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Recall: continuous-time Markov chains Recall: continuous-time Markov chains

Negative exponential distribution

Density of exponential distribution

The density of an exponentially distributed r.v. Y with rate A € R+ is:

Continuous-time Markov chain

Continuous-time Markov chain

fy(x) = e for x>0 and fy(x) = 0 otherwise A CTMC is a tuple (S, P, r, tini, AP, L) where
_ - _ _ » (S,P, Ly, AP, L) is a DTMC, and
The cumulative distribution of r.v. Y with rate A € Ry is: 55— T, e el Gt
Fy(d) /d)\ X gy (e x]d 1 _ g=*d Let R(s,s") = P(s,s') - r(s) be the transition rate of transition (s, s’)
Y = . = — 0 = — .
0
The rate A € Ry uniquely determines an exponential distribution.
» residence time in state s is exponentially distributed with rate r(s).
Lot o, 7 be expenenially disuibnicd wil mie ) & Bag, Then » phrased alternatively, the average residence time of state s is r(ls).
> Expectation E[Y] = [(°x-Ae X dx = 1
» Variance VarlY] = [;°(x — E[X])*\-e ¥ dx = %

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems


http://moves.rwth-aachen.de/teaching/ss-14/movep14/

Recall: continuous-time Markov chains

CTMC semantics

Overview

Enabledness

The probability that transition s — s’ is enabled in [0, t] is 1 — e R(s:s")¢,

State-to-state timed transition probability

@ Transient distribution
The probability to move from non-absorbing s to s” in [0, t] is:

Residence time distribution

The probability to take some outgoing transition from s in [0, t] is:

t
| royemax — 1 et
0
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Transient distribution

Transient distribution of a CTMC

Transient distribution

Transient distribution theorem
Transient state probability

Let X(t) denote the state of a CTMC at time t € R>q. The probability to
be in state s at time t is defined by:

Theorem: transient distribution as linear differential equation

ps(t) = Pr{X(t)=s}
= > Pr{X(0)=s"} -Pr{X(t)=s]|X(0)=5"}

p'(t) = p(t)-(R—r) given p(0)
s'eS

The transient probability vector p(t) = (ps,(t). ..., ps(t)) satisfies:

where r is the diagonal matrix of vector r.

The transient probability vector p(t) = (ps,(t), -

., Ps,(t)) satisfies: d

On the blackboard.
p'(t) = p(t)-(R—r) given p(0)

where r is the diagonal matrix of vector r.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems



Transient distribution

Computing transient probabilities
-

The transient probability vector p(t) = (ps,(t), ..., ps,(t)) satisfies:

p'(t) = p(t)- (R—r) given p(0).

Solution using standard knowledge yields: p(t) = B(O)-e(R_’)'t

Computing a matrix exponential

First attempt: use Taylor-Maclaurin expansion. This yields
. = ((R—r)-t)’
p(e) = p(0)ye®t = (o). 3 (B0

But: numerical instability due to fill-in of (R—r)’ in presence of positive
and negative entries in the matrix R—r.
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Overview

© Uniformization

Uniformization
Let CTMCC = (5, P.r, tini, AP, L) with S finite.

Uniform CTMC

CTMC C is uniform if r(s) = r for all s € S for some r € Rx.

Uniformization

[Gross and Miller, 1984]

Let r € Ry such that r > maxses r(s). Then unif(r,C) is the tuple
(S,P, 7, tiir, AP, L) with 7(s) = r for all s € S, and:

P(s,s') = —= (s) P(s,s')ifs'#s and P(s,s)= ()P( s)+1— r(rs)

It follows that P is a stochastic matrix and unif(r,C) is a CTMC.
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Uniformization: example

Let r € Rog such that r > maxscs r(s). Then unifir,C) = (S, P, 7, tini, AP, L)
with 7(s) = r for all s € S, and:

P(s,s') = r(rs)-P(s, s)ifs'#s and P(s,s)= Q P(s,s)+1— @

r

3 : :
s 1 6 3 . . 6 6 6 .
o1 e |
% : i
CTMC C and its uniformized counterpart unif(6,C)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/32



Uniformization: intuition

Overview

Let r € Ry such that r > maxses r(s). Then unif(r,C) = (S,ﬁ,? Linits AP, L)
with 7(s) = r for all s € S, and:

P(S,s/): @-P(S,s/) if 5/#5 and ﬁ(S,S): L:)'P(S,S)+17 Lrs)

Intuition

> Fix all exit rates to (at least) the maximal exit rate r occurring in CTMC C.

@ Strong and weak bisimulation
» Thus, % is the shortest mean residence time in the CTMC C.
» Then normalize the residence time of all states with respect to r as follows:

1. replace an average residence time % by a shorter (or equal) one,

1
2. decrease the transition probabilities by a factor r(s)

r

3. increase the self-loop probability by a factor %r(s)

That is, slow down state s whenever r(s) < r.
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Strong bisimulation on CTMCs
Probabilistic bisimulation

[Larsen & Skou, 1989]
Let D = (S, P, tinit, AP, L) be a DTMC and R C S X S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) € R:

1. L(s) = L(t), and

1. L(s) = L(t), and
2. P(s, C) = P(t, C) for all equivalence classes C € S/R 2. r(s) =r(t), and
where P(s, C) =Y ., P(s, ).

Probabilistic bisimulation

[Buchholz, 1994]
Let C = (S, P, r, tinir, AP, L) be a CTMC and R C S x S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) € R:

3. P(s, C) = P(t, C) for all equivalence classes C € S/R
|
For states in R, the probability of moving by a single transition to some

|
equivalence class is equal.

The last two conditions amount to R(s, C) = R(¢, C) for all equivalence classes
CeS/R.

Probabilistic bisimilarity

Probabilistic bisimilarity
Let D be a DTMC and s, t states in D. Then: s is probabilistically bisimilar to t,
denoted s ~,, t, if there exists a probabilistic bisimulation R with (s,t) €R.
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Let C be a CTMC and s, t states in C. Then: s is probabilistically bisimilar to t,
denoted s ~p, t, if there exists a probabilistic bisimulation R with (s, t) € R.
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Strong and weak bisimulation

Weak bisimulation on DTMCs

Weak probabilistic bisimulation

[Baier & Hermanns, 1996]

Let D = (S, P, tinir, AP, L) be a DTMC and R C S x S an equivalence.
Then: R is a weak probabilistic bisimulation on S if for any (s, t) € R:
1. L(s) = L(t), and

2. if P(s,[s]r) < 1 and P(t,[t]rg) < 1, then:

P(s,C)  P(t0) - G
TPl [sr) ~ 1-P(r[a) O 2NCE/RCA IR =g

3. s can reach a state outside [s]g iff t can reach a state outside [t]g.

For states in R, the conditional probability of moving by a single transition to
another equivalence class is equal. In addition, either all states in an equivalence
class C almost surely stay there, or have an option to escape from C.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Strong and weak bisimulation

Weak bisimulation on DTMCs

Weak probabilistic bisimulation

[Baier & Hermanns, 1996]
Let D = (S, P, tini, AP, L) be a DTMC and R C S x S an equivalence.
Then: R is a weak probabilistic bisimulation on S if for any (s, t) € R:
L(s) = L(t), and
if P(s,[s]r) <1 and P(t,[t]g) < 1, then:

Ps,C)  P(t,C) B
T—Ps.lp) ~ 1-P(t[n) O 2NCES/RCAIIr= s

s can reach a state outside [s]g iff ¢t can reach a state outside [t]g.

Probabilistic weak bisimilarity

Let D be a DTMC and s, t states in D. Then: s is probabilistically weak bisimilar

to t, denoted s ~,, t, if there exists a probabilistic weak bisimulation R with
(s,t) €R.

Strong and weak bisimulation

Weak bisimulation on DTMC: example

colut
=

1
(9)—0)
1
3
W @ )

The equivalence relation R with S/R = { {s1, s, 53,5}, {u1, up,us} } is a
weak bisimulation. This can be seen as follows. For C = { vy, up, u3 } and
s1, S, 54 with P(s;, [s]]r) < 1 we have:

P(s,C) _ 1/8 1/4 P(s,C)  1/3 P(ss, C)

1-P(s,[s1]) 1-5/8 1-1/4 1-P(sa[s]) 1 1—P(ss[sa])

Note that P(s3, [s3]r) = 1. Since s3 can reach a state outside [s3] as s, s, and
s, it follows that s; =, 5, ~p, 53 ~p Sa.
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Strong and weak bisimulation

Reachability condition

Consider the following DTMC:

O OER OBL

It is not difficult to establish s; ~ s,. Note: P(sy,[s1]) =1, but P(s, [s2]r) < 1.
Both s; and s; can reach a state outside [s1]g = [s2]g. The reachability condition
is essential to establish s; ~ s, and cannot be dropped: otherwise s; and s, would
be weakly bisimilar to an equally labelled absorbing state.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems



Weak bisimulation on CTMCs

[Bravetti, 2002]

Weak probabilistic bisimulation

Let C = (S, P, r, tinit, AP, L) be a CTMC and R C S X S an equivalence.
Then: R is a weak probabilistic bisimulation on S if for any (s, t) € R:

1. L(s) = L(t), and
2. R(s,C) =R(t, C) for all C € S/R with C # [s]g = [t]r

Weak probabilistic bisimilarity

Let C be a CTMC and s, t states in C. Then: s is weak probabilistically bisimilar
to t, denoted s ~, t, if there exists a weak probabilistic bisimulation R with
(s,t) €R.

A useful lemma

|
Let C be a CTMC and R an equivalence relation on S with (s, t) € R. Then: the
following two statements are equivalent:

1. If P(s,[s]r) < 1 and P(t, [t]gr) < 1 then for all C € S/R, C # [s]r = [t]r:

P(s€) _  P(CQ) . . o
TP o) 1P ige) o9 RES\[sIR) =R(& S\ [tk)

2. R(s, C) =R(t, C) for all C € S/R with C # [s]g = [t]r-

Proof:

Left as an exercise.
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Strong and weak bisimulation

Weak bisimulation on CTMCs: example

[N

Equivalence relation R with S/R = { {s1, 5, 53, 54,55, 56}, {u1, U2, u3, us, us} } is
a weak bisimulation on the CTMC depicted above. This can be seen as follows.
For C = { w1, up, u3, ug, us }, we have that all s-states enter C with rate 2. The
rates between the s-states are not relevant.

Properties (without proof)

Strong and weak bisimulation in uniform CTMCs

For all uniform CTMCs C and states s, u in C, we have:
s~mu iff s=pu iff s~p

|
For any CTMC C, we have: C =, unif(r,C) with r > maxses r(s).

Preservation of transient probabilities
For all CTMCs C with states s, u in C and t € R>g, we have:
s ~mu implies p(t) = p(t)

where p(0) = 15 and p(0) = 1, where 15 is the characteristic function for
state s, i.e., 15(s') =1 iff s=¢.
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Computing transient probabilities

Overview

© Computing transient probabilities

Computing transient probabilities

Computing transient probabilities

|
The transient probability vector p(t) = (ps,(t). ..., ps,(t)) satisfies:

p'(t) = p(t)- (R—r) given p(0).
Standard knowledge yields: p(t) = B(O).e(R*f)f_

|
As uniformization preserves transient probabilities, we replace R—r by its
variant for the uniformized CTMC, i.e., R—r. We have:

R(s,s') = P(s,s')7(s) = P(s,s')-r and ¥=1r.

Thus:

B(O)‘e(ﬁfF)-t _ E(O).e(ﬁ-rfl-r)-t _ B(O)'e(ﬁfl)-r-t _ B(O)‘efrt‘er-t-P.
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Computing transient probabilities

Computing transient probabilities

|
B(t) _ p(o)_e(ﬁ—F)-t _ B(O)_e(ﬁr—lwyt _ B(O).e(P—I)«-t _ E(O),e—rt,ert-P.

Computing a matrix exponential

Exploit Taylor-Maclaurin expansion. This yields:

_ o

B(O)-e—rt.er.t.P — B(O)-e_rt . i (r-t)".ﬁi _ B(O) ) Z e—r~t(r'_t)i -ﬁi
i=0

1l il
il i il
Poisson prob.

As P is a stochastic matrix, computing the matrix exponential P’ is
numerically stable.
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Computing transient probabilities

Intermezzo: Poisson distribution

Poisson distribution

The Poisson distribution is a discrete probability distribution that expresses
the probability of a given number i of events occurring in a fixed interval
of time [0, t] if these events occur with a known average rate r and
independently of the time since the last event. Formally, the pdf is:

f(i;rt) = e"t%

where r is the mean of the Poisson distribution.

Remark

The Poisson distribution can be derived as a limiting case to the binomial
distribution as the number of trials goes to infinity and the expected number of
successes remains fixed.
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Transient probabilities: example Truncating the infinite sum

Computing transient probabilities

3 01 3 — 0 1 ©9 (,.t)i i
= = = _ =/
e el [ mme ] SR
2
Let initial distribution p(0) = (1,0), and time bound t=1. Then: » Summation can be truncated a priori for a given error bound € > 0.
> The error that is introduced by truncating at summand k. is:
> 3
p(1) = B(O)'Ze_3T'P = rt)! ke rt)! = rt)’
— (1 0),ef3é |: 10 :| _1_(1,0) 673% |: % % :| i=0 i=0 i=ke+1
0 112 > Strategy: choose k. minimal such that:
+(1,0)'6_3% |: 2 1 :| + .o
303 () S~ () S (1) ~ e (rt)
P D L DI s
~ (0.404043, 0.595957) i=ket1 i=0 i=0 i=0
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Overview Summary

> Bisimilar states are equally labelled and their cumulative rate to any
equivalence class coincides.

> Weak bisimilar states have equal conditional probabilities to move to
some equivalence class, and can either both leave their class or both
can't.

» Uniformization normalizes the exit rates of all states in a CTMC.

» Uniformization transforms a CTMC into a weak bisimilar one.

» Transient distribution are obtained by solving a system of linear
differential equations.

O Summary » These equations can be solved conveniently on the uniformized
CTMC.
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