Overview

Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ss-14/movep14/

May 22, 2014

Joost-Pieter Katoen

Markov Decision Processes

Modeling and Verification of Probabilistic System

Markov decision process (MDP)

Markov decision processes

- ▶ In MDPs, both nondeterministic and probabilistic choices coexist.
- MDPs are transition systems in which in any state a nondeterministic choice between probability distributions exists.
- Once a probability distribution has been chosen nondeterministically, the next state is selected probabilistically—as in DTMCs.
- Any MC is thus an MDP in which in any state the probability distribution is uniquely determined.

Randomized distributed algorithms are typically appropriately modeled by MDPs, as probabilities affect just a small part of the algorithm and nondeterminism is used to model concurrency between processes by means of interleaving.

Probabilities in MDPs

3 Policies

- Positional policies
- Finite-memory policies

4 Reachability probabilities

- Mathematical characterisation
- Value iteration
- Linear programming
- Policy iteration

5 Summary

Joost-Pieter Katoer

Modeling and Verification of Probabilistic Systems 2

Markov Decision Processes

Markov decision process (MDP)

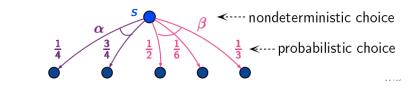
Markov decision process

An MDP \mathcal{M} is a tuple (*S*, *Act*, **P**, ι_{init} , *AP*, *L*) where

- ▶ *S* is a countable set of states with initial distribution $\iota_{\text{init}}: S \rightarrow [0, 1]$
- Act is a finite set of actions
- ▶ $P: S \times Act \times S \rightarrow [0, 1]$, transition probability function such that:

for all
$$s \in S$$
 and $lpha \in Act : \sum_{s' \in S} {\sf P}(s, lpha, s') \in \set{0, 1}$

• AP is a set of atomic propositions and labeling $L: S \to 2^{AP}$.



Markov Decision Processes

Markov decision process (MDP)

Markov decision process

An MDP \mathcal{M} is a tuple (*S*, *Act*, **P**, ι_{init} , *AP*, *L*) where

- ▶ *S*, ι_{init} : *S* → [0, 1], *AP* and *L* are as before, i.e., as for DTMCs, and
- Act is a finite set of actions
- ▶ $P: S \times Act \times S \rightarrow [0, 1]$, transition probability function such that:

for all
$$s \in S$$
 and $\alpha \in Act : \sum_{s' \in S} \mathsf{P}(s, \alpha, s') \in \{0, 1\}$

Enabled actions

Let $Act(s) = \{ \alpha \in Act \mid \exists s' \in S. \mathbf{P}(s, \alpha, s') > 0 \}$ be the set of enabled actions in state *s*. We require $Act(s) \neq \emptyset$ for any state *s*.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic System

Probabilities in MDPs

Overview

Markov Decision Processes

Probabilities in MDPs

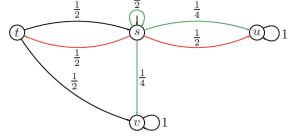
3 Policies

- Positional policies
- Finite-memory policies

4 Reachability probabilities

- Mathematical characterisation
- Value iteration
- Linear programming
- Policy iteration

5 Summary



- Initial distribution: $\iota_{init}(s) = 1$ and $\iota_{init}(t) = \iota_{init}(u) = \iota_{init}(u) = 0$
- Set of enabled actions in state s is $Act(s) = \{ \alpha, \beta \}$ where

•
$$\mathbf{P}(s, \alpha, s) = \frac{1}{2}$$
, $\mathbf{P}(s, \alpha, t) = 0$ and $\mathbf{P}(s, \alpha, u) = \mathbf{P}(s, \alpha, v) = \frac{1}{4}$

$$\blacktriangleright \mathbf{P}(s,\beta,s) = \mathbf{P}(s,\beta,v) = 0, \text{ and } \mathbf{P}(s,\beta,t) = \mathbf{P}(s,\beta,u) = \frac{1}{2}$$

•
$$Act(t) = \{\alpha\}$$
 with $P(t, \alpha, s) = P(t, \alpha, u) = \frac{1}{2}$ and 0 otherwise

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems 6

Probabilities in MDPs

Paths in an MDP

State graph

The *state graph* of MDP \mathcal{M} is a digraph G = (V, E) with V are the states of M, and $(s, s') \in E$ iff $\mathbf{P}(s, \alpha, s') > 0$ for some $\alpha \in Act$.

Paths

An infinite *path* in an MDP $\mathcal{M} = (S, Act, \mathbf{P}, \iota_{\text{init}}, AP, L)$ is an infinite sequence $s_0 \alpha_1 s_1 \alpha_2 s_2 \alpha_3 \ldots \in (S \times Act)^{\omega}$, written as

 $\pi = s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \xrightarrow{\alpha_3} \ldots,$

such that $P(s_i, \alpha_{i+1}, s_{i+1}) > 0$ for all $i \ge 0$. Any finite prefix of π that ends in a state is a *finite path*.

Let $Paths(\mathcal{M})$ denote the set of paths in \mathcal{M} , and $Paths^*(\mathcal{M})$ the set of finite prefixes thereof.

Policies

Overview

Markov Decision Processes

Probabilities in MDPs

3 Policies

- Positional policies
- Finite-memory policies

4 Reachability probabilities

- Mathematical characterisation
- Value iteration
- Linear programming
- Policy iteration

5 Summary

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Policies

Induced DTMC of an MDP by a policy

DTMC of an MDP induced by a policy

Let $\mathcal{M} = (S, Act, \mathbf{P}, \iota_{\text{init}}, AP, L)$ be an MDP and \mathfrak{S} a policy on \mathcal{M} . The DTMC *induced* by \mathfrak{S} , denoted $\mathcal{M}_{\mathfrak{S}}$, is given by

$$\mathcal{M}_{\mathfrak{S}} \;=\; (S^+, \mathbf{P}_{\mathfrak{S}}, \iota_{ ext{init}}, AP, L')$$

where for $\sigma = s_0 s_1 \dots s_n$: $\mathbf{P}_{\mathfrak{S}}(\sigma, \sigma s_{n+1}) = \mathbf{P}(s_n, \mathfrak{S}(\sigma), s_{n+1})$ and $L'(\sigma) = L(s_n)$.

 $\mathcal{M}_{\mathfrak{S}}$ is infinite, even if the MDP \mathcal{M} is finite. Since policy \mathfrak{S} might select different actions for finite paths that end in the same state *s*, a policy as defined above is also referred to as *history-dependent*.

Policies

Policy

Let $\mathcal{M} = (S, Act, \mathbf{P}, \iota_{\text{init}}, AP, L)$ be an MDP. A *policy* for \mathcal{M} is a function $\mathfrak{S} : S^+ \to Act$ such that $\mathfrak{S}(s_0 s_1 \dots s_n) \in Act(s_n)$ for all $s_0 s_1 \dots s_n \in S^+$.

The path

$$\pi = s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \xrightarrow{\alpha_3} \dots$$

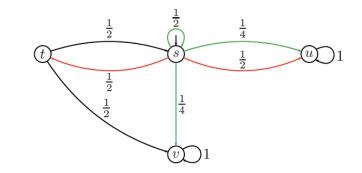
is called a \mathfrak{S} -path if $\alpha_i = \mathfrak{S}(s_0 \dots s_{i-1})$ for all i > 0.

Joost-Pieter Katoen

9/57

Modeling and Verification of Probabilistic Systems 10/5

Example MDP

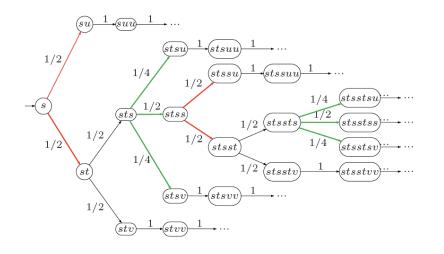


Policies

Consider a policy that alternates between selecting red and green, starting with red.

Policies

Example induced DTMC



Induced DTMC for a policy that alternates between selecting red and green.

Policies

Positional policy

Positional policy

Let \mathcal{M} be an MDP with state space S. Policy \mathfrak{S} on \mathcal{M} is *positional* (or: *memoryless*) iff for each sequence $s_0 s_1 \ldots s_n$ and $t_0 t_1 \ldots t_m \in S^+$ with $s_n = t_m$:

$$\mathfrak{S}(s_0 s_1 \ldots s_n) = \mathfrak{S}(t_0 t_1 \ldots t_m).$$

In this case, \mathfrak{S} can be viewed as a function $\mathfrak{S} : S \to Act$.

Policy \mathfrak{S} is positional if it always selects the same action in a given state. This choice is independent of what has happened in the history, i.e., which path led to the current state.

Probability measure on MDP

Probability measure on MDP

Let $Pr_{\mathfrak{S}}^{\mathcal{M}}$, or simply $Pr^{\mathfrak{S}}$, denote the probability measure $Pr^{\mathcal{M}_{\mathfrak{S}}}$ associated with the DTMC $\mathcal{M}_{\mathfrak{S}}$.

This measure is the basis for associating probabilities with events in the MDP \mathcal{M} . Let, e.g., $P \subseteq (2^{\mathcal{A}P})^{\omega}$ be an ω -regular property. Then $Pr^{\mathfrak{S}}(P)$ is defined as:

$$Pr^{\mathfrak{S}}(P) = Pr^{\mathcal{M}_{\mathfrak{S}}}(P) = Pr_{\mathcal{M}_{\mathfrak{S}}}\{\pi \in Paths(\mathcal{M}_{\mathfrak{S}}) \mid trace(\pi) \in P\}.$$

Similarly, for fixed state s of \mathcal{M} , which is considered as the unique starting state,

 $Pr^{\mathfrak{S}}(s \models P) = Pr^{\mathcal{M}_{\mathfrak{S}}}_{s} \{ \pi \in Paths(s) \mid trace(\pi) \in P \}$

where we identify the paths in $\mathcal{M}_{\mathfrak{S}}$ with the corresponding \mathfrak{S} -paths in \mathcal{M} .

Policies

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems 14/57

Finite-memory policies

- Finite-memory policies (shortly: fm-policies) are a generalisation of positional policies.
- The behavior of an fm-policy is described by a deterministic finite automaton (DFA).
- The selection of the action to be performed in the MDP *M* depends on the current state of *M* (as before) and the current state (called *mode*) of the policy, i.e., the DFA.

Policies

Finite-memory policy

Finite-memory policy

Let \mathcal{M} be an MDP with state space S and action set Act. A *finite-memory policy* \mathfrak{S} for \mathcal{M} is a tuple $\mathfrak{S} = (Q, act, \Delta, start)$ with:

- ► Q is a finite set of modes,
- $\Delta: Q \times S \rightarrow Q$ is the transition function,
- act: Q × S → Act is a function that selects an action act(q, s) ∈ Act(s) for any mode q ∈ Q and state s ∈ S of M,
- start: S → Q is a function that selects a starting mode for state s ∈ S.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Finite-memory policies

Relation fm-policy to definition policy

An fm-policy $\mathfrak{S} = (Q, act, \Delta, start)$ is identified with policy, $\mathfrak{S}' : Paths^* \to Act$ which is defined as follows.

- 1. For the starting state s_0 , let $\mathfrak{S}'(s_0) = act(start(s_0), s_0)$.
- 2. For path fragment $\hat{\pi} = s_0 s_1 \dots s_n$ let

$$\mathfrak{S}'(\widehat{\pi}) = act(q_n, s_n)$$

Policies

where
$$q_0 = start(s_0)$$
 and $q_{i+1} = \Delta(q_i, s_i)$ for $0 \leqslant i \leqslant n$.

Positional policies can be considered as fm-policies with just a single mode.

An MDP under a finite-memory policy

The behavior of an MDP \mathcal{M} under fm-policy $\mathfrak{S} = (Q, act, \Delta, start)$ is:

- Initially, a starting state s₀ is randomly determined according to the initial distribution ι_{init}, i.e., ι_{init}(s₀) > 0.
- ▶ The fm-policy \mathfrak{S} initializes its DFA to the mode $q_0 = start(s_0) \in Q$.
- If M is in state s and the current mode of G is q, then the decision of G, i.e., the selected action, is α = act(q, s) ∈ Act(s).
- The policy changes to mode Δ(q, s), while M performs the selected action α and randomly moves to the next state according to the distribution P(s, α, ·).

```
Joost-Pieter Katoen
```

Modeling and Verification of Probabilistic Systems 18

Policies

The DTMC under an fm-policy

Remark

For fm-policy \mathfrak{S} , the DTMC $\mathcal{M}_{\mathfrak{S}}$ can be identified with a DTMC $\mathcal{M}'_{\mathfrak{S}}$, say, where the states are just pairs $\langle s, q \rangle$ where s is a state in the MDP \mathcal{M} and q a mode of \mathfrak{S} .

 $\mathcal{M}'_{\mathfrak{S}}$ is the DTMC with state space $S \times Q$, labeling $L'(\langle s, q \rangle) = L(s)$, the starting distribution ι_{init} , and the transition probabilities:

$$\mathbf{P}_{\mathfrak{S}}'(\langle s,q\rangle,\langle t,p\rangle) = \mathbf{P}(s,\operatorname{act}(q,s),t).$$

For any MDP \mathcal{M} and fm-policy \mathfrak{S} : $\mathcal{M}_{\mathfrak{S}} \sim_{p} \mathcal{M}_{\mathfrak{S}}'$.

Hence, if \mathcal{M} is a finite MDP, then $\mathcal{M}_\mathfrak{S}$ is bisimilar to the finite DTMC $\mathcal{M}'_\mathfrak{S}$.

Positional versus fm-policies

Positional policies are insufficient for ω -regular properties

Consider the MDP:

 $\begin{array}{c} \{a\} & \gamma & \varnothing & \{b\} \\ \hline t & & s_0 & & u \\ \alpha & \uparrow & \gamma \end{array}$

Positional policy \mathfrak{S}_{α} always chooses α in state s_0 Positional policy \mathfrak{S}_{β} always chooses β in state s_0 . Then:

$$Pr_{\mathfrak{S}_{\alpha}}(s_0 \models \Diamond a \land \Diamond b) = Pr_{\mathfrak{S}_{\beta}}(s_0 \models \Diamond a \land \Diamond b) = 0$$

Now consider fm-policy $\mathfrak{S}_{\alpha\beta}$ which alternates between selecting α and β . Then: $Pr_{\mathfrak{S}_{\alpha\beta}}(s_0 \models \Diamond a \land \Diamond b) = 1$.

Thus, the class of positional policies is insufficiently powerful to characterise minimal (or maximal) probabilities for ω -regular properties.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic System

Reachability probabilities

21/57

Overview

- Markov Decision Processes
- Probabilities in MDPs
- 3 Policies
 - Positional policies
 - Finite-memory policies

4 Reachability probabilities

- Mathematical characterisation
- Value iteration
- Linear programming
- Policy iteration

5 Summary

Other kinds of policies

- Counting policies that base their decision on the number of visits to a state, or the length of the history (i.e., number of visits to all states)
- ▶ Partial-observation policies that base their decision on the trace $L(s_0) \ldots L(s_n)$ of the history $s_0 \ldots s_n$.
- ► Randomised policies. This is applicable to all (deterministic) policies. For instance, a randomised positional policy 𝔅 : S → Dist(Act), where Dist(X) is the set of probability distributions on X, such that 𝔅(s)(α) > 0 iff α ∈ Act(s). Similar can be done for fm-policies and history-dependent policies etc..
- There is a strict hierarchy of policies, showing their expressiveness (black board).

Reachability probabilities

Modeling and Verification of Probabilistic System

Reachability probabilities

Reachability probabilities

Joost-Pieter Katoen

Let \mathcal{M} be an MDP with state space S and \mathfrak{S} be a policy on \mathcal{M} . The reachability probability of $G \subseteq S$ from state $s \in S$ under policy \mathfrak{S} is:

$$Pr^{\mathfrak{S}}(s \models \Diamond G) = Pr^{\mathcal{M}_{\mathfrak{S}}}_{s} \{ \pi \in Paths(s) \mid \pi \models \Diamond G \}$$

Maximal and minimal reachability probabilities

The minimal reachability probability of $G \subseteq S$ from $s \in S$ is:

$$Pr^{\min}(s \models \Diamond G) = \inf_{\mathfrak{S}} Pr^{\mathfrak{S}}(s \models \Diamond G)$$

In a similar way, the maximal reachability probability of $G \subseteq S$ is:

$$Pr^{\max}(s \models \Diamond G) = \sup_{\mathfrak{S}} Pr^{\mathfrak{S}}(s \models \Diamond G).$$

where policy \mathfrak{S} ranges over all, infinitely (countably) many, policies.

Example

Maximal reachability probabilities

MInimal guarantees for safety properties

Reasoning about the maximal probabilities for $\Diamond G$ is needed, e.g., for showing that $Pr^{\mathfrak{S}}(s \models \Diamond G) \leq \varepsilon$ for all policies \mathfrak{S} and some small upper bound $0 < \varepsilon \leq 1$. Then:

$$Pr^{\mathfrak{S}}(s \models \Box \neg G) \ge 1 - \varepsilon$$
 for all policies \mathfrak{S} .

The task to compute $Pr^{\max}(s \models \Diamond G)$ can thus be understood as showing that a safety property (namely $\Box \neg G$) holds with sufficiently large probability, viz. $1 - \varepsilon$, regardless of the resolution of nondeterminism.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

25/57

Equation system for max-reach probabilities

Reachability probabilities

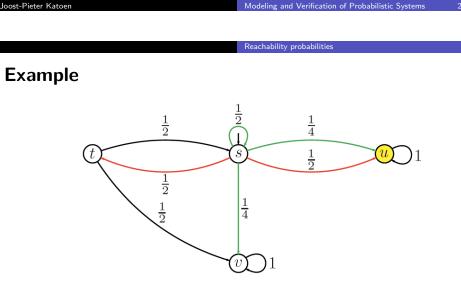
Equation system for max-reach probabilities

Let \mathcal{M} be a finite MDP with state space S, $s \in S$ and $G \subseteq S$. The vector $(x_s)_{s \in S}$ with $x_s = Pr^{\max}(s \models \Diamond G)$ yields the unique solution of the following equation system:

- If $s \in G$, then $x_s = 1$.
- ▶ If $s \not\models \exists \Diamond G$, then $x_s = 0$.
- ▶ If $s \models \exists \Diamond G$ and $s \notin G$, then

$$\mathbf{x}_{s} = \max\left\{\sum_{t\in S} \mathbf{P}(s, \alpha, t) \cdot \mathbf{x}_{t} \mid \alpha \in Act(s)\right\}$$

This is an instance of the Bellman equation for dynamic programming.



equation system for reachability objective $\Diamond \{ u \}$ is:

 $x_u = 1$ and $x_v = 0$

$$x_s = \max\{\frac{1}{2}x_s + \frac{1}{4}x_u + \frac{1}{4}x_v, \frac{1}{2}x_u + \frac{1}{2}x_t\}$$
 and $x_t = \frac{1}{2}x_s + \frac{1}{2}x_v$

Value iteration

The previous theorem suggests to calculate the values

$$x_{s} = Pr^{\max}(s \models \Diamond G)$$

by successive approximation.

For the states $s \models \exists \Diamond G$ and $s \notin G$, we have $x_s = \lim_{n \to \infty} x_s^{(n)}$ where

$$x_s^{(0)} = 0 \quad \text{and} \quad x_s^{(n+1)} = \max \Big\{ \sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_t^{(n)} \mid \alpha \in Act(s) \Big\}$$

Note that $x_s^{(0)} \leq x_s^{(1)} \leq x_s^{(2)} \leq \dots$ Thus, the values $Pr^{\max}(s \models \Diamond G)$ can be approximated by successively computing the vectors

$$(x_s^{(0)}), (x_s^{(1)}), (x_s^{(2)}), \ldots,$$

Reachability probabilities

until $\max_{s \in S} |x_s^{(n+1)} - x_s^{(n)}|$ is below a certain (typically very small) threshold.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

29/57

Equation system for min-reach probabilities

Equation system for min-reach probabilities

Let \mathcal{M} be a finite MDP with state space S, $s \in S$ and $G \subseteq S$. The vector $(x_s)_{s \in S}$ with $x_s = Pr^{\min}(s \models \Diamond G)$ yields the unique solution of the following equation system:

• If $s \in G$, then $x_s = 1$.

• If
$$Pr^{\min}(s \models G) = 0$$
, then $x_s = 0$.

• If $Pr^{\min}(s \models G) > 0$ and $s \notin G$, then

$$x_s = \min \left\{ \sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_t \mid \alpha \in Act(s) \right\}$$

Positional policies suffice for reach probabilities

Existence of optimal positional policies

Let \mathcal{M} be a finite MDP with state space S, and $G \subseteq S$. There exists a positional policy \mathfrak{S} such that for any $s \in S$ it holds:

$$Pr^{\mathfrak{S}}(s \models \Diamond G) = Pr^{\max}(s \models \Diamond G).$$

Proof:

On the blackboard.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems 30/

Reachability probabilities

Preprocessing

The preprocessing required to compute the set

$$S_{=0}^{\min} = \{ s \in S \mid Pr^{\min}(s \models \Diamond G) \} = 0$$

can be performed by graph algorithms. The set $S^{min}_{=0}$ is given by $S \setminus \mathcal{T}$ where

$$T=\bigcup_{n\geq 0}T_n$$

and $T_0 = G$ and, for $n \ge 0$:

$$T_{n+1} = T_n \cup \{ s \in S \mid \forall \alpha \in Act(s) \exists t \in T_n. \mathbf{P}(s, \alpha, t) > 0 \}.$$

As $T_0 \subseteq T_1 \subseteq T_2 \subseteq \ldots \subseteq S$ and S is finite, the sequence $(T_n)_{n \ge 0}$ eventually stabilizes, i.e., for some $n \ge 0$, $T_n = T_{n+1} = \ldots = T$.

It follows: $Pr^{\min}(s \models \Diamond G) > 0$ if and only if $s \in T$.

Preprocessing

Positional policies for min-reach probabilities

Algorithm 46 Computing the set of states s with $Pr^{\min}(s \models \Diamond B) = 0$

Input: finite MDP \mathcal{M} with state space S and $B \subseteq S$ Output: $\{ s \in S \mid Pr^{\min}(s \models \Diamond B) = 0 \}$

T := B;

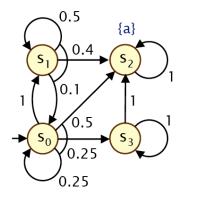
 $\begin{array}{l} R := B; \\ R := B; \\ \text{while } R \neq \varnothing \text{ do} \\ \text{let } t \in R; \\ R := R \setminus \{t\}; \\ \text{for all } (s, \alpha) \in \operatorname{Pre}(t) \text{ with } s \notin T \text{ do} \\ \text{remove } \alpha \text{ from } Act(s) \\ \text{ if } Act(s) = \varnothing \text{ then} \\ \text{ add } s \text{ to } R \text{ and } T \\ \text{fi} \\ \text{od} \\ \text{od} \\ \text{return } T \end{array}$

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Reachability probabilities

Example value iteration



Determine $Pr^{\min}(s_i \models \Diamond \{ s_2 \})$.

Existence of optimal positional policies

Let \mathcal{M} be a finite MDP with state space S, and $G \subseteq S$. There exists a positional policy \mathfrak{S} such that for any $s \in S$ it holds:

$$Pr^{\mathfrak{S}}(s \models \Diamond G) = Pr^{\min}(s \models \Diamond G)$$

Proof:

Similar to the case for maximal reachability probabilities.

Joost-Pieter Katoen

05

0.25

Dete $Pr^{\min}(s_i \neq 1)$

Modeling and Verification of Probabilistic Systems 34/5

Reachability probabilities

Example value iteration

Example value iteration

		$[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}]$
$ \begin{array}{c} 0.5 \\ s_1 \\ 0.4 \\ 0.4 \\ s_2 \\ 1 \\ 0.1 \\ 1 \\ 0.5 \\ 0.25 \\ s_3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	n=0:	[0.000000, 0.000000, 1, 0]
	n=1:	[0.000000, 0.400000, 1, 0]
	n=2:	[0.400000, 0.600000, 1, 0]
	n=3:	[0.600000, 0.740000, 1, 0]
	n=4:	[0.650000, 0.830000, 1, 0]
	n=5:	[0.662500, 0.880000, 1, 0]
	n=6:	[0.665625, 0.906250, 1, 0]
	n=7:	[0.666406, 0.919688, 1, 0]
0.25	n=8:	[0.666602, 0.926484, 1, 0]
Determine $Pr^{\min}(s_i \models \Diamond \{ s_2 \})$		
	n=20:	[0.6666667, 0.933332, 1, 0]
	n=21:	[0.6666667, 0.933332, 1, 0]
		\approx [2/3, 14/15, 1, 0]
Joost-Pieter Katoen		Modeling and Verification of Probabilistic Systems

Reachability probabilities

Optimal positional policy

Optimal positional policy

Positional policies \mathfrak{S}_{min} and \mathfrak{S}_{max} thus yield:

$$\begin{aligned} & \operatorname{Pr}^{\mathfrak{S}_{\min}}(s \models \Diamond G) = \operatorname{Pr}^{\min}(s \models \Diamond G) & \text{for all states } s \in S \\ & \operatorname{Pr}^{\mathfrak{S}_{\max}}(s \models \Diamond G) = \operatorname{Pr}^{\max}(s \models \Diamond G) & \text{for all states } s \in S \end{aligned}$$

These policies are obtained as follows:

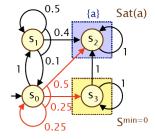
$$\mathfrak{S}_{\min}(s) = \arg\min\{\sum_{t\in S} \mathbf{P}(s, \alpha, t) \cdot Pr^{\min}(t \models \Diamond G) \mid \alpha \in Act\}$$

$$\mathfrak{S}_{\max}(s) = \arg\max\{\sum_{t\in S} \mathbf{P}(s, \alpha, t) \cdot Pr^{\max}(t \models \Diamond G) \mid \alpha \in Act\}$$

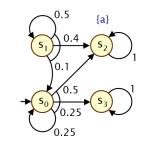
Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems 38/5

Reachability probabilities



- Outcome of the value iteration $(x_s) = (\frac{2}{3}, \frac{14}{15}, 1, 0)$
- How to obtain the optimal policy from this result?
- ► $x_{s_0} = \min(1 \cdot \frac{14}{15}, 0.5 \cdot 1 + 0.25 \cdot 0 + 0.25 \cdot \frac{2}{3})$ $\min(\frac{14}{15}, \frac{2}{3})$
- Thus the optimal policy always selects red in s_0 .



Induced DTMC

- Outcome of the value iteration $(x_s) = (\frac{2}{3}, \frac{14}{15}, 1, 0)$
- How to obtain the optimal policy from this results?
- $x_{s_0} = \min(1 \cdot \frac{14}{15}, 0.5 \cdot 1 + 0.5 \cdot 0 + 0.25 \cdot \frac{2}{3})$ $\min(\frac{14}{15}, \frac{2}{3})$
- ► Thus the optimal policy always selects red.

An alternative approach

A viable alternative to value iteration is linear programming.

Linear programming

Linear programming

Optimisation of a linear objective function subject to linear (in)equalities.

Let x_1, \ldots, x_n be real-valued variables. Maximise (or minimise) the objective function:

 $c_1 \cdot x_1 + c_2 \cdot x_2 + \ldots + c_n \cdot x_n$ for constants $c_1, \ldots, c_n \in \mathbb{R}$

subject to the constraints

 $a_{11} \cdot x_1 + a_{12} \cdot x_2 + \ldots + a_{1n} \cdot x_n \leq b_1$

.

 $a_{m1} \cdot x_1 + a_{m2} \cdot x_2 + \ldots + a_{mn} \cdot x_n \leqslant b_m.$

Solution techniques: e.g., Simplex, ellipsoid method, interior point method.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

41/57

Reachability probabilities

Maximal reach probabilities as a linear program

Linear program for max-reach probabilities

Consider a finite MDP with state space *S*, and $G \subseteq S$. The values $x_s = Pr^{\max}(s \models \Diamond G)$ are the unique solution of the *linear program*:

- ▶ If $s \in G$, then $x_s = 1$.
- ▶ If $s \not\models \exists \Diamond G$, then $x_s = 0$.
- ▶ If $s \not\models \exists \Diamond G$ and $s \notin G$, then $0 \leq x_s \leq 1$ and for all $\alpha \in Act(s)$:

$$x_s \ge \sum_{t\in S} \mathbf{P}(s, \alpha, t) \cdot x_t$$

where $\sum_{s \in S} x_s$ is minimal.

Proof:

See lecture notes.

Reachability probabilities

Modeling and Verification of Probabilistic System

Minimal reach probabilities as a linear program

Linear program for min-reach probabilities

Consider a finite MDP with state space *S*, and $G \subseteq S$. The values $x_s = Pr^{\min}(s \models \Diamond G)$ are the unique solution of the *linear program*:

- If $s \in G$, then $x_s = 1$.
- If $Pr^{\min}(s \models \Diamond G) = 0$, then $x_s = 0$.
- ▶ If $Pr^{\min}(s \models \Diamond G) > 0$ and $s \notin G$ then $0 \leq x_s \leq 1$ and for all $\alpha \in Act(s)$:

$$x_s \leqslant \sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_t$$

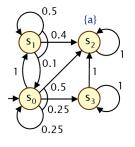
where $\sum_{s \in S} x_s$ is maximal.

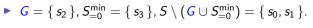
Proof:

Joost-Pieter Katoen

See lecture notes.

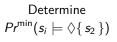
Example linear programming





• Maximise $x_0 + x_1$ subject to the constraints:

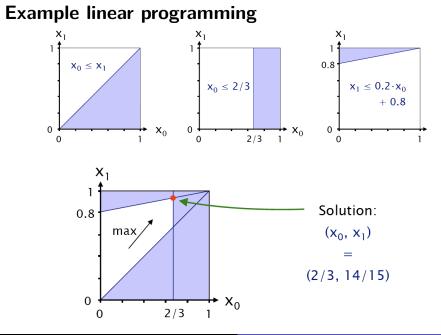
 $\begin{array}{rcl} x_0 &\leqslant & x_1 \\ x_0 &\leqslant & \frac{1}{4} \cdot x_0 + \frac{1}{2} \\ x_1 &\leqslant & \frac{1}{10} \cdot x_0 + \frac{1}{2} \cdot x_1 + \frac{2}{5} \end{array}$



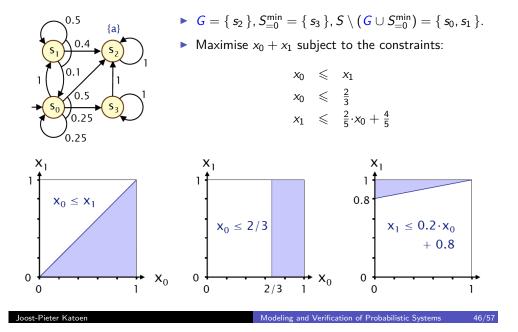
Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Reachability probabilities

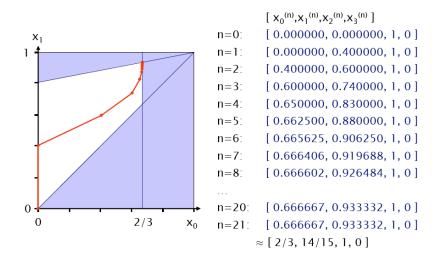


Example linear programming



Reachability probabilities

Value iteration vs. linear programming



This curve shows how the value iteration approach approximates the solution.

Time complexity

Time complexity

For finite MDP \mathcal{M} with state space S, $G \subseteq S$ and $s \in S$, the values $Pr^{\max}(s \models \Diamond G)$ can be computed in time polynomial in the size of \mathcal{M} . The same holds for $Pr^{\min}(s \models \Diamond G)$.

Proof:

Thanks to the characterisation as a linear program and polynomial time techniques to solve such linear programs such as ellipsoid methods.

Corollary

For finite MDPs, the question whether $Pr^{\mathfrak{S}}(s \models \Diamond G) \leq p$ for some rational $p \in [0, 1]$ is decidable in polynomial time.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic System

Reachability probabilities

Policy iteration

Value iteration

In value iteration, we iteratively attempt to improve the minimal (or maximal) reachability probabilities by starting with an underestimation, viz. zero for all states.

Policy iteration

In policy iteration, the idea is to start with an arbitrary positional policy and improve it in a step-by-step fashion, so as to determine the optimal one.

Yet anotheralternative approach

A viable alternative to value iteration and linear programming is policy iteration.

Joost-Pieter Katoer

49/57

Modeling and Verification of Probabilistic Systems 50/5

Reachability probabilities

Policy iteration

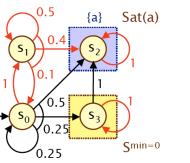
Policy iteration

- 1. Start with an arbitrary positional policy \mathfrak{S} that selects some $\alpha \in Act(s)$ for each state *s*.
- 2. Compute the reachability probabilities $Pr^{\mathfrak{S}}(s \models \Diamond G)$. This amounts to solving a linear equation system on DTMC $\mathcal{M}_{\mathfrak{S}}$.
- 3. Improve the policy in every state according to the following rules:

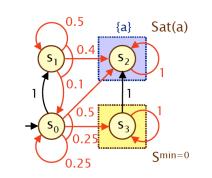
$$\mathfrak{S}^{(i+1)}(s) = \arg\min\{\sum_{t\in S} \mathsf{P}(s,\alpha,t) \cdot Pr^{\mathfrak{S}^{(i)}}(t \models \Diamond G) \mid \alpha \in Act\} \text{ or } \\ \mathfrak{S}^{(i+1)}(s) = \arg\max\{\sum_{t\in S} \mathsf{P}(s,\alpha,t) \cdot Pr^{\mathfrak{S}^{(i)}}(t \models \Diamond G) \mid \alpha \in Act\}$$

4. Repeat steps 2. and 3. until the policy does not change.

Policy iteration: example

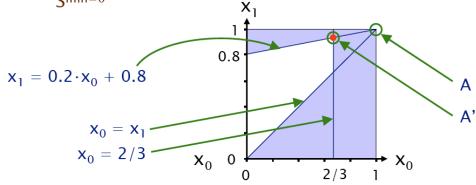


- Let $G = \{ s_2 \}$.
- ► Consider an arbitrary policy <u></u>S.
- Compute $x_i = Pr^{\mathfrak{S}}(s_i \models \Diamond G)$ for all *i*.
- Then: $x_2 = 1$, $x_3 = 0$,
 - and $x_0 = x_1$, $x_1 = \frac{1}{10} \cdot x_0 + \frac{1}{2} \cdot x_1 + \frac{2}{5}$.
- This yields $x_0 = x_1 = x_2 = 1$ and $x_3 = 0$.
- Change policy \mathfrak{S} in s_0 , yielding policy \mathfrak{S}' .
- This yields min $(1\cdot 1, \frac{1}{2}\cdot 1 + \frac{1}{4}\cdot 0 + \frac{1}{4}\cdot 1)$ that is, min $(1, \frac{3}{4}) = \frac{3}{4}$.



Policy iteration: example

- Let $G = \{ s_2 \}$.
- Consider the adapted policy \mathfrak{S}' .
- Compute $x_i = Pr^{\mathfrak{S}'}(s_i \models \Diamond G)$ for all *i*.
- Then: $x_2 = 1$, $x_3 = 0$,
- and $x_0 = \frac{1}{4} \cdot x_0 + \frac{1}{2}$, $x_1 = \frac{1}{10} \cdot x_0 + \frac{1}{2} \cdot x_1 + \frac{2}{5}$.
- This yields $x_0 = \frac{2}{3}$, $x_1 = \frac{14}{15}$, $x_2 = 1$ and $x_3 = 0$.
- ► This policy is optimal.



where A denotes policy \mathfrak{S} and A' policy \mathfrak{S}' .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 54/57 Summary Overview Markov Decision Processes Probabilities in MDPs Policies Policies Finite-memory policies Reachability probabilities Mathematical characterisation Value iteration Linear programming Policy iteration

5 Summary

Summary

Summary

Important points

- 1. Maximal reachability probabilities are suprema over reachability probabilities for all, potentially infinitely many, policies.
- 2. They are characterised by equation systems with maximal operators.
- 3. There exists a positional policy that yields the maximal reachability probability.
- 4. Such policies can be determined using value or policy iteration.
- 5. Or, alternatively, in polynomial time using linear programming.
- 6. Positional policies are not powerful enough for arbitrary ω -regular properties.

Modeling and Verification of Probabilistic Systems