Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ss-14/movep14/

April 29, 2014

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

1/45

Traces, LT properties

Paths and traces

Paths

A *path* in DTMC \mathcal{D} is an infinite sequence of states $s_0 s_1 s_2 \ldots$ with $\mathbf{P}(s_i, s_{i+1}) > 0$ for all i.

Let $Paths(\mathcal{D})$ denote the set of paths in \mathcal{D} , and $Paths^*(\mathcal{D})$ the set of finite prefixes thereof.

Trace

The *trace* of path $\pi = s_0 s_1 s_2 \dots$ is $trace(\pi) = L(s_0) L(s_1) L(s_2) \dots$ The trace of finite path $\hat{\pi} = s_0 s_1 \dots s_n$ is $trace(\hat{\pi}) = L(s_0) L(s_1) \dots L(s_n)$.

The *set of traces* of a set Π of paths: $trace(\Pi) = \{ trace(\pi) \mid \pi \in \Pi \}$.

Overview

- 1 Traces, LT properties
- Verifying regular safety propertie
- \odot ω -regular properties
- 4 Verifying DBA objectives
- 6 Summary

Joost-Pieter Katoei

Modeling and Verification of Probabilistic System

2/45

Traces, LT properties

LT properties

Linear-time property

A *linear-time property* (LT property) over AP is a subset of $(2^{AP})^{\omega}$. An LT-property is thus a set of infinite traces over 2^{AP} .

Intuition

Joost-Pieter Katoen

An LT-property gives the admissible behaviours of the DTMC at hand.

Probability of LT properties

The *probability* for DTMC $\mathcal D$ to exhibit a trace in P (over AP) is:

$$Pr^{\mathcal{D}}(P) = Pr^{\mathcal{D}}\{\pi \in Paths(\mathcal{D}) \mid trace(\pi) \in P\}.$$

For state s in \mathcal{D} , let $Pr(s \models P) = Pr_s \{ \pi \in Paths(s) \mid trace(\pi) \in P \}$.

We will later identify a rich set P of LT-properties—those that include all LTL formulas—for which $\{ \pi \in Paths(\mathcal{D}) \mid trace(\pi) \in P \}$ is measurable.

Safety properties

Safety property

LT property P_{safe} over AP is a *safety property* if for all $\sigma \in (2^{AP})^{\omega} \setminus P_{safe}$ there exists a finite prefix $\widehat{\sigma}$ of σ such that:

$$P_{\mathit{safe}} \cap \underbrace{\left\{\sigma' \in (2^{\mathit{AP}})^{\omega} \mid \widehat{\sigma} \text{ is a prefix of } \sigma'\right\}}_{\mathit{all possible extensions of }\widehat{\sigma}} = \varnothing.$$

Any such finite word $\hat{\sigma}$ is called a *bad prefix* for P_{safe} .

Regular safety property

A safety property is *regular* if its set of bad prefixes constitutes a regular language (over the alphabet 2^{AP}). Thus, the set of all bad prefixes of a regular safety property can be represented by a finite-state automaton.

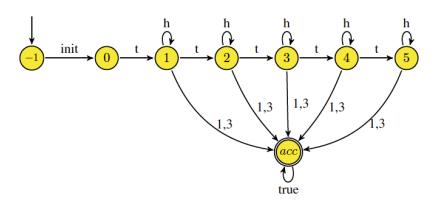
loost-Pieter Katoer

Modeling and Verification of Probabilistic Systems

45

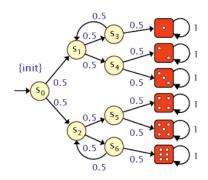
Traces, LT properties

Property as an automaton



After initial tails, yield $1\ \text{or}\ 3$ but with at most five times tails in total

Property of Knuth's die



Property of Knuth's die

After initial tails, yield 1 or 3 but with maximally five time tails.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

6/4

Verifying regular safety properti

Overview

- 1 Traces, LT properties
- Verifying regular safety properties
- \odot ω -regular properties
- 4 Verifying DBA objectives
- **6** Summary

Probability of a regular safety property

Let $\mathcal{A} = (Q, 2^{AP}, \delta, q_0, F)$ be a deterministic finite-state automaton (DFA) for the bad prefixes of regular safety property P_{safe} :

$$P_{\mathsf{safe}} = \{ A_0 A_1 A_2 \ldots \in (2^{AP})^{\omega} \mid \forall n \geqslant 0. A_0 A_1 \ldots A_n \notin \mathcal{L}(\mathcal{A}) \}.$$

Let δ be total, i.e., $\delta(q, A)$ is defined for each $A \subseteq AP$ and state $q \in Q$. Furthermore, let $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ be a finite DTMC. Our interest is to compute the probability

$$Pr^{\mathcal{D}}(P_{safe}) = 1 - \sum_{s \in S} \iota_{\text{init}}(s) \cdot Pr(s \models \mathcal{A})$$
 where

$$Pr(s \models A) = Pr_s^{\mathcal{D}} \{ \pi \in Paths(s) \mid trace(\pi) \notin P_{safe} \}$$

These probabilities can be obtained by considering a product of DTMC $\mathcal D$ with DFA \mathcal{A} .

DRA A

with state space Q

Product construction: intuition

DTMC \mathcal{D} with state space S

5)

 $L(s_n)=A_n$

path

Sn

 $a_0 \in Q_0$ q_{n+1}

Probability of a regular safety property

$$\mathit{Pr}^{\mathcal{D}}(\mathit{P}_{\mathit{safe}}) = 1 - \sum_{s \in \mathit{S}} \iota_{\mathrm{init}}(s) \cdot \mathit{Pr}(s \models \mathcal{A})$$
 where

$$Pr(s \models A) = Pr_s^{\mathcal{D}} \{ \pi \in Paths(s) \mid trace(\pi) \notin P_{safe} \}.$$

Remark

The value $Pr(s \models A)$ can be written as the (possibly infinite) sum:

$$Pr(s \models A) = \sum_{\widehat{\pi}} \mathbf{P}(\widehat{\pi})$$

where $\hat{\pi}$ ranges over all finite path prefixes $s_0 s_1 \dots s_n$ with $s_0 = s$ and:

- 1. $trace(s_0 s_1 \dots s_n) = L(s_0) L(s_1) \dots L(s_n) \in \mathcal{L}(\mathcal{A})$, and
- 2. the length of $\widehat{\pi}$ is minimal, i.e., $trace(s_0 s_1 \dots s_i) \notin \mathcal{L}(\mathcal{A})$ for all $0 \leqslant i < n$.

Joost-Pieter Katoen

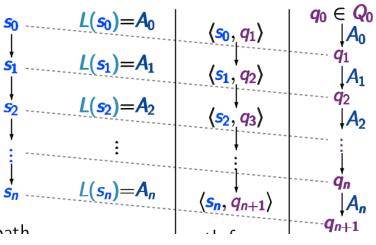
Modeling and Verification of Probabilistic Systems

Product construction: intuition

DTMC \mathcal{D} with state space S

with state space Q

DRA A



Product Markov chain

Product Markov chain

Let $\mathcal{D} = (S, P, \iota_{\text{init}}, AP, L)$ be a DTMC and $\mathcal{A} = (Q, 2^{AP}, \delta, q_0, F)$ be a DFA. The *product* $\mathcal{D} \otimes \mathcal{A}$ is the DTMC:

$$\mathcal{D} \otimes \mathcal{A} = (S \times Q, \mathbf{P}', \iota'_{\text{init}}, \{ \text{ accept } \}, L')$$

where $L'(\langle s, q \rangle) = \{ accept \}$ if $q \in F$ and $L'(\langle s, q \rangle) = \emptyset$ otherwise, and

$$\iota'_{\text{init}}(\langle s, q \rangle) = \begin{cases} \iota_{\text{init}}(s) & \text{if } q = \delta(q_0, L(s)) \\ 0 & \text{otherwise.} \end{cases}$$

The transition probabilities in $\mathcal{D} \otimes \mathcal{A}$ are given by:

$$\mathbf{P}'(\langle s,q\rangle,\langle s',q'\rangle) \ = \ \begin{cases} \mathbf{P}(s,s') & \text{if } q'=\delta(q,L(s')) \\ 0 & \text{otherwise.} \end{cases}$$

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

12/45

Verifying regular safety properties

Product Markov chain

Some observations

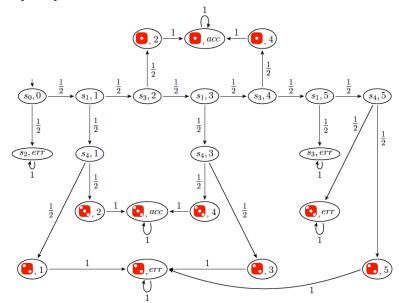
- ► For each path $\pi = s_0 s_1 s_2 \dots$ in DTMC \mathcal{D} there exists a unique run $q_0 q_1 q_2 \dots$ in DFA \mathcal{A} for $trace(\pi) = L(s_0) L(s_1) L(s_2) \dots$ and $\pi^+ = \langle s_0, q_1 \rangle \langle s_1, q_2 \rangle \langle s_2, q_3 \rangle \dots$ is a path in $\mathcal{D} \otimes \mathcal{A}$.
- ▶ The DFA \mathcal{A} does not affect the probabilities, i.e., for each measurable set Π of paths in \mathcal{D} and state s:

$$Pr_s^{\mathcal{D}}(\Pi) = Pr_{\langle s, \delta(q_0, L(s)) \rangle}^{\mathcal{D} \otimes \mathcal{A}} \underbrace{\{ \pi^+ \mid \pi \in \Pi \}}_{\Pi^+}$$

▶ For $\Pi = \{ \pi \in Paths^{\mathcal{D}}(s) \mid pref(trace(\pi)) \cap \mathcal{L}(\mathcal{A}) \neq \emptyset \}$, the set Π^+ is given by:

$$\Pi^{+} = \{ \pi^{+} \in Paths^{\mathcal{D} \otimes \mathcal{A}}(\langle s, \delta(q_{0}, L(s)) \rangle) \mid \pi^{+} \models \Diamond accept \}.$$

Example product: Knuth-Yao's die



Joost-Pieter Katoe

Modeling and Verification of Probabilistic Systems

.

Verifying regular safety propert

Quantitative analysis of regular safety properties

Theorem for analysing regular safety properties

Let P_{safe} be a regular safety property, \mathcal{A} a DFA for the set of bad prefixes of P_{safe} , \mathcal{D} a DTMC, and s a state in \mathcal{D} . Then:

$$Pr^{\mathcal{D}}(s \models P_{\mathsf{safe}}) = Pr^{\mathcal{D} \otimes \mathcal{A}}(\langle s, q_s \rangle \not\models \Diamond \mathsf{accept})$$

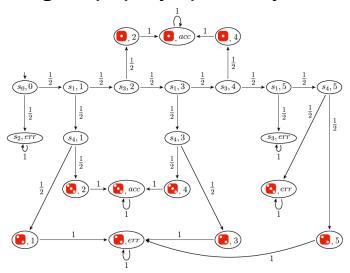
= $1 - Pr^{\mathcal{D} \otimes \mathcal{A}}(\langle s, q_s \rangle \models \Diamond \mathsf{accept})$

where $q_s = \delta(q_0, L(s))$.

Remarks

- 1. For finite DTMCs, $Pr^{\mathcal{D}}(s \models P_{safe})$ can thus be computed by determining reachability probabilities of *accept* states in $\mathcal{D} \otimes \mathcal{A}$. This amounts to solving a linear equation system.
- 2. For qualitative regular safety properties, i.e., $Pr^{\mathcal{D}}(s \models P_{safe}) > 0$ and $Pr^{\mathcal{D}}(s \models P_{safe}) = 1$, a graph analysis of $\mathcal{D} \otimes \mathcal{A}$ suffices.

Determining the property's probability



 $Pr^{\mathcal{D}\otimes\mathcal{A}}(\langle s,q_s\rangle \models \Diamond accept)$ equals $\frac{1}{8} + \frac{1}{8} + \frac{1}{22} + \frac{1}{22} = \frac{5}{16}$

Joost-Pieter Katoen

Modeling and Verification of Probabilistic System

 ω -regular properties

ω -regular languages

Infinite repetition of languages

Let Σ be a finite alphabet. For language $\mathcal{L} \subseteq \Sigma^*$, let \mathcal{L}^{ω} be the set of words in $\Sigma^* \cup \Sigma^{\omega}$ that arise from the infinite concatenation of (arbitrary) words in Σ , i.e.,

$$\mathcal{L}^{\omega} = \{ w_1 w_2 w_3 \dots \mid w_i \in \mathcal{L}, i \geqslant 1 \}.$$

The result is an ω -language, i.e., $\mathcal{L} \subseteq \Sigma^*$, provided that $\mathcal{L} \subseteq \Sigma^+$, i.e., $\varepsilon \notin \mathcal{L}$.

ω -regular expression

An ω -regular expression G over the Σ has the form: $G = E_1.F_1^{\omega} + \ldots + E_n.F_n^{\omega}$ where $n \ge 1$ and $E_1, \ldots, E_n, F_1, \ldots, F_n$ are regular expressions over Σ such that $\varepsilon \notin \mathcal{L}(\mathsf{F}_i)$, for all $1 \leqslant i \leqslant n$.

The *semantics* of G is defined by $\mathcal{L}_{\omega}(G) = \mathcal{L}(E_1).\mathcal{L}(F_1)^{\omega} \cup ... \cup \mathcal{L}(E_n).\mathcal{L}(F_n)^{\omega}$ where $\mathcal{L}(\mathsf{E}) \subseteq \Sigma^*$ denotes the language (of finite words) induced by the regular expression E.

Overview

- 1 Traces, LT properties
- \odot ω -regular properties
- Werifying DBA objectives
- **6** Summary

Modeling and Verification of Probabilistic System

ω -regular expressions

ω -regular expression

An ω -regular expression G over the Σ has the form: $G = E_1.F_1^{\omega} + \ldots + E_n.F_n^{\omega}$ where $n \ge 1$ and $E_1, \ldots, E_n, F_1, \ldots, F_n$ are regular expressions over Σ such that $\varepsilon \notin \mathcal{L}(\mathsf{F}_i)$, for all $1 \leqslant i \leqslant n$.

The semantics of G is defined by $\mathcal{L}_{\omega}(G) = \mathcal{L}(E_1).\mathcal{L}(F_1)^{\omega} \cup ... \cup \mathcal{L}(E_n).\mathcal{L}(F_n)^{\omega}$ where $\mathcal{L}(\mathsf{E}) \subseteq \Sigma^*$ denotes the language (of finite words) induced by the regular expression E.

Example

Examples for ω -regular expressions over the alphabet $\Sigma = \{A, B, C\}$ are

$$(A+B)^*A(AAB+C)^{\omega}$$
 or $A(B+C)^*A^{\omega}+B(A+C)^{\omega}$.

ω -regular properties

ω -regular property

LT property P over AP is called ω -regular if $P = \mathcal{L}_{\omega}(G)$ for some ω -regular expression G over the alphabet 2^{AP} .

Example

Let $AP = \{a, b\}$. Then some ω -regular properties over AP are:

- always a, i.e., $(\{a\} + \{a,b\})^{\omega}$.
- eventuallty a, i.e., $(\emptyset + \{b\})^* \cdot (\{a\} + \{a,b\}) \cdot (2^{AP})^{\omega}$.
- ▶ infinitely often a, i.e., $((\emptyset + \{b\})^*.(\{a\} + \{a,b\}))^{\omega}$.
- from some moment on, always a, i.e., $(2^{AP})^* \cdot (\{a\} + \{a,b\})^{\omega}$.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

21/45

 ω -regular properties

ω -regular properties

ω -regular property

LT property P over AP is called ω -regular if $P = \mathcal{L}_{\omega}(G)$ for some ω -regular expression G over the alphabet 2^{AP} .

Example

Starvation freedom in the sense of "whenever process $\mathcal P$ is waiting then it will enter its critical section eventually" is an ω -regular property as it can be described by

 $((\neg wait)^*.wait.true^*.crit)^{\omega} + ((\neg wait)^*.wait.true^*.crit)^*.(\neg wait)^{\omega}$

Intuitively, the first summand stands for the case where \mathcal{P} requests and enters its critical section infinitely often, while the second summand stands for the case where \mathcal{P} is in its waiting phase only finitely many times.

ω -regular properties

ω -regular property

LT property P over AP is called ω -regular if $P = \mathcal{L}_{\omega}(G)$ for some ω -regular expression G over the alphabet 2^{AP} .

Example

Any regular safety property $P_{\it safe}$ is an ω -regular property. This follows from the fact that the complement language

$$(2^{AP})^{\omega} \setminus P_{safe} = \underbrace{BadPref(P_{safe})}_{regular} \cdot (2^{AP})^{\omega}$$

is an ω -regular language, and ω -regular language are closed under complement.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

22/45

Verifying DBA objectives

Overview

- 1 Traces, LT properties
- Verifying regular safety properties
- \odot ω -regular properties
- 4 Verifying DBA objectives
- **5** Verifying ω -regular properties
- **6** Summary

Joost-Pieter Katoen

Deterministic Büchi automata

Deterministic Büchi Automaton (DBA)

A deterministic Büchi automaton (DBA) $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ with

- ▶ Q is a finite set of states with initial state $q_0 \in Q_0$,
- \triangleright Σ is an alphabet,
- $\delta: Q \times \Sigma \to Q$ is a transition function,
- $ightharpoonup F \subseteq Q$ is a set of accept (or: final) states.

A *run* for $\sigma = A_0 A_1 A_2 \ldots \in \Sigma^{\omega}$ denotes an infinite sequence $q_0 q_1 q_2 \ldots$ of states in \mathcal{A} such that $q_0 \in Q_0$ and $q_i \xrightarrow{A_i} q_{i+1}$ for $i \geqslant 0$.

Run $q_0 q_1 q_2 \dots$ is accepting if $q_i \in F$ for infinitely many indices $i \in \mathbb{N}$.

The infinite *language* of A is

 $\mathcal{L}_{\omega}(\mathcal{A}) = \{ \sigma \in \Sigma^{\omega} \mid \text{there exists an accepting run for } \sigma \text{ in } \mathcal{A} \}.$

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

25/45

Verifying DBA objectives

Some facts about DBA

Expressiveness of DBA

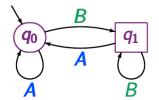
For any DBA A, the language $\mathcal{L}_{\omega}(A)$ is ω -regular.

There does not exist a DBA over the alphabet $\Sigma = \{a, b\}$ for the ω -regular expression $(a + b)^*.a^{\omega}$.

The class of DBA-recognizable languages is a proper subclass of the class of ω -regular languages and is not closed under complementation.

An ω -language is recognizable by a DBA iff it is the limit language of a regular language. (Details: see lecture Applications of Automata Theory.)

Deterministic Büchi automata for LT properties



DBA over $\{A, B\}$ with $F = \{q_1\}$ and initial state q_0 accepting the LT property "infinitely often B".

Joost-Pieter Katoe

Modeling and Verification of Probabilistic Systems

26/4!

Verifying DBA objective

Quantitative analysis of DBA properties

Quantitative Analysis for DBA-Definable Properties

Let $\mathcal A$ be a DBA and $\mathcal D$ a DTMC. Then, for all states s in $\mathcal D$:

$$Pr^{\mathcal{D}}(s \models \mathcal{A}) = Pr^{\mathcal{D} \otimes \mathcal{A}}(\langle s, q_s \rangle \models \Box \Diamond accept)$$

where $q_s = \delta(q_0, L(s))$.

Algorithm

Recall that for finite DTMCs, the probability of $\Box \Diamond$ accept can be obtained in polynomial time by first determining the BSCCs of $\mathcal{D} \otimes \mathcal{A}$. For each BSCC B that contains a state $\langle s,q \rangle$ with $q \in F$, determine the probability of eventually reaching B. Its sum is the required probability. Thus this amounts to solve a linear equation system for each accepting BSCC in \mathcal{D} .

Overview

- 1 Traces, LT properties
- Verifying regular safety properties
- \odot ω -regular properties
- 4 Verifying DBA objectives
- **5** Verifying ω -regular properties
- 6 Summary

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

20 /45

Verifying ω -regular properties

Deterministic Rabin automata

Deterministic Rabin automaton

A deterministic Rabin automaton (DRA) $\mathcal{A} = (Q, \Sigma, \delta, q_0, \mathcal{F})$ with

- ▶ Q, $q_0 \in Q_0$, Σ is an alphabet, and $\delta : Q \times \Sigma \to Q$ as before
- ▶ $\mathcal{F} = \{ (L_i, K_i) \mid 0 < i \leq k \}$ with $L_i, K_i \subseteq Q$, is a set of accept pairs

A *run* for $\sigma = A_0 A_1 A_2 \ldots \in \Sigma^{\omega}$ denotes an infinite sequence $q_0 q_1 q_2 \ldots$ of states in \mathcal{A} such that $q_0 \in Q_0$ and $q_i \xrightarrow{A_i} q_{i+1}$ for $i \geqslant 0$.

Run $q_0 q_1 q_2 ...$ is *accepting* if for some pair (L_i, K_i) , the states in L_i are visited finitely often and the states in K_i infinitely often. That is, an accepting run should satisfy

$$\bigvee_{0 < i \leqslant k} (\Diamond \Box \neg L_i \wedge \Box \Diamond K_i).$$

Beyond DBA properties

Remarks

- ▶ Since DBAs do not have the full power of ω -regular languages, this approach is not capable of handling arbitrary ω -regular properties.
- ▶ To overcome this deficiency, Büchi automata will be replaced by an alternative automaton model for which their deterministic counterparts are as expressive as ω -regular languages.
- ► Such automata have the same components as DBA (finite set of states, and so on) except for the acceptance sets. We consider *deterministic Rabin automata*. There are alternatives, e.g., Muller automata.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

20 /4

Verifying ω -regular properti

When does a DRA accept an infinite word?

Acceptance condition

A run of a word in Σ^{ω} on a DRA is accepting if and only if: for some $(L_i, K_i) \in \mathcal{F}$, the states in L_i are visited finitely often and (some of) the states in K_i are visited infinitely often

Stated in terms of an LTL formula:

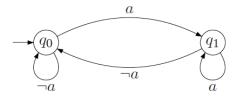
$$\bigvee_{0 < i \leqslant k} (\lozenge \square \neg L_i \wedge \square \lozenge K_i)$$

A deterministic Büchi automaton is a DRA with acceptance condition $\{(\varnothing, F)\}$.

Deterministic Rabin automaton: Example

Acceptance condition

A run of a word in Σ^{ω} on a DRA is accepting iff $\bigvee_{0 < i \le k} (\lozenge \Box \neg L_i \land \Box \lozenge K_i)$.



For $\mathcal{F}=\set{(\mathit{L},\mathit{K})}$ with $\mathit{L}=\set{q_0}$ and $\mathit{K}=\set{q_1}$, this DRA accepts $\lozenge \Box \mathit{a}$

Recall that there does not exist a deterministic Büchi automaton for $\Diamond \Box a$.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

33/4

Verifying ω -regular properties

Verifying DRA properties

Product of a Markov chain and a DRA

The product of DTMC \mathcal{D} and DRA \mathcal{A} is defined as the product of a Markov chain and a DFA, except that the labeling is defined differently.

Let the acceptance condition of \mathcal{A} is $\mathcal{F} = \{(L_1, K_1), \ldots, (L_k, K_k)\}$. Then the sets L_i , K_i serve as atomic propositions in $\mathcal{D} \otimes \mathcal{A}$. The labeling function L' in $\mathcal{D} \otimes \mathcal{A}$ is the obvious one: if $H \in \{L_1, \ldots, L_k, K_1, \ldots, K_k\}$, then $H \in L'(\langle s, q \rangle)$ iff $q \in H$.

Accepting BSCC

A BSCC T in $\mathcal{D} \otimes \mathcal{A}$ is *accepting* iff for some index $i \in \{1, ..., k\}$ we have:

$$T \cap (S \times L_i) = \emptyset$$
 and $T \cap (S \times K_i) \neq \emptyset$.

Thus, once such an accepting BSCC T is reached in $\mathcal{D} \otimes \mathcal{A}$, the acceptance criterion for the DRA \mathcal{A} is fulfilled almost surely.

Deterministic Rabin automata

DRA are ω -regular

A language on infinite words is $\omega\text{-regular}$ iff there exists a DRA that generates it.

- ▶ DRA are thus equally expressive as (generalized) Büchi automata.
- ▶ They are more expressive than deterministic Büchi automata.
- ▶ Any nondeterministic Büchi automata of n states can be converted to a DRA of size $2^{\mathcal{O}(n \cdot \log n)}$.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

3/ //1

Verifying ω -regular properti

Verifying DRA properties

Accepting BSCC

A BSCC T in $\mathcal{D} \otimes \mathcal{A}$ is *accepting* iff for some index $i \in \{1, ..., k\}$ we have:

$$T \cap (S \times L_i) = \emptyset$$
 and $T \cap (S \times K_i) \neq \emptyset$.

Thus, once such an accepting BSCC T is reached in $\mathcal{D} \otimes \mathcal{A}$, the acceptance criterion for the DRA \mathcal{A} is fulfilled almost surely.

DRA probabilities = reachability probabilities

Let \mathcal{D} be a finite DTMC, s a state in \mathcal{D} , \mathcal{A} a DRA, and let \mathcal{U} be the union of all accepting BSCCs in $\mathcal{D} \otimes \mathcal{A}$. Then:

$$Pr^{\mathcal{D}}(s \models \mathcal{A}) = Pr^{\mathcal{D} \otimes \mathcal{A}}(\langle s, q_s \rangle \models \Diamond \mathbf{U})$$
 where $q_s = \delta(q_0, L(s))$.

Proof

oost-Pieter Katoen

On the blackboard (if time permits).

Verifying DRA objectives

DRA probabilities = reachability probabilities

Let \mathcal{D} be a finite DTMC, s a state in \mathcal{D} , \mathcal{A} a DRA, and let \mathcal{U} be the union of all accepting BSCCs in $\mathcal{D} \otimes \mathcal{A}$. Then:

$$Pr^{\mathcal{D}}(s \models \mathcal{A}) = Pr^{\mathcal{D} \otimes \mathcal{A}}(\langle s, q_s \rangle \models \Diamond \mathbf{U})$$
 where $q_s = \delta(q_0, L(s))$.

Probabilities for satisfying ω -regular properties are obtained by computing the reachability probabilities for accepting BSCCs in $\mathcal{D} \otimes \mathcal{A}$. Again, a graph analysis and solving systems of linear equations suffice. The time complexity is polynomial in the size of \mathcal{D} and \mathcal{A} .

Joost-Pieter Katoe

Modeling and Verification of Probabilistic Systems

37/45

Verifying ω-regular propertie

Measurability

Measurability theorem for ω -regular properties

[Vardi 1985]

For any DTMC $\mathcal D$ and DRA $\mathcal A$ the set

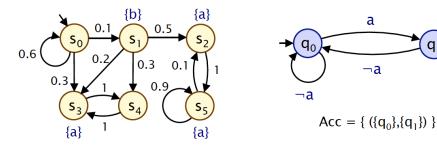
$$\{ \pi \in Paths(\mathcal{D}) \mid trace(\pi) \in \mathcal{L}_{\omega}(\mathcal{A}) \}$$

is measurable.

Proof (sketch)

Let DRA \mathcal{A} with accept sets $\{(L_1,K_1),\ldots,(L_m,K_m)\}$. Let $\varphi_i=\Diamond\Box\neg L_i \wedge\Box\Diamond K_i$ and Π_i the set of paths satisfying φ_i . Then $\Pi=\Pi_1\cup\ldots\cup\Pi_k$. In addition, $\Pi_i=\Pi_i^{\Diamond\Box}\cap\Pi_i^{\Box\Diamond}$ where $\Pi_i^{\Diamond\Box}$ is the set of paths π in \mathcal{D} such that $\pi^+\models\Diamond\Box\neg L_i$, and $\Pi_i^{\Box\Diamond}$ is the set of paths π in \mathcal{D} such that $\pi^+\models\Box\Diamond K_i$. It remains to show that $\Pi_i^{\Diamond\Box}$ and $\Pi_i^{\Box\Diamond}$ are measurable. This goes along the same lines as proving that $\Diamond\Box G$ and $\Box\Diamond G$ are measurable.

Example: verifying a DTMC versus a DRA



Single accepting BSCC:
$$\{\langle s_2, q_1 \rangle, \langle s_5, q_1 \rangle\}$$
. Reachability probability is $\frac{1}{2} \cdot \frac{1}{10} \cdot \sum_{k=0}^{\infty} \left(\frac{3}{5}\right)^k = \frac{1}{8}$.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

38/4

Verifying ω -regular propertie

Linear temporal logic

Linear Temporal Logic: Syntax

[Pnueli 1977]

LTL formulas over the set AP obey the grammar:

$$\varphi ::= a \mid \neg \varphi \mid \varphi_1 \wedge \varphi_2 \mid \bigcirc \varphi \mid \varphi_1 \cup \varphi_2$$

where $a \in AP$ and φ , φ_1 , and φ_2 are LTL formulas.

Example

On the blackboard.

LTL semantics

LTL semantics

The LT-property induced by LTL formula φ over AP is:

 $\mathit{Words}(\varphi) \ = \ \left\{\sigma \in \left(2^{AP}\right)^\omega \mid \sigma \models \varphi\right\}$, where $\ \models$ is the smallest relation satisfying:

$$\sigma \models \mathsf{true}$$

$$\sigma \models a$$
 iff $a \in A_0$ (i.e., $A_0 \models a$)

$$\sigma \models \varphi_1 \land \varphi_2 \text{ iff } \sigma \models \varphi_1 \text{ and } \sigma \models \varphi_2$$

$$\sigma \models \neg \varphi \quad \text{iff} \quad \sigma \not\models \varphi$$

$$\sigma \models \bigcirc \varphi \quad \text{iff} \quad \sigma^1 = A_1 A_2 A_3 \ldots \models \varphi$$

$$\sigma \models \varphi_1 \cup \varphi_2 \quad \text{iff} \quad \exists j \geqslant 0. \ \sigma^j \models \varphi_2 \quad \text{and} \quad \sigma^i \models \varphi_1, \ 0 \leqslant i < j$$

for $\sigma = A_0 A_1 A_2 \dots$ we have $\sigma^i = A_i A_{i+1} A_{i+2} \dots$ is the suffix of σ from index i on.

Joost-Pieter Katoe

Modeling and Verification of Probabilistic Systems

41/4

Verifying ω -regular properties

Verifying a DTMC against LTL formulas

Complexity of LTL model checking

[Vardi 1985]

The qualitative model-checking problem for finite DTMCs against LTL formula φ is PSPACE-complete, i.e., verifying whether $Pr(s \models \varphi) > 0$ or $Pr(s \models \varphi) = 1$ is PSPACE-complete.

Recall that the LTL model-checking problem for finite transition systems is PSPACE-complete.

Some facts about LTL

LTL is ω -regular

For any LTL formula φ , the set $Words(\varphi)$ is an ω -regular language.

LTL are DRA-definable

For any LTL formula φ , there exists a DRA \mathcal{A} such that $\mathcal{L}_{\omega} = \textit{Words}(\varphi)$ where the number of states in \mathcal{A} lies in $2^{2^{|\varphi|}}$.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

12/4

Summ

Overview

- 1 Traces, LT properties
- Verifying regular safety properties
- \odot ω -regular properties
- 4 Verifying DBA objectives
- **6** Summary

Joost-Pieter Katoen

Summarv

Summary

Summary

- ▶ Verifying a DTMC \mathcal{D} against a DFA \mathcal{A} , i.e., determining $Pr(\mathcal{D} \models \mathcal{A})$, amounts to computing reachability probabilities of accept states in $\mathcal{D} \otimes \mathcal{A}$.
- ▶ For DBA objectives, the probability of infinitely often visiting an accept state in $\mathcal{D} \otimes \mathcal{A}$.
- ightharpoonup DBA are strictly less powerful than ω -regular languages.
- **Deterministic** Rabin automata are as expressive as ω-regular languages.
- ▶ Verifying DTMC $\mathcal D$ agains DRA $\mathcal A$ amounts to computing reachability probabilities of accepting BSCCs in $\mathcal D\otimes\mathcal A$.

Take-home message

Model checking a DTMC against various automata models reduces to computing reachability probabilities in a product.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

45/4

