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Recall: continuous-time Markov chains

Negative exponential distribution
Density of exponential distribution
The density of an exponentially distributed r.v. Y with rate ⁄ œ R>0

is:

f

Y

(x) = ⁄·e≠⁄·x for x > 0 and f

Y

(x) = 0 otherwise

The cumulative distribution of r.v. Y with rate ⁄ œ R>0

is:

F

Y

(d) =
⁄

d

0

⁄·e≠⁄·x
dx = [≠e

≠⁄·x ]d
0

= 1 ≠ e

≠⁄·d .

The rate ⁄ œ R>0

uniquely determines an exponential distribution.

Variance and expectation
Let r.v. Y be exponentially distributed with rate ⁄ œ R>0

. Then:
I Expectation E [Y ] =

s Œ
0

x ·⁄·e≠⁄·x
dx = 1

⁄

I Variance Var[Y ] =
s Œ

0

(x ≠ E [X ])2⁄·e≠⁄·x
dx = 1

⁄2
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Recall: continuous-time Markov chains

Continuous-time Markov chain

Continuous-time Markov chain
A CTMC is a tuple (S, P, r , ÿinit, AP, L) where

I (S, P, ÿinit, AP, L) is a DTMC, and
I

r : S æ R>0

, the exit-rate function
Let R(s, s

Õ) = P(s, s

Õ) · r(s) be the transition rate of transition (s, s

Õ)

Interpretation

I residence time in state s is exponentially distributed with rate r(s).
I phrased alternatively, the average residence time of state s is 1

r(s) .
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Recall: continuous-time Markov chains

CTMC semantics
Enabledness
The probability that transition s æ s

Õ is enabled in [0, t] is 1 ≠ e

≠R(s,s

Õ)·t .

State-to-state timed transition probability
The probability to move from non-absorbing s to s

Õ in [0, t] is:

R(s, s

Õ)

r(s)
·
1
1 ≠ e

≠r(s)·t
2

.

Residence time distribution
The probability to take some outgoing transition from s in [0, t] is:

⁄
t

0

r(s)·e≠r(s)·x
dx = 1 ≠ e

≠r(s)·t
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Transient distribution

Transient distribution of a CTMC

Transient state probability
Let X (t) denote the state of a CTMC at time t œ R>0

. The probability to
be in state s at time t is defined by:

p

s

(t) = Pr{ X (t) = s }

=
ÿ

s

ÕœS

Pr{ X (0) = s

Õ } · Pr{ X (t) = s | X (0) = s

Õ }

Theorem: transient distribution as linear di�erential equation
The transient probability vector p(t) = (p

s

1

(t), . . . , p

s

k

(t)) satisfies:

p

Õ(t) = p(t) · (R ≠ r) given p(0)

where r is the diagonal matrix of vector r .
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Transient distribution

Transient distribution theorem

Theorem: transient distribution as linear di�erential equation
The transient probability vector p(t) = (p

s

1

(t), . . . , p

s

k

(t)) satisfies:

p

Õ(t) = p(t) · (R ≠ r) given p(0)

where r is the diagonal matrix of vector r .

Proof:
On the blackboard.
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Transient distribution

Computing transient probabilities

The transient probability vector p(t) = (p
s

1

(t), . . . , p

s

k

(t)) satisfies:

p

Õ(t) = p(t) · (R≠r) given p(0).

Solution using standard knowledge yields: p(t) = p(0)·e(R≠r)·t .

Computing a matrix exponential
First attempt: use Taylor-Maclaurin expansion. This yields

p(t) = p(0)·e(R≠r)·t = p(0) ·
Œÿ

i=0

((R≠r)·t)i

i!

But: numerical instability due to fill-in of (R≠r)i in presence of positive
and negative entries in the matrix R≠r.
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Uniformization

Uniformization
Let CTMC C = (S, P, r , ÿinit, AP, L) with S finite.

Uniform CTMC
CTMC C is uniform if r(s) = r for all s œ S for some r œ R>0

.

Uniformization [Gross and Miller, 1984]

Let r œ R>0

such that r > max

sœS

r(s). Then unif(r , C) is the tuple
(S, P, r , ÿinit, AP, L) with r(s) = r for all s œ S , and:

P(s, s

Õ) =
r(s)

r

·P(s, s

Õ) if s

Õ ”= s and P(s, s) =
r(s)

r

·P(s, s) + 1 ≠ r(s)

r

.

It follows that P is a stochastic matrix and unif(r , C) is a CTMC.
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Uniformization

Uniformization: example

Uniformization
Let r œ R>0

such that r > max

sœS

r(s). Then unif(r , C) = (S, P, r , ÿinit, AP, L)
with r(s) = r for all s œ S, and:

P(s, s

Õ) =
r(s)

r

·P(s, s

Õ) if s

Õ ”= s and P(s, s) =
r(s)

r

·P(s, s) + 1 ≠ r(s)

r

.

CTMC C and its uniformized counterpart unif(6, C)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/32



Uniformization

Uniformization: intuition
Uniformization
Let r œ R>0

such that r > max

sœS

r(s). Then unif(r , C) = (S, P, r , ÿinit, AP, L)
with r(s) = r for all s œ S, and:

P(s, s

Õ) =
r(s)

r

·P(s, s

Õ) if s

Õ ”= s and P(s, s) =
r(s)

r

·P(s, s) + 1 ≠ r(s)

r

.

Intuition

I Fix all exit rates to (at least) the maximal exit rate r occurring in CTMC C.
I Thus, 1

r

is the shortest mean residence time in the CTMC C.
I Then normalize the residence time of all states with respect to r as follows:

1. replace an average residence time 1

r(s) by a shorter (or equal) one, 1

r

2. decrease the transition probabilities by a factor r(s)
r

, and
3. increase the self-loop probability by a factor r≠r(s)

r

That is, slow down state s whenever r(s) < r .
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Strong and weak bisimulation

Strong bisimulation on DTMCs
Probabilistic bisimulation [Larsen & Skou, 1989]

Let D = (S, P, ÿinit, AP, L) be a DTMC and R ™ S ◊ S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) œ R:

1. L(s) = L(t), and
2. P(s, C) = P(t, C) for all equivalence classes C œ S/R

where P(s, C) =
q

s

ÕœC

P(s, s

Õ).

For states in R, the probability of moving by a single transition to some
equivalence class is equal.

Probabilistic bisimilarity
Let D be a DTMC and s, t states in D. Then: s is probabilistically bisimilar to t,
denoted s ≥

p

t, if there exists a probabilistic bisimulation R with (s, t) œ R.
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Strong and weak bisimulation

Strong bisimulation on CTMCs
Probabilistic bisimulation [Buchholz, 1994]

Let C = (S, P, r , ÿinit, AP, L) be a CTMC and R ™ S ◊ S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) œ R:

1. L(s) = L(t), and
2. r(s) = r(t), and
3. P(s, C) = P(t, C) for all equivalence classes C œ S/R

The last two conditions amount to R(s, C) = R(t, C) for all equivalence classes
C œ S/R.

Probabilistic bisimilarity
Let C be a CTMC and s, t states in C. Then: s is probabilistically bisimilar to t,
denoted s ≥

m

t, if there exists a probabilistic bisimulation R with (s, t) œ R.
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Strong and weak bisimulation

Weak bisimulation on DTMCs
Weak probabilistic bisimulation [Baier & Hermanns, 1996]

Let D = (S, P, ÿinit, AP, L) be a DTMC and R ™ S ◊ S an equivalence.
Then: R is a weak probabilistic bisimulation on S if for any (s, t) œ R:

1. L(s) = L(t), and
2. if P(s, [s]

R

) < 1 and P(t, [t]
R

) < 1, then:

P(s, C)

1 ≠ P(s, [s]
R

)
=

P(t, C)

1 ≠ P(t, [t]
R

)
for allC œ S/R, C ”= [s]

R

= [t]
R

.

3. s can reach a state outside [s]
R

i� t can reach a state outside [t]
R

.

For states in R, the conditional probability of moving by a single transition to
another equivalence class is equal. In addition, either all states in an equivalence
class C almost surely stay there, or have an option to escape from C .
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Strong and weak bisimulation

Weak bisimulation on DTMCs
Weak probabilistic bisimulation [Baier & Hermanns, 1996]

Let D = (S, P, ÿinit, AP, L) be a DTMC and R ™ S ◊ S an equivalence.
Then: R is a weak probabilistic bisimulation on S if for any (s, t) œ R:

1. L(s) = L(t), and
2. if P(s, [s]

R

) < 1 and P(t, [t]
R

) < 1, then:

P(s, C)

1 ≠ P(s, [s]
R

)
=

P(t, C)

1 ≠ P(t, [t]
R

)
for allC œ S/R, C ”= [s]

R

= [t]
R

.

3. s can reach a state outside [s]
R

i� t can reach a state outside [t]
R

.

Probabilistic weak bisimilarity
Let D be a DTMC and s, t states in D. Then: s is probabilistically weak bisimilar

to t, denoted s ¥
p

t, if there exists a probabilistic weak bisimulation R with
(s, t) œ R.
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Strong and weak bisimulation

Weak bisimulation on DTMC: example

The equivalence relation R with S/R =
)

{s

1

, s

2

, s

3

, s

4

}, {u

1

, u

2

, u

3

}
*

is a
weak bisimulation. This can be seen as follows. For C = { u

1

, u

2

, u

3

} and
s

1

, s

2

, s

4

with P(s
i

, [s
i

]
R

) < 1 we have:

P(s
1

, C)

1 ≠ P(s
1

, [s
1

])
=

1/8
1≠5/8 =

1/4
1≠1/4 =

P(s
2

, C)

1 ≠ P(s
2

, [s
2

])
=

1/3
1 =

P(s
4

, C)

1 ≠ P(s
4

, [s
4

])
.

Note that P(s
3

, [s
3

]
R

) = 1. Since s

3

can reach a state outside [s
3

] as s

1

, s

2

and
s

4

, it follows that s

1

¥
p

s

2

¥
p

s

3

¥
p

s

4

.
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Strong and weak bisimulation

Reachability condition

Remark
Consider the following DTMC:

It is not di�cult to establish s

1

¥ s

2

. Note: P(s
1

, [s
1

]) = 1, but P(s
2

, [s
2

]
R

) < 1.
Both s

1

and s

2

can reach a state outside [s
1

]
R

= [s
2

]
R

. The reachability condition
is essential to establish s

1

¥ s

2

and cannot be dropped: otherwise s

1

and s

2

would
be weakly bisimilar to an equally labelled absorbing state.
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Strong and weak bisimulation

Weak bisimulation on CTMCs

Weak probabilistic bisimulation [Bravetti, 2002]

Let C = (S, P, r , ÿinit, AP, L) be a CTMC and R ™ S ◊ S an equivalence.
Then: R is a weak probabilistic bisimulation on S if for any (s, t) œ R:

1. L(s) = L(t), and
2. R(s, C) = R(t, C) for all C œ S/R with C ”= [s]

R

= [t]
R

Weak probabilistic bisimilarity
Let C be a CTMC and s, t states in C. Then: s is weak probabilistically bisimilar

to t, denoted s ¥
m

t, if there exists a weak probabilistic bisimulation R with
(s, t) œ R.
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Strong and weak bisimulation

A useful lemma

Let C be a CTMC and R an equivalence relation on S with (s, t) œ R. Then: the
following two statements are equivalent:

1. If P(s, [s]
R

) < 1 and P(t, [t]
R

) < 1 then for all C œ S/R, C ”= [s]
R

= [t]
R

:

P(s, C)

1 ≠ P(s, [s]
R

)
=

P(t, C)

1 ≠ P(t, [t]
R

)
and R(s, S \ [s]

R

) = R(t, S \ [t]
R

)

2. R(s, C) = R(t, C) for all C œ S/R with C ”= [s]
R

= [t]
R

.

Proof:
Left as an exercise.
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Strong and weak bisimulation

Weak bisimulation on CTMCs: example

Equivalence relation R with S/R =
)

{s

1

, s

2

, s

3

, s

4

, s

5

, s

6

}, {u

1

, u

2

, u

3

, u

4

, u

5

}
*

is
a weak bisimulation on the CTMC depicted above. This can be seen as follows.
For C = { u

1

, u

2

, u

3

, u

4

, u

5

}, we have that all s-states enter C with rate 2. The
rates between the s-states are not relevant.
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Strong and weak bisimulation

Properties (without proof)
Strong and weak bisimulation in uniform CTMCs
For all uniform CTMCs C and states s, u in C, we have:

s ≥
m

u i� s ¥
m

u i� s ≥
p

u.

For any CTMC C, we have: C ¥
m

unif(r , C) with r > max
sœS

r(s).

Preservation of transient probabilities
For all CTMCs C with states s, u in C and t œ R>0

, we have:

s ¥
m

u implies p(t) = p(t)

where p(0) = 1
s

and p(0) = 1
u

where 1
s

is the characteristic function for
state s, i.e., 1

s

(s Õ) = 1 i� s = s

Õ.
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Computing transient probabilities
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Computing transient probabilities

Computing transient probabilities

The transient probability vector p(t) = (p
s

1

(t), . . . , p

s

k

(t)) satisfies:

p

Õ(t) = p(t) · (R≠r) given p(0).

Standard knowledge yields: p(t) = p(0)·e(R≠r)·t .

As uniformization preserves transient probabilities, we replace R≠r by its
variant for the uniformized CTMC, i.e., R≠r. We have:

R(s, s

Õ) = P(s, s

Õ)·r(s) = P(s, s

Õ)·r and r = I·r .

Thus:

p(0)·e(R≠r)·t = p(0)·e(P·r≠I·r)·t = p(0)·e(P≠I)·r ·t = p(0)·e≠rt ·er ·t·P.
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Computing transient probabilities

Computing transient probabilities

p(t) = p(0)·e(R≠r)·t = p(0)·e(P·r≠I·r)·t = p(0)·e(P≠I)·r ·t = p(0)·e≠rt ·er ·t·P.

Computing a matrix exponential
Exploit Taylor-Maclaurin expansion. This yields:

p(0)·e≠rt ·er ·t·P = p(0)·e≠rt ·
Œÿ

i=0

(r ·t)i

i!
·Pi

= p(0) ·
Œÿ

i=0

e

≠r ·t (r ·t)i

i!¸ ˚˙ ˝
Poisson prob.

·Pi

As P is a stochastic matrix, computing the matrix exponential Pi is
numerically stable.
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Computing transient probabilities

Intermezzo: Poisson distribution
Poisson distribution
The Poisson distribution is a discrete probability distribution that expresses
the probability of a given number i of events occurring in a fixed interval
of time [0, t] if these events occur with a known average rate r and
independently of the time since the last event. Formally, the pdf is:

f (i ; r ·t) = e

≠r ·t (r ·t)i

i!

where r is the mean of the Poisson distribution.

Remark
The Poisson distribution can be derived as a limiting case to the binomial
distribution as the number of trials goes to infinity and the expected number of
successes remains fixed.
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Computing transient probabilities

Transient probabilities: example

P =

C
0 1
1 0

D

, r =

C
3
2

D

and P
3

=

C
0 1
2

3

1

3

D

Let initial distribution p(0) = (1, 0), and time bound t=1. Then:

p(1) = p(0)·
Œÿ

i=0

e

≠3

3i

i!
·Pi

= (1, 0)·e≠3

1

0! ·
5

0 1
1 0

6
+ (1, 0)·e≠3

3

1! ·
5

0 1
2

3

1

3

6

+ (1, 0)·e≠3

9

2! ·
5

0 1
2

3

1

3

6
2

+ . . . . . .

¥ (0.404043, 0.595957)
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Computing transient probabilities

Truncating the infinite sum
Computing transient probabilities

p(t) = p(0) ·
Œÿ

i=0

e

≠r ·t (r ·t)i

i!
·Pi

I Summation can be truncated a priori for a given error bound Á > 0.
I The error that is introduced by truncating at summand kÁ is:

.....

Œÿ

i=0

e

≠rt

(rt)i

i!
·p(i) ≠

kÁÿ

i=0

e

≠rt

(rt)i

i!
·p(i)

..... =

.....

Œÿ

i=kÁ+1

e

≠rt

(rt)i

i!
·p(i)

.....

I Strategy: choose kÁ minimal such that:
Œÿ

i=kÁ+1

e

≠rt

(rt)i

i!
=

Œÿ

i=0

e

≠rt

(rt)i

i!
≠

kÁÿ

i=0

e

≠rt

(rt)i

i!
= 1 ≠

kÁÿ

i=0

e

≠rt

(rt)i

i!
6 Á
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Summary

Summary

Main points

I Bisimilar states are equally labelled and their cumulative rate to any
equivalence class coincides.

I Weak bisimilar states have equal conditional probabilities to move to
some equivalence class, and can either both leave their class or both
can’t.

I Uniformization normalizes the exit rates of all states in a CTMC.
I Uniformization transforms a CTMC into a weak bisimilar one.
I Transient distribution are obtained by solving a system of linear

di�erential equations.
I These equations can be solved conveniently on the uniformized

CTMC.
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