4/32

Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ss-14/movep14/

May 8, 2014

Joost-Pieter Katoen

PCTL Syntax

Modeling and Verification of Probabilistic Systems

Probabilistic Computation Tree Logic

- PCTL is a language for formally specifying properties over DTMCs.
- It is a branching-time temporal logic based on CTL.
- Formula interpretation is Boolean, i.e., a state satisfies a formula or not.
- The main operator is $\mathbb{P}_{J}(\varphi)$
 - where φ constrains the set of paths and J is a threshold on the probability.
 - \blacktriangleright it is the probabilistic counterpart of \exists and \forall path-quantifiers in CTL.

Overview

PCTL Syntax PCTL Semantics PCTL Model Checking Complexity Summary

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems _____2/3

PCTL Syntax

DTMCs — A transition system perspective

Discrete-time Markov chain

- A DTMC \mathcal{D} is a tuple (*S*, **P**, ι_{init} , *AP*, *L*) with:
 - ► *S* is a countable nonempty set of states
 - ▶ $P: S \times S \rightarrow [0, 1]$, transition probability function s.t. $\sum_{s'} P(s, s') = 1$
 - $\iota_{\text{init}}: S \to [0, 1]$, the initial distribution with $\sum_{s \in S} \iota_{\text{init}}(s) = 1$
 - *AP* is a set of atomic propositions.
 - L: S → 2^{AP}, the labeling function, assigning to state s, the set L(s) of atomic propositions that are valid in s.

Initial states

- ▶ $\iota_{\text{init}}(s)$ is the probability that DTMC \mathcal{D} starts in state s
- ▶ the set $\{ s \in S \mid \iota_{init}(s) > 0 \}$ are the possible initial states.

PCTL Syntax

PCTL syntax

[Hansson & Jonsson, 1994]

Probabilistic Computation Tree Logic: Syntax

- PCTL consists of state- and path-formulas.
- ▶ PCTL *state formulas* over the set *AP* obey the grammar:

$$\Phi ::= \mathsf{true} \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \mathbb{P}_{\mathbf{J}}(\varphi)$$

where $a \in AP$, φ is a path formula and $J \subseteq [0, 1]$, $J \neq \emptyset$ is a non-empty interval.

PCTL path formulae are formed according to the following grammar:

$$\varphi ::= \bigcirc \Phi \mid \Phi_1 \cup \Phi_2 \mid \Phi_1 \cup^{\leqslant n} \Phi_2$$

PCTL Semantics

where Φ , Φ_1 , and Φ_2 are state formulae and $n \in \mathbb{N}$.

Abbreviate $\mathbb{P}_{[0,0.5]}(\varphi)$ by $\mathbb{P}_{\leq 0.5}(\varphi)$ and $\mathbb{P}_{]0,1]}(\varphi)$ by $\mathbb{P}_{>0}(\varphi)$.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Overview

1 PCTL Syntax

2 PCTL Semantics

OPCTL Model Checking

4 Complexity

5 Summary

Probabilistic Computation Tree Logic

▶ PCTL *state formulas* over the set *AP* obey the grammar:

$$\Phi$$
 ::= true $| a | \Phi_1 \land \Phi_2 | \neg \Phi | \mathbb{P}_J(\varphi)$

where $a \in AP$, φ is a path formula and $J \subseteq [0, 1]$, $J \neq \emptyset$ is a non-empty interval.

PCTL path formulae are formed according to the following grammar:

 $\varphi \ ::= \ \bigcirc \Phi \ \left| \ \Phi_1 \, \mathrm{U} \, \Phi_2 \ \right| \ \Phi_1 \, \mathrm{U}^{\leqslant n} \, \Phi_2 \quad \text{where} \ n \in \mathbb{N}.$

Intuitive semantics

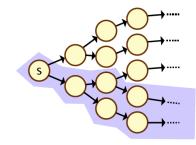
- $s_0 s_1 s_2 \ldots \models \Phi \bigcup^{\leq n} \Psi$ if Φ holds until Ψ holds within *n* steps.
- $s \models \mathbb{P}_J(\varphi)$ if probability that paths starting in s fulfill φ lies in J.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic System

PCTL Semantics

Semantics of \mathbb{P} -operator



- ▶ s ⊨ ℙ_J(φ) if:
 - the probability of all paths starting in s fulfilling φ lies in J.
- Example: $s \models \mathbb{P}_{>\frac{1}{2}}(\Diamond a)$ if
 - the probability to reach an *a*-labeled state from *s* exceeds $\frac{1}{2}$.
- ► Formally:

Joost-Pieter Katoen

• $s \models \mathbb{P}_{J}(\varphi)$ if and only if $Pr_{s} \{ \pi \in Paths(s) \mid \pi \models \varphi \} \in J$.

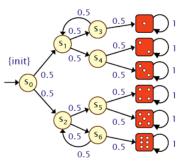
Modeling and Verification of Probabilistic Systems

Derived operators

$$\Diamond \Phi = \operatorname{true} \mathsf{U} \Phi$$
$$\Diamond^{\leqslant n} \Phi = \operatorname{true} \mathsf{U}^{\leqslant n} \Phi$$
$$\mathbb{P}_{\leqslant p}(\Box \Phi) = \mathbb{P}_{>1-p}(\Diamond \neg \Phi)$$

$$\mathbb{P}_{(p,q)}(\Box^{\leqslant n} \Phi) = \mathbb{P}_{[1-q,1-p]}(\Diamond^{\leqslant n} \neg \Phi)$$

Correctness of Knuth's die



Correctness of Knuth'	s die		
$\mathbb{P}_{=rac{1}{6}}(\Diamond 1) \wedge \mathbb{P}_{=rac{1}{6}}(\Diamond 2)$ /	$\mathbb{P}_{=\frac{1}{6}}(\Diamond 3) \land \mathbb{P}_{=\frac{1}{6}}(\diamond 3)$	$(\diamond 4) \land \mathbb{P}_{=\frac{1}{6}}(\diamond 5) \land \mathbb{I}$	$\mathbb{D}_{=\frac{1}{6}}(\Diamond 6)$

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Example properties

• Transient probabilities to be in *goal* state at the fourth epoch:

$$\mathbb{P}_{\geq 0.92}\left(\Diamond^{=4} \text{ goal}\right)$$

PCTL Semantics

• With probability \ge 0.92, a goal state is reached legally:

$$\mathbb{P}_{\geq 0.92}$$
 (\neg illegal U goal)

• ... in maximally 137 steps:

 $\mathbb{P}_{\geq 0.92}$ (\neg illegal U^{≤ 137} goal)

 \blacktriangleright ... once there, remain there almost surely for the next 31 steps:

$$\mathbb{P}_{\geq 0.92}\left(\neg \textit{illegal } \cup {}^{\leq 137} \mathbb{P}_{=1}(\Box^{[0,31]} \textit{ goal})\right)$$

PCTL Semantics

PCTL semantics (1)

Notation

Joost-Pieter Katoen

 $\mathcal{D}, s \models \Phi$ if and only if state-formula Φ holds in state *s* of (possibly infinite) DTMC \mathcal{D} . As \mathcal{D} is known from the context we simply write $s \models \Phi$.

Satisfaction relation for state formulas

The satisfaction relation \models is defined for PCTL state formulas by:

$$s \models a \qquad \text{iff} \quad a \in L(s)$$

$$s \models \neg \Phi \qquad \text{iff} \quad \text{not} \ (s \models \Phi)$$

$$s \models \Phi \land \Psi \qquad \text{iff} \quad (s \models \Phi) \text{ and} \ (s \models \Psi)$$

$$s \models \mathbb{P}_{J}(\varphi) \qquad \text{iff} \quad Pr(s \models \varphi) \in J$$

where $Pr(s \models \varphi) = Pr_s \{ \pi \in Paths(s) \mid \pi \models \varphi \}$

Modeling and Verification of Probabilistic Systems

PCTL Semantics

PCTL semantics (2)

Satisfaction relation for path formulas

Let $\pi = s_0 s_1 s_2 \dots$ be an infinite path in (possibly infinite) DTMC \mathcal{D} . Recall that $\pi[i] = s_i$ denotes the (i+1)-st state along π .

The satisfaction relation \models is defined for state formulas by:

$$\begin{aligned} \pi &\models \bigcirc \Phi & \text{iff} \quad s_1 \models \Phi \\ \pi &\models \Phi \cup \Psi & \text{iff} \quad \exists k \ge 0.(\pi[k] \models \Psi \land \forall 0 \le i < k. \pi[i] \models \Phi) \\ \pi &\models \Phi \cup^{\le n} \Psi & \text{iff} \quad \exists k \ge 0.(k \le n \land \pi[k] \models \Psi \land \\ \forall 0 \le i < k. \pi[i] \models \Phi) \end{aligned}$$

Measurability

PCTL measurability

For any PCTL path formula φ and state *s* of DTMC \mathcal{D} , the set { $\pi \in Paths(s) \mid \pi \models \varphi$ } is measurable.

Proof (sketch):

Three cases:

1. **Ο**Φ:

cylinder sets constructed from paths of length one.

2. ΦU[≤]*n*Ψ:

▶ (finite number of) cylinder sets from paths of length at most *n*.

3. ΦUΨ:

• countable union of paths satisfying $\Phi \cup \mathbb{I}^{\leq n} \Psi$ for all $n \geq 0$.

Joost-Pieter Katoen	Modeling and Verification of Probabilistic Systems	13/32
Overview	PCTL Model Checking	
Overview		
PCTL Syntax		
2 PCTL Semantics		
3 PCTL Model Checking		
Complexity		
5 Summary		

Joost-Pieter Katoer

Modeling and Verification of Probabilistic Systems 14/3

PCTL Model Checking

PCTL model checking

PCTL model checking problem

Input: a finite DTMC $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$, state $s \in S$, and PCTL state formula Φ

Output: yes, if $s \models \Phi$; no, otherwise.

Basic algorithm

In order to check whether $s \models \Phi$ do:

- 1. Compute the satisfaction set $Sat(\Phi) = \{ s \in S \mid s \models \Phi \}.$
- 2. This is done recursively by a bottom-up traversal of Φ 's parse tree.
 - The nodes of the parse tree represent the subformulae of Φ .
 - For each node, i.e., for each subformula Ψ of Φ , determine $Sat(\Psi)$.
 - Determine Sat(Ψ) as function of the satisfaction sets of its children:
 e.g., Sat(Ψ₁ ∧ Ψ₂) = Sat(Ψ₁) ∩ Sat(Ψ₂) and Sat(¬Ψ) = S \ Sat(Ψ).
- 3. Check whether state *s* belongs to $Sat(\Phi)$.

16/32

PCTL Model Checking

Core model checking algorithm

Propositional formulas

 $Sat(\cdot)$ is defined by structural induction as follows:

$$\begin{array}{rcl} Sat(\mathrm{true}) &=& S\\ Sat(a) &=& \{s \in S \mid a \in L(s)\}, \text{ for any } a \in AP\\ Sat(\Phi \land \Psi) &=& Sat(\Phi) \cap Sat(\Psi)\\ Sat(\neg \Phi) &=& S \setminus Sat(\Phi). \end{array}$$

Probabilistic operator \mathbb{P}

In order to determine whether $s \in Sat(\mathbb{P}_{J}(\varphi))$, the probability $Pr(s \models \varphi)$ for the event specified by φ needs to be established. Then

 $Sat(\mathbb{P}_{J}(\varphi)) = \{ s \in S \mid Pr(s \models \varphi) \in J \}.$

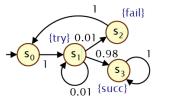
Let us consider the computation of $Pr(s \models \varphi)$ for all possible φ .

Joost-Pieter Katoen

PCTL Model Checking

Example

Consider DTMC:



and PCTL-formula:

Modeling and Verification of Probabilistic Systems

 $\mathbb{P}_{\geq 0.9} (\bigcirc (\neg try \lor succ))$

- 1. $Sat(\neg try \lor succ) = (S \setminus Sat(try)) \cup Sat(succ) = \{s_0, s_2, s_3\}$
- 2. We know: $(Pr(s \models \bigcirc \Phi))_{s \in S} = \mathbf{P} \cdot \mathbf{b}_{\Phi}$ where $\Phi = \neg try \lor succ$
- 3. Applying that to this example yields:

$$\left(\Pr(s\models\bigcirc\Phi)\right)_{s\in S} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0.99 \\ 1 \\ 1 \end{pmatrix}$$

4. Thus: $Sat(\mathbb{P}_{\geq 0.9}(\bigcirc (\neg try \lor succ)) = \{ s_1, s_2, s_3 \}.$

The next-step operator

Recall that: $s \models \mathbb{P}_J(\bigcirc \Phi)$ if and only if $Pr(s \models \bigcirc \Phi) \in J$.

Lemma

 $Pr(s \models \bigcirc \Phi) = \sum_{s' \in \stackrel{s}{\longrightarrow} at(\Phi)} \mathsf{P}(s, s').$

Algorithm

Considering the above equation for all states simultaneously yields:

$$(Pr(s \models \bigcirc \Phi))_{s \in S} = \mathbf{P} \cdot \mathbf{b}_{\Phi}$$

with \mathbf{b}_{Φ} the characteristic vector of $Sat(\Phi)$, i.e., $b_{\Phi}(s) = 1$ iff $s \in \stackrel{S}{\longrightarrow} at(\Phi)$.

Checking the next-step operator reduces to a single matrix-vector multiplication.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems 18/

PCTL Model Checking

Bounded until (1)

Recall that: $s \models \mathbb{P}_{J}(\Phi \cup \mathbb{V}^{\leq n} \Psi)$ if and only if $Pr(s \models \Phi \cup \mathbb{V}^{\leq n} \Psi) \in J$.

Lemma		
Let $S_{=1} = Sat(\Psi)$, $S_{=0} = S \setminus (Sat(\Phi) \cup Sat(\Psi))$, and $S_? = S \setminus (S_{=0} \cup S_{=1})$. Then:		
$\Pr(s \models \Phi \cup^{\leqslant n} \Psi) = \langle$	$\begin{cases} 1\\ 0\\ \sum_{s'\in S} \mathbf{P}(s,s') \cdot \Pr(s' \models \Phi \cup^{\leq n-1} \Psi) \end{cases}$	$ \begin{array}{l} \text{if } s \in S_{=1} \\ \text{if } s \in S_{=0} \\ \text{if } s \in S_? \land n = 0 \\ \text{otherwise} \end{array} $

PCTL Model Checking

Bounded until (2)

Let $S_{=1} = Sat(\Psi)$, $S_{=0} = S \setminus (Sat(\Phi) \cup Sat(\Psi))$, and $S_? = S \setminus (S_{=0} \cup S_{=1})$. Then:		
$Pr(s \models \Phi \cup^{\leqslant n} \Psi) = \begin{cases} 1\\ 0\\ 0\\ \sum_{s' \in S} \mathbf{P}(s, s') \cdot Pr(s' \models \Phi \cup^{\leqslant n-1} \Psi) \end{cases}$	$\begin{array}{l} \text{if } s \in S_{=1} \\ \text{if } s \in S_{=0} \\ \text{if } s \in S_? \land n = 0 \\ \text{otherwise} \end{array}$	

Algorithm

- 1. Let $\mathbf{P}_{\Phi,\Psi}$ be the probability matrix of $\mathcal{D}[S_{=0} \cup S_{=1}]$.
- 2. Then $(Pr(s \models \Phi \cup \forall))_{s \in S} = \mathbf{b}_{\Psi}$

3. And
$$(\Pr(s \models \Phi \cup \forall^{i+1} \Psi))_{s \in S} = \mathbf{P}_{\Phi, \Psi} \cdot (\Pr(s \models \Phi \cup \forall^{i} \Psi))_{s \in S}$$
.

4. This requires *n* matrix-vector multiplications in total.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

PCTL Model Checking

Until

Recall that: $s \models \mathbb{P}_J(\Phi \cup \Psi)$ if and only if $Pr(s \models \Phi \cup \Psi) \in J$.

Algorithm

- 1. Determine $S_{=1} = Sat(\mathbb{P}_{=1}(\Phi \cup \Psi))$ by a graph analysis.
- 2. Determine $S_{=0} = Sat(\mathbb{P}_{=0}(\Phi \cup \Psi))$ by a graph analysis.
- 3. Then solve a linear equation system over all remaining states.

Importance of pre-computation using graph analysis

- 1. Ensures unique solution to linear equation system.
- 2. Reduces the number of variables in the linear equation system.
- 3. Gives exact results for the states in $S_{=1}$ and $S_{=0}$ (i.e., no round-off).
- 4. For qualitative properties, no further computation is needed.

Bounded until (3)

Algorithm

- 1. Let $\mathbf{P}_{\Phi,\Psi}$ be the probability matrix of $\mathcal{D}[S_{=0} \cup S_{=1}]$.
- 2. Then $(Pr(s \models \Phi \cup U^{\leq 0} \Psi))_{s \in S} = \mathbf{b}_{\Psi}$
- 3. And $(\Pr(s \models \Phi \cup \forall i+1 \Psi))_{s \in S} = \mathbf{P}_{\Phi, \Psi} \cdot (\Pr(s \models \Phi \cup \forall \Psi))_{s \in S}$.
- 4. This requires *n* matrix-vector multiplications in total.

Remarks

1. In terms of matrix powers: $(Pr(s \models \Phi \cup \forall))_{s \in S} = \mathbf{P}^{n}_{\Phi, \Psi} \cdot \mathbf{b}_{\Psi}.$

- Computing $\mathbf{P}_{\Phi,\Psi}^n$ in $\log_2 n$ steps is inefficient due to fill-in.
- That is to say, $\mathbf{P}_{\Phi,\Psi}^n$ is much less sparse than $\mathbf{P}_{\Phi,\Psi}$.

2. $\mathbf{P}^{n}_{\mathbf{\Phi},\Psi} \cdot \mathbf{b}_{\Psi} = (Pr(s \models \bigcirc^{=n} \Psi))_{s \in S_{7}} \text{ in } \mathcal{D}[S_{=0} \cup S_{=1}].$

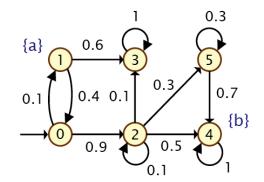
- Where $\bigcirc^{0} \Psi = \Psi$ and $\bigcirc^{i+1} \Psi = \bigcirc (\bigcirc^{i} \Psi)$.
- ▶ This thus amounts to a transient analysis in DTMC $\mathcal{D}[S_{=0} \cup S_{=1}]$.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems 22/32

PCTL Model Checking

Example



	Complexity
Overview	
PCTL Syntax	
2 PCTL Semantics	
3 PCTL Model Checking	
4 Complexity	
5 Summary	

Time complexity

Let $|\Phi|$ be the size of Φ , i.e., the number of logical and temporal operators in Φ .

Time complexity of PCTL model checking

For finite DTMC \mathcal{D} and PCTL state-formula Φ , the PCTL model-checking problem can be solved in time

$$\mathcal{O}(\xrightarrow{p} oly(size(\mathcal{D})) \cdot n_{\max} \cdot |\Phi|$$

where $n_{\max} = \max\{ n \mid \Psi_1 \cup \mathbb{Q}^{\leq n} \Psi_2 \text{ occurs in } \Phi \}$ with and $n_{\max} = 1$ if Φ does not contain a bounded until-operator.

Joost-Pieter Katoer

25/32

Modeling and Verification of Probabilistic Systems 26/3

Complexity

Modeling and Verification of Probabilistic System

Time complexity

oost-Pieter Katoen

Time complexity of PCTL model checking

For finite DTMC \mathcal{D} and PCTL state-formula Φ , the PCTL model-checking problem can be solved in time

```
\mathcal{O}(\xrightarrow{p} oly(size(\mathcal{D})) \cdot n_{\max} \cdot |\Phi|).
```

Proof (sketch)

- 1. For each node in the parse tree, a model-checking is performed; this yields a linear complexity in $|\Phi|$.
- 2. The worst-case operator is (unbounded) until.
 - 2.1 Determining $S_{=0}$ and $S_{=1}$ can be done in linear time.
 - 2.2 Direct methods to solve linear equation systems are in $\Theta(|S_{?}|^{3})$.
- Strictly speaking, U^{≤n} could be more expensive for large n. But it remains polynomial, and n is small in practice.

Complexity

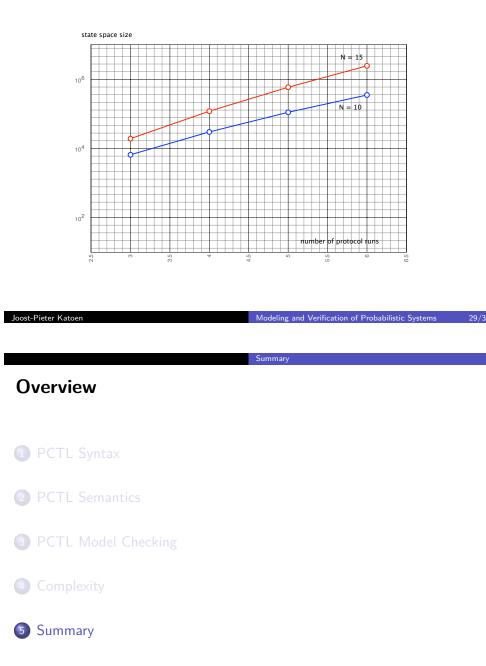
Example: Crowds protocol

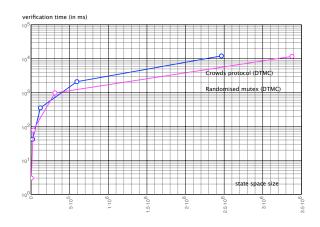
Security: Crowds protocol

[Reiter & Rubin, 1998]

- A protocol for anonymous web browsing (variants: mCrowds, BT-Crowds)
- Hide user's communication by random routing within a crowd
 - sender selects a crowd member randomly using a uniform distribution
 - selected router flips a biased coin:
 - with probability 1 p: direct delivery to final destination
 - otherwise: select a next router randomly (uniformly)
 - ▶ once a routing path has been established, use it until crowd changes
- Rebuild routing paths on crowd changes
- Property: Crowds protocol ensures "probable innocence":
 - probability real sender is discovered $<\frac{1}{2}$ if $N \ge \frac{p}{p-\frac{1}{2}} \cdot (c+1)$
 - where N is crowd's size and c is number of corrupt crowd members

Complexity





- ▶ command-line tool MRMC ran on a Pentium 4, 2.66 GHz, 1 GB RAM laptop.
- ▶ PCTL formula $\mathbb{P}_{\leq p}(\Diamond obs)$ where *obs* holds when the sender's id is detected.

Summary

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems 30/32

Summary

- PCTL is a variant of CTL with operator $\mathbb{P}_{J}(\varphi)$.
- > Sets of paths fulfilling PCTL path-formula φ are measurable.
- PCTL model checking is performed by a recursive descent over Φ .
- ▶ The next operator amounts to a single matrix-vector multiplication.
- The bounded-until operator U^{≤n} amounts to *n* matrix-vector multiplications.
- > The until-operator amounts to solving a linear equation system.
- The worst-case time complexity is polynomial in the size of the DTMC and linear in the size of the formula.