Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ss-14/movep14/

April 22, 2014

Introductio

Overview

1 Introduction

Joost-Pieter Katoen

2 Reachability Events

3 A Measurable Space on Infinite Paths

4 Reachability Probabilities as Equation System Solutions

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Summary

What are Markov chains?

 A discrete-time Markov chain (DTMC) is a time-homogeneous Markov process with discrete parameter T and discrete state space S.

Introduction

- State residence times are geometrically distributed.
- Alternative: a DTMC D is a tuple $(S, \mathbf{P}, \iota_{init}, AP, L)$

What are transient probabilities?

- $\Theta_n^{\mathcal{D}}(s)$ is the probability to be in state s after n steps.
- These transient probabilities satisfy: $\Theta_n^{\mathcal{D}} = \iota_{\text{init}} \cdot \mathbf{P}^n$.

What are long-run probabilities?

- $\underline{v}(s)$ is the probability to be in state s after infinitely many steps.
- ▶ long-run probabilities satisfy: $\underline{v} \cdot (\mathbf{I} \mathbf{P}) = \underline{0}$ under $\sum_{i} \underline{v}(i) = 1$.

Modeling and Verification of Probabilistic System

Introduction

How to determine reachability probabilities?

Three major steps

Aim of this lecture

- 1. What are reachability probabilities? I mean, precisely. This requires a bit of measure theory. Sorry for that.
- 2. Reachability probabilities = unique solution of linear equation system.
- 3. ... and they are transient probabilities in a slightly modified DTMC.

	Reachability Events	
Overview		Recall Knuth's die
1 Introduction		$\frac{1}{2}$
2 Reachability Events		$\frac{\frac{1}{2}}{\frac{1}{2}}, \frac{1}{2}, \frac{1}{2}$
3 A Measurable Space on I	nfinite Paths	$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 & 2 \end{pmatrix}$
4 Reachability Probabilities	as Equation System Solutions	
		Heads = "go left"; tails = "go righ
oost-Pieter Katoen	Modeling and Verification of Probabilistic Systems 5/33	Joost-Pieter Katoen
Paths	Reachability Events	Some events of interes
		Let DTMC ${\mathcal D}$ with (possibly infi
		(Simple) reachability

State graph

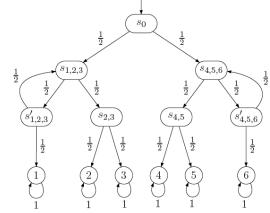
The *state graph* of DTMC \mathcal{D} is a digraph G = (V, E) with V the states of \mathcal{D} , and $(s, s') \in E$ iff $\mathbf{P}(s, s') > 0$.

Let Pre(s) be the *predecessors* of *s*, $Pre^*(s)$ its reflexive and transitive closure.

Paths

Paths in \mathcal{D} are infinite paths in its state graph.

 $Paths(\mathcal{D})$ denotes the set of paths in \mathcal{D} , and $Paths^*(\mathcal{D})$ its finite prefixes.



ht". Does this DTMC model a six-sided die?

Modeling and Verification of Probabilistic Systems

Reachability Events

est

finite) state space S.

(Simple) reachability

Eventually reach a state in $G \subseteq S$. Formally:

$$\Diamond \mathbf{G} = \{ \pi \in \mathsf{Paths}(\mathcal{D}) \mid \exists i \in \mathbb{N}. \pi[i] \in \mathbf{G} \}$$

Invariance, i.e., always stay in state in G:

$$\Box G = \{ \pi \in Paths(\mathcal{D}) \mid \forall i \in \mathbb{N}. \pi[i] \in G \} = \Diamond \overline{G}.$$

Constrained reachability

Or "reach-avoid" properties where states in $F \subseteq S$ are forbidden:

$$\overline{F} \cup G = \{ \pi \in Paths(\mathcal{D}) \mid \exists i \in \mathbb{N}. \pi[i] \in G \land \forall j < i. \pi[j] \notin F \}$$

Reachability Events

More events of interest

Repeated reachability

Repeatedly visit a state in G; formally:

 $\Box \Diamond \mathbf{G} = \{ \pi \in \mathsf{Paths}(\mathcal{D}) \mid \forall i \in \mathbb{N}. \exists j \ge i. \pi[j] \in \mathbf{G} \}$

Persistence

Joost-Pieter Katoen

Eventually reach in a state in G and always stay there; formally:

 $\Diamond \Box \mathbf{G} = \{ \pi \in \mathsf{Paths}(\mathcal{D}) \mid \exists i \in \mathbb{N}. \forall j \ge i. \pi[j] \in \mathbf{G} \}$

A Measurable Space on Infinite Paths

Overview

1 Introduction

2 Reachability Events

3 A Measurable Space on Infinite Paths

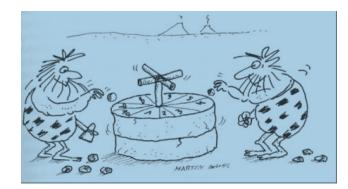
Joost-Pieter Katoen

Modeling and Verification of Probabilistic System

A Measurable Space on Infinite Paths

Modeling and Verification of Probabilistic Systems

What's the probability of infinite paths?



A Measurable Space on Infinite Paths

Recall: Measurable space

Sample space

A sample space Ω of a chance experiment is a set of elements that have a 1-to-1 relationship to the possible outcomes of the experiment.

σ -algebra

A σ -algebra is a pair (Ω, \mathcal{F}) with $\Omega \neq \emptyset$ and $\mathcal{F} \subseteq 2^{\Omega}$ a collection of subsets of sample space Ω such that:

2. $A \in \mathcal{F} \Rightarrow \Omega - A \in \mathcal{F}$

complement countable union

3. $(\forall i \ge 0. A_i \in \mathcal{F}) \Rightarrow \bigcup_{i\ge 0} A_i \in \mathcal{F}$

The elements in \mathcal{F} of a σ -algebra (Ω, \mathcal{F}) are called *events*. The pair (Ω, \mathcal{F}) is called a *measurable space*.

Let Ω be a set. $\mathcal{F} = \{ \emptyset, \Omega \}$ yields the smallest σ -algebra; $\mathcal{F} = 2^{\Omega}$ yields the largest one.

Joost-Pieter Katoen

A Measurable Space on Infinite Paths

Probability space

Probability space

A probability space \mathcal{P} is a structure $(\Omega, \mathcal{F}, Pr)$ with:

- (Ω, \mathcal{F}) is a σ -algebra, and
- $Pr: \mathcal{F} \rightarrow [0, 1]$ is a *probability measure*, i.e.:
 - 1. $Pr(\Omega) = 1$, i.e., Ω is the certain event

2.
$$Pr\left(\bigcup_{i\in I}A_i\right) = \sum_{i\in I}Pr(A_i)$$
 for any $A_i\in\mathcal{F}$ with $A_i\cap A_j = \emptyset$ for $i\neq j$

The events in \mathcal{F} of a probability space $(\Omega, \mathcal{F}, Pr)$ are called *measurable*.

A Measurable Space on Infinite Path

Paths and probabilities

To reason quantitatively about the behavior of a DTMC, we need to define a probability space over its paths.

Intuition

For a given state s in DTMC \mathcal{D} :

- Outcomes := set of all infinite paths starting in *s*.
- Events := subsets of these outcomes.
- ► These events are defined using cylinder sets.
- Cylinder set of a finite path := set of all its infinite continuations.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

A Measurable Space on Infinite Paths

Probability measure on DTMCs

Cylinder set

The *cylinder set* of finite path $\hat{\pi} = s_0 s_1 \dots s_n \in Paths^*(\mathcal{D})$ is defined by:

 $Cyl(\hat{\pi}) = \{ \pi \in Paths(\mathcal{D}) \mid \hat{\pi} \text{ is a prefix of } \pi \}$

The cylinder set spanned by finite path $\hat{\pi}$ thus consists of all infinite paths that have prefix $\hat{\pi}.$

Probability space of a DTMC

The set of events of the probability space DTMC \mathcal{D} contains all cylinder sets $Cyl(\hat{\pi})$ where $\hat{\pi}$ ranges over all finite paths in \mathcal{D} .

A Measurable Space on Infinit<u>e Paths</u>

Modeling and Verification of Probabilistic System

Probability measure on DTMCs

Cylinder set

Joost-Pieter Katoen

The cylinder set of finite path $\hat{\pi} = s_0 s_1 \dots s_n \in Paths^*(\mathcal{D})$ is defined by:

 $Cyl(\hat{\pi}) = \{ \pi \in Paths(\mathcal{D}) \mid \hat{\pi} \text{ is a prefix of } \pi \}$

Probability measure

Pr is the unique *probability measure* defined by:

$$Pr(Cyl(s_0 \ldots s_n)) = \iota_{init}(s_0) \cdot \mathbf{P}(s_0 s_1 \ldots s_n)$$

where $\mathbf{P}(s_0 s_1 \dots s_n) = \prod_{0 \leq i < n} \mathbf{P}(s_i, s_{i+1})$ for n > 0 and $\mathbf{P}(s_0) = \iota_{\text{init}}(s_0)$.

A Measurable Space on Infinite Paths

Measurable Space on Infinite Paths

Measurability

Measurability theorem

Events $\Diamond G$, $\Box G$, $\overline{F} \cup G$, $\Box \Diamond G$ and $\Diamond \Box G$ are measurable on any DTMC.

Proof:

To show this, every event has to be expressed as allowed operations (complement and/or countable unions) of the events — our cylinder sets!— of a DTMC.

Note that $\Box G = \overline{\Diamond \overline{G}}$ and $\Diamond \Box G = \overline{\Box \Diamond \overline{G}}$.

It remains to prove the measurability for the remaining three cases.

Proof for \Diamond **G**

Which event does $\Diamond G$ exactly mean?

the union of all cylinders $Cyl(s_0 \dots s_n)$ where

$$s_0\dots s_n$$
 is a finite path in ${\mathcal D}$ with $s_0,\dots,s_{n-1}
otin {\mathsf G}$ and $s_n\in {\mathsf G}$, i.e.,

$$\Diamond G = \bigcup_{s_0 \dots s_n \in Paths^*(\mathcal{D}) \cap (S \setminus G)^* G} Cyl(s_0 \dots s_n)$$

Thus $\Diamond G$ is measurable.

Joost-Pieter Katoen

As all cylinder sets are pairwise disjoint, its probability is defined by:

$$Pr(\Diamond G) = \sum_{s_0 \dots s_n \in Paths^*(\mathcal{D}) \cap (S \setminus G)^* G} Pr(Cyl(s_0 \dots s_n))$$
$$= \sum_{s_0 \dots s_n \in Paths^*(\mathcal{D}) \cap (S \setminus G)^* G} \iota_{init}(s_0) \cdot \mathbf{P}(s_0 \dots s_n)$$

A similar proof strategy applies to the case $\overline{F} \cup G$.

Modeling and Verification of Probabilistic Systems 18/3

A Measurable Space on Infinite Paths

Reachability probabilities: Knuth's die

- ► Consider the event ♦4
- Using the previous theorem we obtain:

$$Pr(\diamond 4) = \sum_{s_0 \dots s_n \in (S \setminus 4^*)4} \mathbf{P}(s_0 \dots s_n)$$

• This yields: $P(s_0s_2s_54) + P(s_0s_2s_6s_2s_54) + \dots$

• Or:
$$\sum_{k=0}^{\infty} \mathbf{P}(s_0 s_2(s_6 s_2)^k s_5 4)$$

• Or:
$$\frac{1}{8} \cdot \sum_{k=0}^{\infty} \left(\frac{1}{4}\right)^k$$

• Geometric series: $\frac{1}{8} \cdot \frac{1}{1 - \frac{1}{4}} = \frac{1}{8} \cdot \frac{4}{3} = \frac{1}{6}$

There is however an simpler way to obtain reachability probabilities!

Joost-Pieter Katoen		Modeling and Verification of Probabilistic Systems		

Proof for $\Box \Diamond \mathbf{G}$

Reachability probabilities in finite DTMCs

Problem statement

Let \mathcal{D} be a DTMC with finite state space $S, s \in S$ and $G \subseteq S$.

Aim: determine $Pr(s \models \Diamond G) = Pr_s(\Diamond G) = Pr_s\{\pi \in Paths(s) \mid \pi \in \Diamond G\}$

where Pr_s is the probability measure in \mathcal{D} with single initial state s.

Characterisation of reachability probabilities

- Let variable $x_s = Pr(s \models \Diamond G)$ for any state s
 - if G is not reachable from s, then $x_s = 0$
 - if $s \in \mathbf{G}$ then $x_s = 1$
- For any state $s \in Pre^*(G) \setminus G$:

$$x_s = \sum_{t \in S \setminus G} \mathbf{P}(s, t) \cdot x_t + \sum_{u \in G} \mathbf{P}(s, u)$$

reach **G** via $t \in S \setminus G$ reach **G** in one step

```
Joost-Pieter Katoen
```

Modeling and Verification of Probabilistic Systems 22/3

Reachability Probabilities as Equation System Solutions

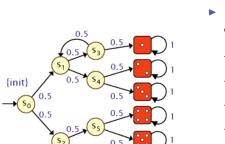
Linear equation system

Reachability probabilities as linear equation system

Let S? = Pre*(G) \ G, the states that can reach G by > 0 steps
A = (P(s, t))_{s,t∈S?}, the transition probabilities in S?
b = (b_s)_{s∈S?}, the probs to reach G in 1 step, i.e., b_s = ∑_{u∈G} P(s, u)
Then: x = (x_s)_{s∈S?} with x_s = Pr(s ⊨ ◊G) is the unique solution of:

$$\mathbf{x} = \mathbf{A} \cdot \mathbf{x} + \mathbf{b}$$
 or $(\mathbf{I} - \mathbf{A}) \cdot \mathbf{x} = \mathbf{b}$

where I is the identity matrix of cardinality $|S_{?}| \times |S_{?}|$.



Reachability probabilities: Knuth's die

Using the previous characterisation we obtain:
 x₁ = x₂ = x₃ = x₅ = x₆ = 0 and x₄ = 1
 x_{s1} = x_{s3} = x_{s4} = 0
 x_{s0} = ½x_{s1} + ½x_{s2}
 x_{s2} = ½x_{s5} + ½x_{s6}
 x_{s1} = 1

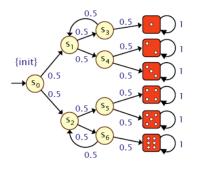
$$x_{s_5} = \frac{1}{2}x_5 + \frac{1}{2}x_4$$
$$x_{s_6} = \frac{1}{2}x_{s_2} + \frac{1}{2}x_6$$

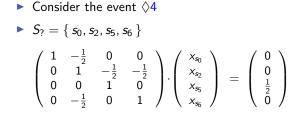
► Consider the event ◊4

Gaussian elimination yields:

$$x_{s_5} = \frac{1}{2}, x_{s_2} = \frac{1}{3}, x_{s_6} = \frac{1}{6}, \text{ and } x_{s_0} = \frac{1}{6}$$

Reachability probabilities: Knuth's die





• Gaussian elimination yields:

$$x_{s_5} = \frac{1}{2}$$
, $x_{s_2} = \frac{1}{3}$, $x_{s_6} = \frac{1}{6}$, and $x_{s_0} = \frac{1}{6}$

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Reachability Probabilities as Equation System Solution

Remark

In the previous characterisation we basically set:

- ► $S_{=1} = G$
- ► $S_{=0} = \{ s \in S \mid Pr(\overline{F} \cup G) = 0 \}$
- $\blacktriangleright S_? = S \setminus (S_{=0} \cup S_{=1})$

In fact any partition of S satisfying the following constraints will do:

► $G \subseteq S_{=1} \subseteq \{ s \in S \mid Pr(\overline{F} \cup G) = 1 \}$

►
$$F \setminus G \subseteq S_{=0} \subseteq \{ s \in S \mid Pr(\overline{F} \cup G) = 0 \}$$

 $\triangleright S_? = S \setminus (S_{=0} \cup S_{=1})$

In practice, $S_{=0}$ and $S_{=1}$ should be chosen as large as possible, as then $S_{?}$ is of minimal size, and the smallest linear equation system needs to be solved.

Thus
$$S_{=0} = \{ s \in S \mid Pr(\overline{F} \cup G) = 0 \}$$
 and $S_{=1} = \{ s \in S \mid Pr(\overline{F} \cup G) = 1 \}.$

These sets can easily be determined in linear time by a graph analysis.

Constrained reachability probabilities

Problem statement

Let \mathcal{D} be a DTMC with finite state space $S, s \in S$ and $\overline{F}, G \subseteq S$. Aim: $Pr(s \models \overline{F} \cup G) = Pr_s(\overline{F} \cup G) = Pr_s\{\pi \in Paths(s) \mid \pi \models \overline{F} \cup G\}$

where Pr_s is the probability measure in \mathcal{D} with single initial state s.

Characterisation of constrained reachability probabilities

- Let variable $x_s = Pr(s \models \overline{F} \cup G)$ for any state s
 - if G is not reachable from s via \overline{F} , then $x_s = 0$
 - ▶ if $s \in G$ then $x_s = 1$
- For any state $s \in (Pre^*(G) \cap \overline{F}) \setminus G$:

$$x_s = \sum_{t \in S \setminus G} \mathbf{P}(s, t) \cdot x_t + \sum_{u \in G} \mathbf{P}(s, u)$$

```
loost-Pieter Katoen
```

Modeling and Verification of Probabilistic Systems 26/3

Reachability Probabilities as Equation System Solutions

Iteratively computing reachability probabilities

Theorem

The vector
$$\mathbf{x} = \left(Pr(s \models \overline{F} \cup G) \right)_{s \in S_2}$$
 is the *unique* solution of:

 $\mathbf{y} = \mathbf{A} \cdot \mathbf{y} + \mathbf{b}$

with A and b as defined before.

Furthermore, let:

$$\mathbf{x}^{(0)} = \mathbf{0}$$
 and $\mathbf{x}^{(i+1)} = \mathbf{A} \cdot \mathbf{x}^{(i)} + \mathbf{b}$ for $0 \leq i$.

Then:

1. $\mathbf{x}^{(n)}(s) = Pr(s \models \overline{F} \cup \le n G)$ for $s \in S_{?}$ 2. $\mathbf{x}^{(0)} \le \mathbf{x}^{(1)} \le \mathbf{x}^{(2)} \le \ldots \le \mathbf{x}$ 3. $\mathbf{x} = \lim_{n \to \infty} \mathbf{x}^{(n)}$ where $\overline{F} \coprod \le n G$ contains those paths that reach G via

where $\overline{F} \cup \mathbb{I}^{\leq n} G$ contains those paths that reach G via \overline{F} within n steps.

Modeling and Verification of Probabilistic System

Reachability Probabilities as Equation System Solution

Proof

Joost-Pieter Katoen

Remark

Iterative algorithms to compute x

There are various algorithms to compute $\mathbf{x} = \lim_{n \to \infty} \mathbf{x}^{(n)}$ where:

$$\mathbf{x}^{(0)} = \mathbf{0}$$
 and $\mathbf{x}^{(i+1)} = \mathbf{A} \cdot \mathbf{x}^{(i)} + \mathbf{b}$ for $0 \leq i$.

Then:

1. $\mathbf{x}^{(n)}(s) = Pr(s \models \Diamond^{\leq n} G)$ for $s \in S_{?}$ 2. $\mathbf{x}^{(0)} \leq \mathbf{x}^{(1)} \leq \mathbf{x}^{(2)} \leq \ldots \leq \mathbf{x}$ and $\mathbf{x} = \lim_{n \to \infty} \mathbf{x}^{(n)}$ The Power method computes vectors $\mathbf{x}^{(0)}, \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots$ and aborts if:

$$\max_{s \in S_?} |x_s^{(n+1)} - x_s^{(n)}| < \varepsilon \quad \text{ for some small tolerance } \varepsilon$$

This technique guarantees convergence.

Alternatives: e.g., Jacobi or Gauss-Seidel, successive overrelaxation (SOR).

Joost-Pieter Katoen

Reachability Probabilities as Transient Probabilities

Modeling and Verification of Probabilistic Systems

30/33

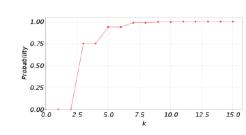
Overview

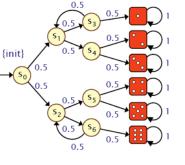
1 Introduction

- 2 Reachability Events
- 3 A Measurable Space on Infinite Paths
- 4 Reachability Probabilities as Equation System Solutions

Example: Knuth's die
Let G = { 1, 2, 3, 4, 5, 6 }
Then Pr(s₀ ⊨ ◊G) = 1

• And $Pr(s_0 \models \Diamond^{\leq k} G)$ for $k \in \mathbb{N}$ is given by:





29/33

Joost-Pieter Katoen

Reachability Probabilities as Transient Probabilities

Recall: transient probability distribution

Transient distribution

 $\mathbf{P}^{n}(s, t)$ equals the probability of being in state t after n steps given that the computation starts in s.

The probability of DTMC D being in state t after exactly n transitions is:

$$\Theta^{\mathcal{D}}_n(t) \;=\; \sum_{s\in S} \iota_{ ext{init}}(s)\cdot \mathbf{P}^n(s,t) \;=\;$$

The function $\Theta_n^{\mathcal{D}}$ is the *transient state distribution* at epoch *n* of \mathcal{D} . When considering $\Theta_n^{\mathcal{D}}$ as vector $(\Theta_n^{\mathcal{D}})_{t \in S}$ we have:

$$\Theta_n^{\mathcal{D}} = \iota_{\text{init}} \cdot \underbrace{\mathbf{P} \cdot \mathbf{P} \cdot \ldots \cdot \mathbf{P}}_{n \text{ times}} = \iota_{\text{init}} \cdot \mathbf{P}^n.$$

Computation: $\Theta_0^{\mathcal{D}} = \iota_{\text{init}}$ and $\Theta_{n+1}^{\mathcal{D}} = \Theta_n^{\mathcal{D}} \cdot \mathbf{P}$ for $n \ge 0$.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Reachability Probabilities as Transient Probabilitie

Constrained reachability = transient probabilities

Aim

Compute $Pr(\overline{F} \cup \subseteq^n G)$ in DTMC \mathcal{D} . Observe (as before) that once a path π reaches G via \overline{F} , then the remaining behaviour along π is not important. Now also observe that once $s \in F \setminus G$ is reached, then the remaining behaviour along π is not important. This suggests to make all states in G and $F \setminus G$ absorbing.

Lemma

$$\underbrace{\Pr(\overline{F} \cup^{\leq n} G)}_{\text{eachability in } \mathcal{D}} = \underbrace{\Pr(\Diamond^{=n} G)}_{\text{reachability in } \mathcal{D}[F \cup G]} = \underbrace{\iota_{\text{init}} \cdot \mathbf{P}_{F \cup G}^{n}}_{\text{in } \mathcal{D}[F \cup G]} = \Theta_{n}^{\mathcal{D}[F \cup G]}$$

Reachability probability = transient probabilities

Aim

Compute $Pr(\Diamond^{\leq n}G)$ in DTMC \mathcal{D} . Observe that once a path π reaches G, then the remaining behaviour along π is not important. This suggests to make all states in G absorbing.

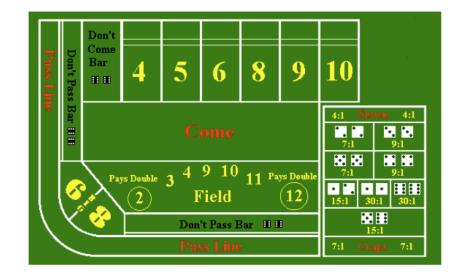
Let DTMC $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ and $G \subseteq S$. The DTMC $\mathcal{D}[G] = (S, \mathbf{P}_G, \iota_{\text{init}}, AP, L)$ with $\mathbf{P}_G(s, t) = \mathbf{P}(s, t)$ if $s \notin G$ and $\mathbf{P}_G(s, s) = 1$ if $s \in G$.

All outgoing transitions of $s \in G$ are replaced by a single self-loop at s.

Lemma $\underbrace{Pr(\diamondsuit^{\leq n}G)}_{\text{reachability in }\mathcal{D}} = \underbrace{Pr(\diamondsuit^{=n}G)}_{\text{reachability in }\mathcal{D}[G]} = \underbrace{\iota_{\text{init}} \cdot \mathbf{P}_{G}^{n}}_{\text{in }\mathcal{D}[G]} = \Theta_{n}^{\mathcal{D}[G]}$ Modeling and Verification of Probabilistic Systems 34/33

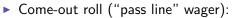
Reachability Probabilities as Transient Probabilities

Spare time tonight? Play Craps!



Craps

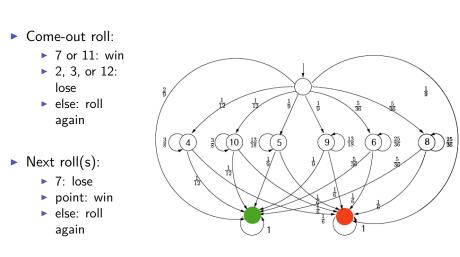
Roll two dice and bet



- ▶ outcome 7 or 11: win
- ▶ outcome 2, 3, or 12: lose ("craps")
- any other outcome: roll again (outcome is "point")
- ► Repeat until 7 or the "point" is thrown:
 - outcome 7: lose ("seven-out")
 - outcome the point: win
 - any other outcome: roll again

A DTMC model of Craps

Reachability Probabilities as Transient Probabilities



What is the probability to win the Craps game?

Joost-Pieter Katoen	Modeling and Verification of Probabilistic Systems	37/33	Joost-Pieter Katoen	Modeling and Verification of Probabilistic Systems	38/33
	Reachability Probabilities as Transient Probabilities				
Summary					
How to determine reachability proba	bilities?				

- 1. Probabilities of sets of infinite paths defined using cylinders.
- 2. Events $\Diamond G$, $\Box \Diamond G$ and $\overline{F} \cup G$ are measurable.
- 3. Reachability probabilities = unique solution of linear equation system.
- 4. ... and they are transient probabilities in a slightly modified DTMC.

Joost-Pieter Katoen