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Introduction

Theme of the course

The theory of modelling and verification
of probabilistic systems
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Introduction

Probabilities help

I When analysing system performance and dependability
I to quantify arrivals, waiting times, time between failure, QoS, ...

I When modelling unreliable and unpredictable system behavior
I to quantify message loss, processor failure
I to quantify unpredictable delays, express soft deadlines, ...

I When building protocols for networked embedded systems
I randomized algorithms

I When problems are undecidable deterministically
I repeated reachability of lossy channel systems, . . .
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Introduction

Illustrative example: Security

Security: Crowds protocol [Reiter & Rubin, 1998]

I A protocol for anonymous web browsing (variants: mCrowds,
BT-Crowds)

I Hide user’s communication by random routing within a crowd
I sender selects a crowd member randomly using a uniform distribution
I selected router flips a biased coin:

I with probability 1 − p: direct delivery to final destination
I otherwise: select a next router randomly (uniformly)

I once a routing path has been established, use it until crowd changes
I Rebuild routing paths on crowd changes
I Property: Crowds protocol ensures “probable innocence”:

I probability real sender is discovered < 1
2 if N > p

p− 1
2
·(c+1)

I where N is crowd’s size and c is number of corrupt crowd members
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Introduction

Illustrative example: Leader election

Distributed system: Leader election [Itai & Rodeh, 1990]

I A round-based protocol in a synchronous ring of N > 2 nodes
I the nodes proceed in a lock-step fashion
I each slot = 1 message is read + 1 state change + 1 message is sent
⇒ this synchronous computation yields a discrete-time Markov chain

I Each round starts by each node choosing a uniform id ∈ { 1, . . . ,K }
I Nodes pass their selected id around the ring
I If there is a unique id, the node with the maximum unique id is leader
I If not, start another round and try again . . .
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Introduction

Properties of leader election

Almost surely eventually a leader will be elected

P=1 (♦leader elected)

With probability at least 0.8, a leader is elected within k steps

P>0.8
(
♦6k leader elected

)
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Introduction

Probability to elect a leader within L rounds

P6q
(
♦6(N+1)·L leader elected

)
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Introduction

What is probabilistic model checking?
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Introduction

Probabilistic models

Nondeterminism Nondeterminism
no yes

Discrete time discrete-time Markov decision
Markov chain (DTMC) process (MDP)

Continuous time CTMC interactive MC
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Introduction

Probabilistic models

Nondeterminism Nondeterminism
no yes

Discrete time discrete-time Markov decision
Markov chain (DTMC) process (MDP)

Continuous time CTMC CTMDP

Some other models: probabilistic variants of (priced) timed automata
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Introduction

Properties

Logic Monitors

Discrete time probabilistic deterministic automata
CTL (safety and LTL)

Continuous time probabilistic deterministic
timed CTL timed automata

Core problem: computing (timed) reachability probabilities
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Course details

Course topics
A probability theory refrehser

I measurable spaces, σ-algebra, measurable functions
I geometric, exponential and binomial distributions
I Markov and memoryless property
I limiting and stationary distributions

What are probabilistic models?

I discrete-time Markov chains
I continuous-time Markov chains
I extensions of these models with rewards
I Markov decision processes (or: probabilistic automata)
I interactive Markov chains
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Course details

Course topics

What are properties?

I reachability probabilities, i.e., ♦G
I long-run properties
I linear temporal logic
I probabilistic computation tree logic

How to check temporal logic properties?

I graph analysis, solving systems of linear equations
I deterministic Rabin automata, product construction
I linear programming, integral equations
I uniformisation, Volterra integral equations
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Course details

Course topics

How to make probabilistic models smaller?

I Equivalences and pre-orders
I Which properties are preserved?

How to model probabilistic models?

I parallel composition and hiding
I compositional modeling and minimisation
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Course details

Course material

Ch. 10, Principles of Model Checking
Christel Baier
TU Dresden, Germany

Joost-Pieter Katoen
RWTH Aachen University, Germany, and
University of Twente, the Netherlands
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Course details

Other literature

I H.C. Tijms: A First Course in Stochastic Models. Wiley, 2003.

I H. Hermanns: Interactive Markov Chains: The Quest for Quantified
Quality. LNCS 2428, Springer-Verlag, 2002.

I J.-P. Katoen. Model Checking Meets Probability: A Gentle
Introduction. IOS Press, 2013. (see course web-page for download)

I M. Stoelinga. An Introduction to Probabilistic Automata. Bull. of the
ETACS, 2002.

I M. Kwiatkowska et al.. Stochastic Model Checking. LNCS 4486,
Springer-Verlag, 2007.
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Course details

Lectures
Lecture
I Tue 13:00 - 14:30 (9U10), Thu 13:00-14:30 (9U10)
I April 15, 17, 22, 24, 29
I May 8, 13, 15, 20, 22, 27
I June 3∗, 5, 17, 24, 26
I July 1, 3, 8, 10, 15
I Check regularly course webpage for possible “no shows”

Material
I Lecture slides (with gaps) are made available on webpage
I Copies of the books are available in the CS library

Website
http://moves.rwth-aachen.de/teaching/ss-14/movep14/
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Course details

Exercises and exam
Exercise classes
I Thu 15:00 - 16:30 in 9U10 (start: April 24)
I Instructors: Nils Jansen and Benjamin Kaminski

Weekly exercise series

I Intended for groups of 2 students
I New series: every Thu on course webpage (start: April 17)
I Solutions: Thu (before 15:00) one week later

Exam:
I unknown date (written or oral exam)
I participation if > 40% of all exercise points are gathered
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Course details

Course embedding
Aim of the course
It’s about the foundations of verifying and modeling probabilistic systems

Prerequisites

I Automata and language theory
I Algorithms and data structures
I Probability theory
I Introduction to model checking

Some related courses
I Advanced Model Checking (Katoen)
I Modeling and Verification of Hybrid Systems (Abráhám)
I Applied Automata Theory (Thomas)
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Course details

Questions?
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Probability refresher

Probability theory is simple, isn’t it?

In no other branch of mathematics
is it so easy to make mistakes

as in probability theory
Henk Tijms, “Understanding Probability” (2004)
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Probability refresher

Measurable space
Sample space
A sample space Ω of a chance experiment is a set of elements that have a 1-to-1
relationship to the possible outcomes of the experiment.

σ-algebra
A σ-algebra is a pair (Ω,F) with Ω 6= ∅ and F ⊆ 2Ω a collection of subsets of
sample space Ω such that:

1. Ω ∈ F

2. A ∈ F ⇒ Ω− A ∈ F complement

3. (∀i > 0. Ai ∈ F) ⇒
⋃

i>0 Ai ∈ F countable union

The elements in F of a σ-algebra (Ω,F) are called events.
The pair (Ω,F) is called a measurable space.

Let Ω be a set. F = {∅,Ω } yields the smallest σ-algebra; F = 2Ω yields the
largest one.
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Probability refresher

Probabilities
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Probability refresher

Probability space

Probability space
A probability space P is a structure (Ω,F ,Pr) with:
I (Ω,F) is a σ-algebra, and
I Pr : F → [0, 1] is a probability measure, i.e.:

1. Pr(Ω) = 1, i.e., Ω is the certain event

2. Pr
(⋃

i∈I
Ai

)
=
∑
i∈I

Pr(Ai ) for any Ai ∈ F with Ai ∩ Aj = ∅ for i 6=j ,

where {Ai }i∈I is finite or countably infinite.
The elements in F of a probability space (Ω,F ,Pr) are called measurable
events.
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Probability refresher

Some lemmas

Properties of probabilities
For measurable events A, B and Ai and probability measure Pr:
I Pr(A) = 1− Pr(Ω− A)

I Pr(A ∪ B) = Pr(A) + Pr(B)− Pr(A ∩ B)

I Pr(A ∩ B) = Pr(A | B) · Pr(B)

I A ⊆ B implies Pr(A) 6 Pr(B)

I Pr(
⋃

n>1 An) =
∑

n>1 Pr(An) provided An are pairwise disjoint
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Probability refresher

Discrete probability space
Discrete probability space
Pr is a discrete probability measure on (Ω,F) if
I there is a countable set A ⊆ Ω such that for a ∈ A:

{ a } ∈ F and
∑
a∈A

Pr({ a }) = 1

I e.g., a probability measure on (Ω, 2Ω)

(Ω,F ,Pr) is then called a discrete probability space; otherwise, it is a
continuous probability space.

Example
Example discrete probability space: throwing a die, number of customers in a
shop, . . ..

Example
Example continuous probability space: throwing a dart on a circular board (see
black board), water tank level, . . ..
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Probability refresher

Random variable

Measurable function
Let (Ω,F) and (Ω′,F ′) be measurable spaces. Function f : Ω→ Ω′ is a
measurable function if

f −1(A) = { a | f (a) ∈ A } ∈ F for all A ∈ F ′

Random variable
Measurable function X : Ω→ IR is a random variable.
The probability distribution of X is PrX = Pr ◦ X−1 where Pr is a
probability measure on (Ω,F).
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Probability refresher

Example: rolling a pair of fair dice
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Probability refresher

Distribution function

Distribution function
The distribution function FX of random variable X is defined by:

FX (d) = PrX ((−∞, d ]) = Pr({ a ∈ Ω | X (a) 6 d }︸ ︷︷ ︸
{X 6 d }

) for real d

Properties

I FX is monotonic and right-continuous
I 0 6 FX (d) 6 1
I limd→−∞ FX (d) = 0 and
I limd→∞ FX (d) = 1.
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Probability refresher

Discrete / continuous random variables
Distribution function
The distribution function FX of random variable X is defined for d ∈ IR by:

FX (d) = PrX (X ∈ (−∞, d ]) = Pr({ a ∈ Ω | X (a) 6 d })

In the continuous case, FX is called the cumulative density function.

Distribution function
I For discrete random variable X , FX can be written as:

FX (d) =
∑
di6d

PrX (X=di )

I For continuous random variable X , FX can be written as:

FX (d) =

∫ d

−∞
fX (u) du with f the density function
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Probability refresher

Expectation and variance

Expectation
The expectation of discrete r.v. X with range I is defined by

E [X ] =
∑
xi∈I

xi ·PrX (X=xi )

provided that this series converges absolutely, i.e., the sum must remain
finite on replacing all xi ’s with their absolute values.
The expectation is the weighted average of all possible values that X can
take on.

Variance
The variance of discrete r.v. X is given by Var[X ] = E [X 2]− (E [X ])2.
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Probability refresher

Stochastic process
Stochastic process
A stochastic process is a collection of random variables {Xt | t ∈ T }.
I casual notation X (t) instead of Xt
I with all Xt defined on probability space P
I parameter t (mostly interpreted as “time”) takes values in the set T

Xt is a random variable whose values are called states. The set of all
possible values of Xt is the state space of the stochastic process.

Parameter space T
State space Discrete Continuous

Discrete # jobs at k-th job departure # jobs at time t

Continuous waiting time of k-th job total service time at time t
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Probability refresher

Example stochastic processes

I Waiting times of customers in a shop
I Interarrival times of jobs at a production lines
I Service times of a sequence of jobs
I Files sizes that are downloaded via the Internet
I Number of occupied channels in a wireless network
I . . . . . .
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Probability refresher

Bernouilli process

Bernouilli random variable
Random variable X on state space { 0, 1 } defined by:

Pr(X = 1) = p and Pr(X = 0) = 1−p

is a Bernouilli random variable.
The mass function is given by f (k; p) = pk ·(1−p)1−k for k ∈ { 0, 1 }.
Expectation E [X ] = p; variance Var[X ] = E [X 2]− (E [X ])2 = p·(1−p).

Bernouilli process
A Bernouilli process is a sequence of independent and identically
distributed Bernouilli random variables X1,X2, . . ..
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Probability refresher

Binomial process
Binomial process
Let X1,X2, . . . be a Bernouilli process. The binomial process Sn is defined
by S0 = 0 and Sn =

∑n
i=1 Xi . The probability distribution of “counting

process” Sn is given by:

Pr{ Sn = k } =

(
n
k

)
pk · (1− p)n−k for 0 6 k 6 n

Moments: E [Sn] = n·p and Var[Sn] = n·p·(1−p).

Geometric distribution
Let r.v. Ti be the number of steps between increments of counting process
Sn. Then:

Pr{Ti = k } = (1− p)k−1·p for k > 1

This is a geometric distribution. We have E [Ti ] = 1
p and Var[Ti ] = 1−p

p2 .
Intuition: Geometric distribution = number of Bernoulli trials needed for one success.
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Probability refresher

Geometric distribution
Geometric distribution
Let X be a discrete random variable, natural k > 0 and 0 < p 6 1. The
mass function of a geometric distribution is given by:

Pr{X = k } = (1− p)k−1·p

We have E [X ] = 1
p and Var[X ] = 1−p

p2 and cdf Pr{X 6 k } = 1− (1−p)k .

Geometric distributions and their cdf’s
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Probability refresher

Memoryless property

Theorem

1. For any random variable X with a geometric distribution:

Pr{X = k + m | X > m} = Pr{X = k} for any m ∈ T , k > 1

This is called the memoryless property, and X is a memoryless r.v..
2. Any discrete random variable which is memoryless is geometrically

distributed.

Proof:
On the black board.
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Probability refresher

Joint distribution function
Joint distribution function
The joint distribution function of stochastic process X = {Xt | t ∈ T } is
given for n, t1, . . . , tn ∈ T and d1, . . . , dn by:

FX (d1, . . . , dn; t1, . . . , tn) = Pr{X (t1) 6 d1, . . . ,X (tn) 6 dn }

The shape of FX depends on the stochastic dependency between X (ti ).

Stochastic independence
Random variables Xi on probability space P are independent if:

FX (d1, . . . , dn; t1, . . . , tn) =
n∏

i=1
FX (di ; ti ) =

n∏
i=1

Pr{X (ti ) 6 di }.

A renewal process is a discrete-time stochastic process where X (t1),X (t2), . . . are
independent, identically distributed, non-negative random variables.

The next state of the stochastic process only depends on the current state, and
not on states assumed previously. This is the Markov property.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 41/41


	Introduction
	Course details
	Probability refresher
	Random variables
	Probability spaces
	Random variables
	Stochastic processes


