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Nondeterminism

Randomness and concurrency

Markov chains are not appropriate for modeling randomized distributed systems,
since they cannot adequately model the interleaving behavior of the concurrent
processes.
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Nondeterminism

Nondeterminism

The use of nondeterminism
I Concurrency – scheduling of parallel components

I in randomised distributed algorithms, several components run partly
autonomously and interact asynchronously

I Abstraction
I partition state space of a DTMC in similar (but not bisimilar) states
I replace probabilistic branching by a nondeterministic choice

I Unknown environments
I interaction with unknown environment
I example: security in which the environment is an unknown adversary

Beware
Nondeterminism is not the same as a uniform distribution!
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Markov Decision Processes

Markov decision process (MDP)

Markov decision processes

I In MDPs, both nondeterministic and probabilistic choices coexist.
I MDPs are transition systems in which in any state a nondeterministic

choice between probability distributions exists.
I Once a probability distribution has been chosen nondeterministically,

the next state is selected probabilistically—as in DTMCs.
I Any MC is thus an MDP in which in any state the probability

distribution is uniquely determined.

Randomized distributed algorithms are typically appropriately modeled by MDPs,
as probabilities affect just a small part of the algorithm and nondeterminism is
used to model concurrency between processes by means of interleaving.
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Markov Decision Processes

Markov decision process (MDP)
Markov decision process
An MDPM is a tuple (S,Act,P, ιinit,AP, L) where

I S is a countable set of states with initial distribution ιinit : S → [0, 1]
I Act is a finite set of actions
I P : S × Act× S → [0, 1], transition probability function such that:

for all s ∈ S and α ∈ Act :
∑
s′∈S

P(s,α, s ′) ∈ { 0, 1 }

I AP is a set of atomic propositions and labeling L : S → 2AP.
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Markov Decision Processes

Markov decision process (MDP)

Markov decision process
An MDPM is a tuple (S,Act,P, ιinit,AP, L) where

I S, ιinit : S → [0, 1], AP and L are as before, i.e., as for DTMCs, and
I Act is a finite set of actions
I P : S × Act× S → [0, 1], transition probability function such that:

for all s ∈ S and α ∈ Act :
∑
s′∈S

P(s,α, s ′) ∈ { 0, 1 }

Enabled actions
Let Act(s) = {α ∈ Act | ∃s ′ ∈ S.P(s,α, s ′) > 0 } be the set of enabled
actions in state s. We require Act(s) 6= ∅ for any state s.
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Markov Decision Processes

Markov decision process (MDP)

Markov decision process
An MDPM is a tuple (S,Act,P, ιinit,AP, L) where

I S, ιinit : S → [0, 1], AP and L are as before, i.e., as for DTMCs, and
I Act is a finite set of actions
I P : S × Act× S → [0, 1], transition probability function such that:

for all s ∈ S and α ∈ Act :
∑
s′∈S

P(s,α, s ′) ∈ { 0, 1 }

If |Act(s)| = 1 for any state s, then the nondeterministic choice in any
state is over a singleton set. In this case,M is a DTMC. Vice versa, a
DTMC is an MDP such that |Act(s)| = 1 for all s.
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Markov Decision Processes

An example MDP

I Initial distribution: ιinit(s) = 1 and ιinit(t) = ιinit(u) = ιinit(u) = 0
I Set of enabled actions in state s is Act(s) = {α,β } where

I P(s,α, s) = 1
2 , P(s,α, t) = 0 and P(s,α, u) = P(s,α, v) = 1

4
I P(s,β, s) = P(s,β, v) = 0, and P(s,β, t) = P(s,β, u) = 1

2

I Act(t) = {α } with P(t,α, s) = P(t,α, u) = 1
2 and 0 otherwise
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Markov Decision Processes

Example: randomized mutual exclusion
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Markov Decision Processes

Randomized mutual exclusion
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Markov Decision Processes

Randomized mutual exclusion
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Markov Decision Processes

Randomized mutual exclusion
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Markov Decision Processes

Randomized mutual exclusion
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Markov Decision Processes

Intuitive operational behavior

Intuitive operational MDP behavior

1. A stochastic experiment according to ιinit yields starting state s0 with
probability ιinit(s0) > 0.

2. On entering state s, a non-deterministic choice among Act(s)
determines the next action α ∈ Act(s), say.

3. The next state t is randomly chosen with probability P(s,α, t).
4. If t is the unique α-successor of s, then almost surely t is the

successor after selecting α, i.e., P(s,α, t) = 1.
5. Continue with step 2.
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Probabilities in MDPs

Paths in an MDP

State graph
The state graph of MDPM is a digraph G = (V ,E ) with V are the
states ofM, and (s, s ′) ∈ E iff P(s,α, s ′) > 0 for some α ∈ Act.

Paths
An infinite path in an MDPM = (S,Act,P, ιinit,AP, L) is an infinite
sequence s0 α1 s1 α2 s2 α3 . . . ∈ (S × Act)ω, written as

π = s0 α1−−→ s1 α2−−→ s2 α3−−→ . . . ,

such that P(si ,αi+1, si+1) > 0 for all i > 0. Any finite prefix of π that
ends in a state is a finite path.
Let Paths(M) denote the set of paths inM, and Paths∗(M) the set of
finite prefixes thereof.
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Probabilities in MDPs

Paths in MDPs
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Probabilities in MDPs

Probabilities in MDPs

I For DTMCs, a set of infinite paths is equipped with a σ-algebra and a
probability measure that reflects the intuitive notion of probabilities
for paths.

I Due to the presence of nondeterminism, MDPs are not augmented
with a unique probability measure.

I Example: suppose we have two coins: a fair one, and a biased one,
say 1

6 for heads and 5
6 for tails. We select nondeterministically one of

the coins, and are interested in the probability of obtaining tails. This,
however, is not specified! This also applies if we select one of the two
coins repeatedly.

I Reasoning about probabilities of sets of paths of an MDP relies on
the resolution of nondeterminism. This resolution is performed by a
policy.1 A policy chooses in any state s one of the actions α ∈ Act(s).

1Also called scheduler, strategy or adversary.
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Policies

Policies

Policy
LetM = (S,Act,P, ιinit,AP, L) be an MDP. A policy forM is a function
S : S+ → Act such that S(s0 s1 . . . sn) ∈ Act(sn) for all s0 s1 . . . sn ∈ S+.
The path

π = s0 α1−−→ s1 α2−−→ s2 α3−−→ . . .

is called a S-path if αi = S(s0 . . . si−1) for all i > 0.

For any scheduler, the actions are omitted from the history s0 s1 . . . sn. This is not
a restriction as for any sequence s0 s1 . . . sn the relevant actions αi are given by
αi+1 = S(s0 s1 . . . si). Hence, the scheduled action sequence can be constructed
from prefixes of the path at hand.
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Policies

Induced Markov chain

Each policy induces an infinite DTMC. States are finite prefixes of paths in
the MDP.
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Policies

Induced DTMC of an MDP by a policy
DTMC of an MDP induced by a policy
LetM = (S,Act,P, ιinit,AP, L) be an MDP and S a policy onM. The
DTMC induced by S, denotedMS, is given by

MS = (S+,PS, ιinit,AP, L′)

where for σ = s0s1 . . . sn: PS

(
σ, σ sn+1

)
= P

(
sn, S(σ), sn+1

)
and

L′(σ) = L(sn).

MS is infinite, even if the MDPM is finite. Intuitively, state s0 s1 . . . sn of
DTMCMS represents the configuration where the MDPM is in state sn and
s0 s1 . . . sn−1 stands for the history. Since policy S might select different actions
for finite paths that end in the same state s, a policy as defined above is also
referred to as history-dependent.
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Policies

Example MDP

Consider a policy that alternates between selecting red and green, starting
with red.
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Policies

Example induced DTMC

Induced DTMC for a policy that alternates between selecting red and green.
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Policies

MDP paths versus paths in the induced DTMC

There is a one-to-one correspondence between the S-paths of the MDP
M and the paths in the Markov chainMS.

For S-path π = s0 α1−−→ s1 α2−−→ . . ., the corresponding path in DTMCMS is:

πS = π̂0 π̂1 π̂2 . . . where π̂n = s0 s1 . . . sn.

Vice versa, for a path π̂0 π̂1 π̂2 . . . in the DTMCMS, π̂0 = s0 for some state s0
such that ιinit(s0) > 0 and, for each n > 0, π̂n = π̂n−1 sn for some state sn in the
MDPM such that P(sn−1,S(π̂n−1), sn) > 0. Hence:

s0 S(π̂0)−−−−→ s1 S(π̂1)−−−−→ s2 S(π̂2)−−−−→ . . .

is a S-path inM.
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Policies

Probability measure on MDP

Probability measure on MDP
Let PrMS , or simply PrS, denote the probability measure PrMS associated
with the DTMCMS.
This measure is the basis for associating probabilities with events in the
MDPM. Let, e.g., P ⊆

(
2AP)ω be an ω-regular property. Then PrS(P)

is defined as:

PrS(P) = PrMS(P) = PrMS
{π ∈ Paths(MS) | trace(π) ∈ P }.

Similarly, for fixed state s ofM, which is considered as the unique starting
state,

PrS(s |= P) = PrMS
s {π ∈ Paths(s) | trace(π) ∈ P }

where we identify the paths inMS with the corresponding S-paths inM.
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Policies

Positional policy

Positional policy
LetM be an MDP with state space S. Policy S onM is positional (or:
memoryless) iff for each sequence s0 s1 . . . sn and t0 t1 . . . tm ∈ S+ with
sn = tm:

S(s0 s1 . . . sn) = S(t0 t1 . . . tm).

In this case, S can be viewed as a function S : S → Act.

Policy S is positional if it always selects the same action in a given state. This
choice is independent of what has happened in the history, i.e., which path led to
the current state.
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Summary

Summary

Important points

1. An MDP is a model exhibiting non-determinism and probabilities.
2. Non-determinism is important for e.g., randomized distributed

algorithms.
3. Policies are functions that select enabled actions in states.
4. A policy on an MDP induces an infinite DTMC, even if the MDP is

finite.
5. Probability measures on MDP paths are defined using induced DTMC

paths.
6. A positional policy selects in a state always the same action.
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