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Introduction

Summary
What are Markov chains?

» A discrete-time Markov chain (DTMC) is a time-homogeneous
Markov process with discrete parameter T and discrete state space S.

» State residence times are geometrically distributed.
» Alternative: a DTMC D is a tuple (S, P, tin, AP, L)

What are transient probabilities?

» OP(s) is the probability to be in state s after n steps.
» These transient probabilities satisfy: @}? = L - P

What are long-run probabilities?

» v(s) is the probability to be in state s after infinitely many steps.
» long-run probabilities satisfy: v - (I — P) =0 under >, v(i) = 1.
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Introduction

Overview

© Introduction
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Introduction

Aim of this lecture

How to determine reachability probabilities?

Three major steps

1. What are reachability probabilities? | mean, precisely.
This requires a bit of measure theory. Sorry for that.
2. Reachability probabilities = unique solution of linear equation system.

3. ... and they are transient probabilities in a slightly modified DTMC.
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Reachability Events

Overview

© Reachability Events
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Paths

State graph

The state graph of DTMC D is a digraph G = (V, E) with V the states of
D, and (s,s') € E iff P(s,s’) > 0.

Let Pre(s) be the predecessors of s, Pre*(s) its reflexive and transitive
closure.

Paths in D are infinite paths in its state graph.
Paths(D) denotes the set of paths in D, and Paths*(D) its finite prefixes.

Reachability Events

Recall Knuth’s die

Heads = “go left”; tails = “go right”. Does this DTMC model a six-sided die?
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Reachability Events

Some events of interest
Let DTMC D with (possibly infinite) state space S.

(Simple) reachability

Eventually reach a state in G C S. Formally:
0G = {7 € Paths(D) | Jie N.7[i] € G}
Invariance, i.e., always stay in state in G:

0G = {r ¢ Paths(D) | Vi€ N.x[i] € G} = 0G.

Constrained reachability

Or “reach-avoid” properties where states in £ C S are forbidden:

FUG = {m € Paths(D) | i N.7w[i] e G AVj<in[j]gF}
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More events of interest Overview

Repeated reachability

Repeatedly visit a state in G; formally:

00G = {r € Paths(D) |Vi e N.3j > i.x[j] € G}

© A Measurable Space on Infinite Paths

Eventually reach in a state in G and always stay there; formally:

OOG = {me Paths(D) |3i e N.Vj > i.x[jle G}
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What'’s the probability of infinite paths? Recall: Measurable space

Sample space

A sample space €2 of a chance experiment is a set of elements that have a 1-to-1
relationship to the possible outcomes of the experiment.

A o-algebra is a pair (Q, F) with Q # @ and F C 2% a collection of subsets of
sample space €2 such that:

1. Qe F
2. Ae F = Q—-AcF complement
3. (Viz0. A eF) = UsgA€eF countable union

The elements in F of a o-algebra (2, F) are called events.
The pair (2, F) is called a measurable space.

|
Let Q be a set. F ={@,Q} yields the smallest o-algebra; F = 22 yields the
largest one.
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Probability space

Probability space

A probability space P is a structure (Q, F, Pr) with:
» (Q,F) is a o-algebra, and
» Pr: F —[0,1] is a probability measure, i.e.:
1. P(2) =1, i.e.,, Qis the certain event

2. Pr (U A,-) = Pr(A;) forany A; € F with A; N A; = @ for ij
il icl
The events in F of a probability space (2, F, Pr) are called measurable.
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Probability measure on DTMCs

Cylinder set

The cylinder set of finite path & = sps1...s, € Paths*(D) is defined by:
Cyl(#) = {m € Paths(D) | # is a prefix of 7 }

The cylinder set spanned by finite path 7 thus consists of all infinite paths
that have prefix 7.

Probability space of a DTMC

The set of events of the probability space DTMC D contains all cylinder
sets Cyl(7) where 7t ranges over all finite paths in D.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Paths and probabilities

|
To reason quantitatively about the behavior of a DTMC, we need to define
a probability space over its paths.

Intuition
For a given state s in DTMC D:

» Outcomes := set of all infinite paths starting in s.
> Events := subsets of these outcomes.
> These events are defined using cylinder sets.

> Cylinder set of a finite path := set of all its infinite continuations.
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A Measurable Space on Infinite Paths

Probability measure on DTMCs

Cylinder set
The cylinder set of finite path & = sy s1...s, € Paths*(D) is defined by:

Cyl(#) = {m € Paths(D) | # is a prefix of 7 }

Probability measure

Pr is the unique probability measure defined by:
Pr(Cyl(so-.-5n)) = tii(s0) - P(S0S1---5n)

where P(sps1...s,) = [ P(si,sit1) for n >0 and P(sp) = tinie(S0)-
0<i<n
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A Measurable Space on Infinite Paths

Measurability

Measurability theorem

Events ¢G, OG, FU G, JOG and OIG are measurable on any DTMC.

Proof:

To show this, every event has to be expressed as allowed operations (complement
and/or countable unions) of the events — our cylinder sets!l— of a DTMC.

Note that G = OG and OOG = [0 G.

It remains to prove the measurability for the remaining three cases.
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Proof for JOG
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Proof for G
Which event does () G exactly mean?

the union of all cylinders Cyl(sp . . . s,) where

So - --Sp is a finite path in D with sp,...,s,-1 ¢ G and s, € G, i.e.,

06 = U Cyl(so. . . 5n)
s0...sn€ Paths™ (D)nN(S\G)* G

Thus QG is measurable.
As all cylinder sets are pairwise disjoint, its probability is defined by:

PH0OG) = >

s0...s,€ Paths™ (D)N(S\G)* G

-y

0...s,€ Paths™ (D)N(S\G)* G

Pr(Cy/(so .. 5,,))
Linit(S0) - P(so - . . sp)

A similar proof strategy applies to the case F U G.
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A Measurable Space on Infinite Paths

Reachability probabilities: Knuth’s die

» Consider the event (4

» Using the previous theorem we obtain:

< .D ] Pr(O4) = Z P(so...sn)

S0...5,€(S5\4*)4

> This yields:
P(sps2554) + P(s0525652554) + ... . ..

{init}

» Or: ZP(5°S2(5652)k554)

k=0
1 o=, 1.«
>Or:§~Z(Z)
k=0
» Geometric series: 1 1 = li — }
"8 1—% 83 6

There is however an simpler way to obtain reachability probabilities!
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Reachability Probabilities as Equation System Solutions
Overview

@ Reachability Probabilities as Equation System Solutions
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Reachability probabilities: Knuth’s die

» Consider the event (4

> Using the previous characterisation we
05 obtain:

1
.D x1=X%=x3=x5=xs=0and x; =1

{init} = Xs3 = Xy = 0

_1 1
Xsy = 5Xs; T 5Xs,

Reachability probabilities in finite DTMCs

Problem statement

Let D be a DTMC with finite state space S, s€ S and G C S.
Aim: determine Pr(s = 0G) = Prs(0G) = Prs{m € Paths(s) | m € 0G }

where Prs is the probability measure in D with single initial state s.

Characterisation of reachability probabilities

» Let variable x; = Pr(s = O G) for any state s

» if G is not reachable from s, then x; =0
» if s€ G then x; =1

» For any state s € Pre*(G) \ G:

xx = Y P(st)x + ) P(su)

teS\G ueG

—_———
reach Gviate S\ G reach G in one step
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Linear equation system

Reachability probabilities as linear equation system

» Let Sy = Pre*(G) \ G, the states that can reach G by > 0 steps
» A = (P(s,t))

» b = (bs)

steS, the transition probabilities in S;

the probs to reach G in 1 step, i.e., bs = Z P(s, u)
ueG
Then: x = (xs)ses, with xs = Pr(s = 0 G) is the unique solution of:

seSy!

x =Ax+b o (I-A)x =b

where | is the identity matrix of cardinality |S;| x |Sz|.
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Reachability probabilities: Knuth’s die

» Consider the event (4

.:>] > S5 ={50,% 5, 5%}

1 -1 0 0 X 0
{init} 2 . 50

0 1 f% -3 ) Xs, _ 0

0 0 1 0 Xsg %

0o -1 o0 1 Xs5 0

> Gaussian elimination yields:

_1 _1 _1 _
Xss = 5, X5 = 3, Xy = g» and [ xs, = ¢
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Reachability Probabilities as Equation System Solutions
Remark

|
In the previous characterisation we basically set:

> 5:1 = G
»S o= {seS|P(FUG)=0}
> S, = 5\(520U5:1)
In fact any partition of S satisfying the following constraints will do:
» GCS1C{seS|P(FUG)=1}
» F\GCS,C{seS|P(FUG)=0}
> S, = 5\(520U5:1)

In practice, S—o and S_; should be chosen as large as possible, as then S is of
minimal size, and the smallest linear equation system needs to be solved.

Thus S—g = {s€S|P{FUG)=0}and S_; = {s€S|P{FUG)=1}.

These sets can easily be determined in linear time by a graph analysis.
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Constrained reachability probabilities

Let D be a DTMC with finite state space S, s € S and F, G C S.
Aim: Pr(s = FUG) = Prs(FUG) = Pry{m € Paths(s) |t E FUG}

where Prg is the probability measure in D with single initial state s.

Characterisation of constrained reachability probabilities

» Let variable x; = Pr(s = F U G) for any state s

» if G is not reachable from s via F, then x; =0
» if s€ G then x, =1

» For any state s € (Pre*(G) N F) \ G:

Xs = Z P(s,t) - x + ZP(s,u)

teS\G ueG

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 26/33

Iteratively computing reachability probabilities

The vector x = (Pr(s EFU G)) s is the unique solution of:
s€o?
y = Ay+b

with A and b as defined before.

Furthermore, let:
x® =0 and xUt) = Ax() 1 bfor0 < i.

Then:
1. x("(s) = Ps=FUS"G)forse S,
2. x(0) < x(1) < x(2 <...<x
3. x=lim, x(n)
where F US"G contains those paths that reach G via F within n steps.
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Reachability Probabilities as Equation System Solutions Reachability Probabilities as Equation System Solutions
Proof Remark

Iterative algorithms to compute x

There are various algorithms to compute x = lim,_ x(M where:

x® =0 and xUtY = Ax() L bfor0 <.

Then:
1. x(N(s) = Ps = 0S"G) forse S
2. x(0 < x(1) < x( <...<xand x= Iim,,_mox(")
The Power method computes vectors x(©) x(1) x(2) . and aborts if:

max |x{M) — x| < ¢ for some small tolerance &
SES?

This technique guarantees convergence.

Alternatives: e.g., Jacobi or Gauss-Seidel, successive overrelaxation (SOR).
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Reachability Probabilities as Equation System Solutions Reachability Probabilities as Transient Probabilities
. y - .
Example: Knuth’s die Overview

> Let G=1{1,2,3,4,56}

» Then P OG) =1 0.5
(so = 0G) @ 0. .D'

» And Pr(sy = OSKG)
for k € IN is given by:

{init} -
, - D)

0.75
2
£ [ )1
|
Sos0
& 33 . 1
J5
0.25
0990 = 25 5.0 75 100 125 150
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Reachability Probabilities as Transient Probabilities

Recall: transient probability distribution

Transient distribution

P"(s, t) equals the probability of being in state t after n steps given that
the computation starts in s.

The probability of DTMC D being in state t after exactly n transitions is:

@?(t) = ZLinit(S) P(s,t) =

seS
The function ©F is the transient state distribution at epoch n of D.

When considering ©F as vector (©F),cs we have:

@? = Linit'P.P""'P = Linit'Pn.

n times

Computation: eéD = Lin;; and @?H = @?-P for n > 0.
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Reachability Probabilities as Transient Probabilities

Constrained reachability = transient probabilities

Compute Pr(F US" G) in DTMC D. Observe (as before) that once a path
7 reaches G via F, then the remaining behaviour along 7 is not important.
Now also observe that once s € F \ G is reached, then the remaining

behaviour along 7 is not important. This suggests to make all states in G
and F \ G absorbing.

=11<n _ =n _ n _ DIFUG
P{FUS"G) = PHO™"G) =l Py = ODIFUC
—— —— —_—
reachability in D reachability in D[F U G] in D[F U G]
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Reachability Probabilities as Transient Probabilities

Reachability probability = transient probabilities

Compute P{()S"G) in DTMC D. Observe that once a path 7 reaches G,
then the remaining behaviour along 7 is not important. This suggests to
make all states in G absorbing.

|
Let DTMC D = (S, P, i, AP, L) and G C S. The DTMC

D[G] = (S,Pg, tini, AP, L) with Pg(s,t) = P(s,t) if s ¢ G and
Ps(s,s)=1ifse G.

All outgoing transitions of s € G are replaced by a single self-loop at s.

< _ = _ _ oD[G
P{OS"G) =  PHOT"G) = iy PEL = ODIC]
N— N— N——
reachability in D reachability in D[G] in D[G]
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Reachability Probabilities as Transient Probabilities

Spare time tonight? Play Craps!

4 9 10
Field

Pays Douhle 3
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Reachability Probabilities as Transient Probabilities
Craps

» Roll two dice and bet

» Come-out roll (“pass line" wager):
» outcome 7 or 11: win
> outcome 2, 3, or 12: lose (“craps”)
> any other outcome: roll again (outcome is “point")

» Repeat until 7 or the “point” is thrown:
> outcome 7: lose (“seven-out”)
» outcome the point: win
> any other outcome: roll again
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Reachability Probabilities as Transient Probabilities

Summary

|
How to determine reachability probabilities?

|
1. Probabilities of sets of infinite paths defined using cylinders.
2. Events $ G, 0O G and F U G are measurable.
3. Reachability probabilities = unique solution of linear equation system.
4. ... and they are transient probabilities in a slightly modified DTMC.
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Reachability Probabilities as Transient Probabilities

A DTMC model of Craps

» Come-out roll:

» 7 or 11l: win
» 2,3, 0r12:

lose
> else: roll
again
HEOR COR “ “‘ O O):

> Next roll(s):

S
> 7: lose ‘ X
» point: win ,Q‘, ¢
» else: roll -
again 1 1

What is the probability to win the Craps game?
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