTMC with respect to its maximal rate.
timc W tra;sient prob._in C[FU G] 5. Determine the transient probability at time t using s as initial distribution.
6. Return yes if transient probability of all W-states lies in J, and no otherwise.
Pr(s = ®US' W) = Pr(s = 0~"W) = p(t) with p(0) = 15.

timed reachability in C in C[Sat(—P) U Sat(V)] C[Sat(—=®) U Sat(V)]

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Time-bounded until (4)

Possible optimizations

1. Make all states in S\ Sat(3(® U V)) absorbing.

2. Make all states in Sat(V(® U WV)) absorbing.

3. Replace the labels of all states in S\ Sat(3(PV)) by unique label zero.
4. Replace the labels of all states in Sat(V(® U W)) by unique label one.
5

. Perform bisimulation minimization on all states.

The last step collapses all states in S\ Sat(3(® U W)) into a single state, and
does the same with all states in Sat(V(® U V)).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 21/29

CSL Model Checking

Preservation of CSL-formulas

Weak bisimulation and CSL-without-next-equivalence coincide

Let C be a finitely branching CTMC and s, t states in C. Then:
s~y t ifand only if s and t are CSL-without-next-equivalent.

Here. CSL-without-next is the fragment of CSL where the next-operator
(O does not occur.

If for CSL-without-next-formula ® we have s |= ® but t [~ ®, then it
follows s %, t.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 23/29

CSL Model Checking

Preservation of CSL-formulas

Bisimulation and CSL-equivalence coincide

Let C be a finitely branching CTMC and s, t states in C. Then:

s~mt ifandonly if s and t are CSL-equivalent.

If for CSL-formula ® we have s |= ® but t j= @, then it follows s %, t. A
single CSL-formula suffices!

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 22/29

CSL Model Checking

Uniformization and CSL

Uniformization and CSL

For any finite CTMC C with state space S, r > max{r(s) |s€ S} and ®
a CSL-without-next-formula:

Sat’(®) = Sat’ (®) where C' = unif(r,C).

Uniformization and CSL

For any uniformized CTMC: CSL-equivalence coincides with
CSL-without-next-equivalence.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 24/29

Complexity Complexity

Overview Time complexity

Let |®| be the size of @, i.e., the number of logical and temporal operators in .

Time complexity of CSL model checking

For finite CTMC C and CSL state-formula ®, the CSL model-checking
problem can be solved in time

O poly (size(C)) - tmax - 19])
@ Complexity

where tmax = max{t | ViU Sy, occurs in &} with and tmax = 1if ¢
does not contain a time-bounded until-operator.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Some practical verification times Overview

verification time (in ms)

ST o]
Q

tate space|siz
4

15108
2108
25108

© Summary
|

» command-line tool MRMC ran on a Pentium 4, 2.66 GHz, 1 GB RAM Iaptop.

» CSL formulas are time-bounded until-formulas.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 27/29 Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 28/29

Summary

|
» CSL is a variant of PCTL with timed next and timed until.
» Sets of paths fulfilling CSL path-formula ¢ are measurable.
» CSL model checking is performed by a recursive descent over ®.

» The timed next operator amounts to a single vector-matrix
multiplication.

» The time-bounded until-operator US! is solved by uniformization.

» The worst-case time complexity is polynomial in the size of the
CTMC and linear in the size of the formula.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

	CSL Syntax
	CSL Semantics
	CSL Model Checking
	Complexity
	Summary

