

Prof. Dr. Ir. J.-P. Katoen N. Jansen & B. Kaminiski

Modeling and Verification of Probabilistic Systems Summer term 2014

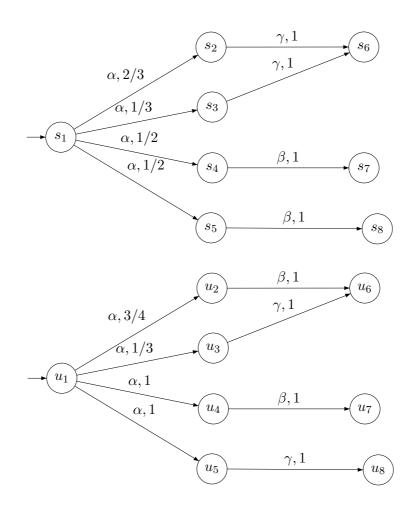
- Series 9 -Hand in on July 10 before the exercise class.

Exercise 1 1 7 s_4 s_5 s_1 1 $^{6}_{1}$ 1 1 1 3 1 s_8 s_7 $\mathbf{2}$ 3 23 $\mathbf{2}$ $\mathbf{2}$ s_3 2 s_2 $\mathbf{2}$ 4 s_6 21

Consider the CTMC C given above. Let $G = \{s_6, s_7, s_8\}$ be the set of goal states. Find out $Sat(\diamondsuit^{\leq 2}G)$ by the following steps:

- Determine C/\sim_m .
- Make all equivalence classes in C/\sim_m that contain goal states absorbing.
- Uniformize the CTMC obtained in the previous step.
- Find out the transient probability for t = 2 of the uniformized CTMC.

Exercise 2


Let C be a CTMC with state space S, states $s, u \in S, t \in \mathbb{R}_{\geq 0}$ and let $G \subseteq S$ be closed under \sim_m . Prove the following statement:

 $s \sim_m u$ implies $\Pr(s \models \diamondsuit^{\leq t} G) = \Pr(u \models \diamondsuit^{\leq t} G)$

Indicate in your proof where the fact that G is closed under \sim_m is used.

(3 points)

(2 points)

Consider the two probabilistic automata P_1 and P_2 given above. Prove or disprove the following statements:

- $s_1 \sim_p u_1$
- $s_1 \sim_{cp} u_1$

Exercise 4

(3 points)

For any CSL path formula φ and state s of CTMC C, prove that the set $\{\pi \in Paths(s) \mid \pi \models \varphi\}$ is measurable.