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What are Discrete-Time Markov Chains?

Geometric distribution

Geometric distribution

Let X be a discrete random variable, natural k >0 and 0 < p < 1. The
mass function of a geometric distribution is given by:

P{X=k}=(1-p)tp

We have E[X] = 1 and Var[X] = ©2£ and cdf PH{X < k} =1— (1-p)*.

Geometric distributions and their cdf’s
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What are Discrete-Time Markov Chains?

Overview

@ What are Discrete-Time Markov Chains?
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What are Discrete-Time Markov Chains?

Memoryless property

1. For any random variable X with a geometric distribution:
P{X =k+m|X>m} = P{X =k} forany me T, k>1

This is called the memoryless property, and X is a memoryless r.v..

2. Any discrete random variable which is memoryless is geometrically
distributed.

Proof:

Exercise.
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What are Discrete-Time Markov Chains?

Invariance to time-shifts

Time homogeneity

Markov process { X(t) | t € T } is time-homogeneous iff for any t' < t:
Pr{X(t)=d | X({)=d'} = P{X(t—t)=d|X(0)=4d"}.
A time-homogeneous stochastic process is invariant to time shifts.

Discrete-time Markov chain

A discrete-time Markov chain (DTMC) is a time-homogeneous Markov
process with discrete parameter T and discrete state space.

Markov property

|
The conditional probability distribution of future states of a Markov process only
depends on the current state and not on its further history.

Markov process

A discrete-time stochastic process { X(t) | t € T } over state space
{do, di,...} is a Markov process if for any tog < t; < ... < tp < tht1:

Pr{X(t,,+1) = dn+1 | X(t()) = do,X(tl) =d,... ,X(tn) = dn}

Pr{ X(tn+1) = dny1 | X(tn) = dn }

The distribution of X(t,+1), given the values X(tp) through X(t,), only
depends on the current state X(t,).
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Discrete-time Markov chain

Discrete-time Markov chain

A discrete-time Markov chain (DTMC) is a time-homogeneous Markov
process with discrete parameter T and discrete state space S.

Transition probabilities

The (one-step) transition probability from s € S to s’ € S at epoch n € N
is given by:

p(s,s") = PH{Xpp1=5|Xn=5} = P{Xy=5"|Xo=s}

where the last equality is due to time-homogeneity.

Since p(M(-) = p(k)(.), the superscript (n) is omitted, and we write p(-).
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What are Discrete-Time Markov Chains?

Transition probability matrix

Discrete-time Markov chain

A discrete-time Markov chain (DTMC) is a time-homogeneous Markov
process with discrete parameter T and discrete state space S.

Transition probability matrix

Let P be a function with P(s;, s;) = p(s;, sj). For finite state space S,
function P is called the transition probability matrix of the DTMC with

state space S.

Properties

1. P is a (right) stochastic matrix, i.e., it is a square matrix, all its
elements are in [0, 1], and each row sum equals one.
2. P has an eigenvalue of one, and all its eigenvalues are at most one.

3. For all n € N, P” is a stochastic matrix.
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DTMCs — A transition system perspective

Discrete-time Markov chain

A DTMC D is a tuple (S, P, i, AP, L) with:
» S is a countable nonempty set of states
» P:5xS — [0,1], transition probability function s.t. Y, P(s,s’) =1

> L 0 S — [0, 1], the initial distribution with >~ ;,,.(s) =1
seS

» AP is a set of atomic propositions.

> L: S — 2P the labeling function, assigning to state s, the set L(s)
of atomic propositions that are valid in s.

Initial states

> Liii(S) is the probability that DTMC D starts in state s
» the set {s € S| tii(s) > 0} are the possible initial states.
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What are Discrete-Time Markov Chains?

Example: roulette in Monte Carlo, 1913

What are Discrete-Time Markov Chains?

Simulating a die by a fair coin [Knuth & Yao]

Heads = “go left”; tails = “go right”. Does this DTMC adequately model a fair
six-sided die?
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What are Discrete-Time Markov Chains?
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What are Discrete-Time Markov Chains?
A DTMC model of Craps
» Come-out roll:
> 7 or 11: win
> 2,3, 0r 12: |
lose 3 1 @ §
» else: roll ; i/ N4 & ;
again
25
ki

> Next roll(s):
> 7: lose
> point: win
> else: roll
again
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What are Discrete-Time Markov Chains?

Craps

C,V*pPS_GAMB“NG
» Roll two dice and bet 3

» Come-out roll (“pass line" wager):
» outcome 7 or 11: win
> outcome 2, 3, or 12: lose (“craps”)
> any other outcome: roll again (outcome is “point")

> Repeat until 7 or the “point” is thrown:

> outcome 7: lose (“seven-out”)
> outcome the point: win
> any other outcome: roll again
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DTMCs and Geometric Distributions

Overview

© DTMCs and Geometric Distributions
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DTMCs and Geometric Distributions

State residence time distribution

|
Let Ts be the number of epochs of DTMC D to stay in state s:

P{Ts=1} = 1-P(s,s)
P{Ts=2} = P(s,s)-(1—-P(s,s))
P{Ts=n} = P(s,s)" 1 -(1-P(s5s))

So, the state residence times in a DTMC obey a geometric distribution.
The expected number of time steps to stay in state s equals E[T,] = ﬁ(s,s)'
The variance of the residence time distribution is Var[T,] = %.

|
Recall: the geometric distribution is the only discrete probability distribution that
is memoryless.
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Evolution of an example DTMC

zero-th epoch first epoch

second epoch third epoch

|
We want to determine ps o/(n) = Pr{ X(n) =5 | X(0) = s} for n € N,

Transient Probability Distribution

Overview

© Transient Probability Distribution
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Determining n-step transition probabilities

n-step transition probabilities

The probability to move from s to s’ in n € N steps is inductively defined:
ps<(0) = 1 ifs=5s', and 0 otherwise,

ps.s(1) = P(s,s’), and for n > 1 by the Chapman-Kolmogorov equation:
ps,s(n) = Zps,s”(/) - psr,sr(n—1)  forsome 0 < /< n
5//

Proof: see black board.

|
For / =1 and n > 0 we obtain: ps«(n) = Zps,s”(]-) - psr,s(n—1)

S//
P = pM) . plr=1) — p. p("=1) is the n-step transition probability matrix
Repeating this scheme: P(" = p.p(»~1) = =pr-1.pM) = pn,
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Transient Probability Distribution

Transient probability distribution

P"(s, t) equals the probability of being in state ¢t after n steps given that
the computation starts in s.

The probability of DTMC D being in state t after exactly n transitions is:

eP(t) = Z linit(s) - P"(s, t)

seS

©P(t) is called the transient state probability at epoch n for state t. The
function ©F is the transient state distribution at epoch n of DTMC D.

When considering ©F as vector (©F),cs we have:

D _ n
@n == Linit * P * P Tee s " P == Linit * P .
—_—————
n times
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Long Run Probability Distribution

Overview

@ Long Run Probability Distribution
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Transient Probability Distribution

Transient probability distribution: example
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Long Run Probability Distribution

Evolution of an example DTMC

zero-th epoch first epoch

1
T

second epoch third epoch

We want to determine the probability to be in a state on the long run.
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Long Run Probability Distribution

On the long run
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The probability mass on the long run is only left in bottom SCCs.
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Long Run Probability Distribution
Limiting distribution
» We also have:

T T pn+l _ . on) p_
v= lim p(n+1)= lim p(0)-P —(llm p(0) P) P=v-P

n—o0 —

» Thus, limiting probabilities can be obtained by solving the
(homogeneous) system of linear equations:

v=v-P o v-(I-P)=0 under };v(i)=1

» vector v is the left Eigenvector of P with Eigenvalue 1
> v is called the limiting state-probability vector
Two interpretations of v(s):
> the long-run proportion of time that the DTMC “spends” in state s

> the probability the DTMC is in s when making a snapshot after a
very long time
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Limiting distribution

Ergodic stochastic matrix

Stochastic matrix P is called ergodic if:

P = I|im P"” exists and has identical rows
n—oo

Ergodicity theorem

If the transition probability matrix P of a DTMC is ergodic, then:
1. p(n) converges to a limiting distribution v independent from p(0)
2. each row of P equals the limiting distribution

V. V.

So Sn
limy— oo p(0) - P"=p(0) - lim P"=p(0)-[ ... ... ... | =v O
- - n—o0 -
Vso 200 Vs,
POO
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Long Run Probability Distribution

Examples
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Long Run Probability Distribution

Summary

What are Markov chains?

» A discrete-time Markov chain (DTMC) is a time-homogeneous
Markov process with discrete parameter T and discrete state space S.

> State residence times are geometrically distributed.
» Alternative: a DTMC D is a tuple (S, P, tin, AP, L)

What are transient probabilities?

» OP(s) is the probability to be in state s after n steps.
» These transient probabilities satisfy: @? = L - P

What are long-run probabilities?

» v(s) is the probability to be in state s after infinitely many steps.
» long-run probabilities satisfy: v - (I —P) =0 under }; v(i) = 1.
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