
Compiler Construction
Lecture 9: Syntax Analysis V

(LR(k) Grammars)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Summer Semester 2014

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Outline

1 Recap: Nondeterministic Bottom-Up Parsing

2 Resolving Termination Nondeterminism

3 LR(k) Grammars

4 LR(0) Grammars

5 Examples of LR(0) Conflicts

6 LR(0) Parsing

Compiler Construction Summer Semester 2014 9.2

Bottom-Up Parsing

Approach:
1 Given G ∈ CFGΣ, construct a nondeterministic bottom-up parsing

automaton (NBA) which accepts L(G) and which additionally
computes corresponding (reversed) rightmost analyses

input alphabet: Σ
pushdown alphabet: X
output alphabet: [p] (where p := |P |)
state set: omitted
transitions:

shift: shifting input symbols onto the pushdown
reduce: replacing the right-hand side of a production by its

left-hand side (= inverse expansion steps)

2 Remove nondeterminism by allowing lookahead on the input:
G ∈ LR(k) iff L(G) recognizable by deterministic bottom-up parsing
automaton with lookahead of k symbols

Compiler Construction Summer Semester 2014 9.3

Nondeterministic Bottom-Up Automaton I

Definition (Nondeterministic bottom-up parsing automaton)

Let G = 〈N,Σ,P ,S〉 ∈ CFGΣ. The nondeterministic bottom-up parsing
automaton of G , NBA(G), is defined by the following components.

Input alphabet: Σ

Pushdown alphabet: X

Output alphabet: [p]

Configurations: Σ∗ × X ∗ × [p]∗ (top of pushdown to the right)

Transitions for w ∈ Σ∗, α ∈ X ∗, and z ∈ [p]∗:

shifting steps: (aw , α, z) ⊢ (w , αa, z) if a ∈ Σ
reduction steps: (w , αβ, z) ⊢ (w , αA, zi) if πi = A → β

Initial configuration for w ∈ Σ∗: (w , ε, ε)

Final configurations: {ε} × {S} × [p]∗

Compiler Construction Summer Semester 2014 9.4

Nondeterminisn in NBA(G)

Observation: NBA(G) is generally nondeterministic

Shift or reduce? Example:

(bw , αa, z) ⊢

{
(w , αab, z)
(bw , αA, zi)

if πi = A → a

If reduce: which “handle” β? Example:

(w , αab, z) ⊢

{
(w , αA, zi)
(w , αaB , zj)

if πi = A → ab and πj = B → b

If reduce β: which left-hand side A? Example:

(w , αa, z) ⊢

{
(w , αA, zi)
(w , αB , zj)

if πi = A → a and πj = B → a

When to terminate parsing? Example:

(ε,S , z)
︸ ︷︷ ︸

final

⊢ (ε,A, zi) if πi = A → S

Compiler Construction Summer Semester 2014 9.5

Outline

1 Recap: Nondeterministic Bottom-Up Parsing

2 Resolving Termination Nondeterminism

3 LR(k) Grammars

4 LR(0) Grammars

5 Examples of LR(0) Conflicts

6 LR(0) Parsing

Compiler Construction Summer Semester 2014 9.6

Resolving Termination Nondeterminism I

General assumption to avoid nondeterminism of last type:
every grammar is start separated

Definition 9.1 (Start separation)

A grammar G = 〈N,Σ,P ,S〉 ∈ CFGΣ is called start separated if S only
occurs in productions of the form S → A where A 6= S .

Remarks:

Start separation always possible by adding S ′ → S with new start
symbol S ′

From now on consider only reduced grammars of this form
(π0 := S ′ → S)

Compiler Construction Summer Semester 2014 9.7

Resolving Termination Nondeterminism II

Start separation removes last form of nondeterminism (“When to
terminate parsing?”):

Lemma 9.2

If G ∈ CFGΣ is start separated, then no successor of a final configuration
(ε,S ′, z) in NBA(G) is again a final configuration.
(Thus parsing should be stopped in the first final configuration.)

Proof.

To (ε,S ′, z), only reductions by ε-productions can be applied:

(ε,S ′, z) ⊢ (ε,S ′A, zi) if πi = A → ε

Thereafter, only reductions by productions of the form
A0 → A1 . . .An (n ≥ 0) can be applied

Every resulting configuration is of the (non-final) form

(ε,S ′B1 . . .Bk , z) where k ≥ 1

Compiler Construction Summer Semester 2014 9.8

Outline

1 Recap: Nondeterministic Bottom-Up Parsing

2 Resolving Termination Nondeterminism

3 LR(k) Grammars

4 LR(0) Grammars

5 Examples of LR(0) Conflicts

6 LR(0) Parsing

Compiler Construction Summer Semester 2014 9.9

LR(k) Grammars I

Goal: resolve remaining nondeterminism of NBA(G) by supporting
lookahead of k ∈ N symbols on the input
=⇒ LR(k): reading of input from left to right with k-lookahead,

computing a rightmost analysis

Definition 9.3 (LR(k) grammar)

Let G = 〈N,Σ,P ,S〉 ∈ CFGΣ be start separated and k ∈ N. Then G has
the LR(k) property (notation: G ∈ LR(k)) if for all rightmost derivations
of the form

S

{
⇒∗

r αAw ⇒r αβw
⇒∗

r γBx ⇒r αβy

such that firstk(w) = firstk(y), it follows that α = γ, A = B , and x = y .

Compiler Construction Summer Semester 2014 9.10

LR(k) Grammars II

Remarks:

If G ∈ LR(k), then the reduction of αβw to αAw is already
determined by firstk(w).
Therefore NBA(G) in configuration (w , αβ, z) can decide to reduce
and how to reduce.
Computation of NBA(G) for S ⇒∗

r αAw ⇒r αβw :

(w ′w , ε, ε) ⊢∗ (w , αβ, z)
red i
⊢ (w , αA, zi) ⊢ . . .

where πi = A → β
Computation of NBA(G) for S ⇒∗

r γBx ⇒r αβy :

with direct reduction (y = x , αβ = γδ, πj = B → δ):

(y ′y , ε, ε) ⊢∗ (y , αβ, z ′) = (x , γδ, z ′)
red j

⊢ (x , γB, z ′j) ⊢ . . .

with previous shifts (y = x ′x , αβx ′ = γδ, πj = B → δ):

(y ′y , ε, ε) ⊢∗ (y , αβ, z ′) = (x ′x , αβ, z ′)
shift

⊢
∗

(x , αβx ′, z ′) = (x , γδ, z ′)
red j

⊢ (x , γB, z ′j) ⊢ . . .
Compiler Construction Summer Semester 2014 9.11

Outline

1 Recap: Nondeterministic Bottom-Up Parsing

2 Resolving Termination Nondeterminism

3 LR(k) Grammars

4 LR(0) Grammars

5 Examples of LR(0) Conflicts

6 LR(0) Parsing

Compiler Construction Summer Semester 2014 9.12

LR(0) Grammars

The case k = 0 is relevant (in contrast to LL(0)): here the decision is just
based on the contents of the pushdown, without any lookahead.

Corollary 9.4 (LR(0) grammar)

G ∈ CFGΣ has the LR(0) property if for all rightmost derivations of the
form

S

{
⇒∗

r αAw ⇒r αβw
⇒∗

r γBx ⇒r αβy

it follows that α = γ, A = B, and x = y .

Goal: derive a finite information from the pushdown which suffices to
resolve the nondeterminism (similar to abstraction of right context in LL
parsing by fo-sets)

Compiler Construction Summer Semester 2014 9.13

LR(0) Items and Sets I

Example 9.5

G : S ′ → S (0)
S → B | C (1, 2)
B → aB | b (3, 4)
C → aC | c (5, 6)

NBA(G):
(ab, ε, ε)

⊢ (b, a, ε)
⊢ (ε, ab, ε)
⊢ (ε, aB , 4)
⊢ (ε,B , 43)
⊢ (ε,S , 431)
⊢ (ε,S ′, 4310)

S ′[S ′ → .S][S ′ → S .]

S [S → .B][S → B .]

B [B → .aB][B → a.B][B → aB .]

aB [B → .b][B → b.]

b

Compiler Construction Summer Semester 2014 9.14

LR(0) Items and Sets II

Definition 9.6 (LR(0) items and sets)

Let G = 〈N,Σ,P ,S〉 ∈ CFGΣ be start separated by S ′ → S and
S ′ ⇒∗

r αAw ⇒r αβ1β2w (i.e., A → β1β2 ∈ P).

[A → β1 · β2] is called an LR(0) item for αβ1.
Given γ ∈ X ∗, LR(0)(γ) denotes the set of all LR(0) items for γ,
called the LR(0) set (or: LR(0) information) of γ.
LR(0)(G) := {LR(0)(γ) | γ ∈ X ∗}.

Corollary 9.7

1 For every γ ∈ X ∗, LR(0)(γ) is finite.
2 LR(0)(G) is finite.
3 The item [A → β·] ∈ LR(0)(γ) indicates the possible reduction

(w , αβ, z) ⊢ (w , αA, zi) where πi = A → β and γ = αβ.
4 The item [A → β1 · Y β2] ∈ LR(0)(γ) indicates an incomplete handle

β1 (to be completed by shift operations or ε-reductions).

Compiler Construction Summer Semester 2014 9.15

LR(0) Conflicts

Definition 9.8 (LR(0) conflicts)

Let G = 〈N,Σ,P ,S〉 ∈ CFGΣ and I ∈ LR(0)(G).

I has a shift/reduce conflict if there exist A → α1aα2,B → β ∈ P
such that

[A → α1 · aα2], [B → β·] ∈ I .

I has a reduce/reduce conflict if there exist A → α,B → β ∈ P with
A 6= B or α 6= β such that

[A → α·], [B → β·] ∈ I .

Lemma 9.9

G ∈ LR(0) iff no I ∈ LR(0)(G) contains conflicting items.

Proof.

omitted

Compiler Construction Summer Semester 2014 9.16

Computing LR(0) Sets I

Theorem 9.10 (Computing LR(0) sets)

Let G = 〈N,Σ,P ,S〉 ∈ CFGΣ be start separated by S ′ → S and reduced.
1 LR(0)(ε) is the least set such that

[S ′ → ·S] ∈ LR(0)(ε) and
if [A → ·Bγ] ∈ LR(0)(ε) and B → β ∈ P,
then [B → ·β] ∈ LR(0)(ε).

2 LR(0)(αY) (α ∈ X ∗,Y ∈ X) is the least set such that

if [A → γ1 · Y γ2] ∈ LR(0)(α),
then [A → γ1Y · γ2] ∈ LR(0)(αY) and
if [A → γ1 · Bγ2] ∈ LR(0)(αY) and B → β ∈ P,
then [B → ·β] ∈ LR(0)(αY).

Compiler Construction Summer Semester 2014 9.17

Computing LR(0) Sets II

Example 9.11 (cf. Example 9.5)

G : S ′ → S
S → B | C
B → aB | b
C → aC | c

[S ′ → ·S] ∈

LR(0)(ε)
[A → ·Bγ] ∈ LR(0)(ε),B → β ∈ P
=⇒ [B → ·β] ∈ LR(0)(ε)

[A → γ1 · Y γ2] ∈ LR(0)(α)
=⇒ [A → γ1Y · γ2] ∈ LR(0)(αY)

I0 := LR(0)(ε) : [S ′ → ·S] [S → ·B] [S → ·C] [B → ·aB]
[B → ·b] [C → ·aC] [C → ·c]

I1 := LR(0)(S) : [S ′ → S ·]
I2 := LR(0)(B) : [S → B·]
I3 := LR(0)(C) : [S → C ·]
I4 := LR(0)(a) : [B → a · B] [C → a · C] [B → ·aB] [B → ·b]

[C → ·aC] [C → ·c]
I5 := LR(0)(b) : [B → b·]
I6 := LR(0)(c) : [C → c ·]
I7 := LR(0)(aB) : [B → aB·]
I8 := LR(0)(aC) : [C → aC ·]

(LR(0)(aa) = LR(0)(a) = I4, LR(0)(ab) = LR(0)(b) = I5,
LR(0)(ac) = LR(0)(c) = I6, ..., I9 := LR(0)(γ) = ∅ in all remaining cases)

no conflicts =⇒ G ∈ LR(0) (but G /∈ LL(1))
Compiler Construction Summer Semester 2014 9.18

Outline

1 Recap: Nondeterministic Bottom-Up Parsing

2 Resolving Termination Nondeterminism

3 LR(k) Grammars

4 LR(0) Grammars

5 Examples of LR(0) Conflicts

6 LR(0) Parsing

Compiler Construction Summer Semester 2014 9.19

Reduce/Reduce Conflicts

Example 9.12

G : S ′ → S
S → Aa | Bb
A → a
B → a

LR(0)(ε) : [S ′ → ·S] [S → ·Aa] [S → ·Bb] [A → ·a] [B → ·a]
LR(0)(S) : [S ′ → S ·]
LR(0)(A) : [S → A · a]
LR(0)(B) : [S → B · a]
LR(0)(a) : [A → a·] [B → a·]
LR(0)(Aa) : [S → Aa·]
LR(0)(Ba) : [S → Ba·]

Note: G is unambiguous

Compiler Construction Summer Semester 2014 9.20

Shift/Reduce Conflicts

Example 9.13

G : S ′ → S
S → aS | a

LR(0)(ε) : [S ′ → ·S] [S → ·aS] [S → ·a]
LR(0)(S) : [S ′ → S ·]
LR(0)(a) : [S → a · S] [S → ·aS] [S → ·a] [S → a·]
LR(0)(aS) : [S → aS ·]

Note: G is unambiguous

Compiler Construction Summer Semester 2014 9.21

Outline

1 Recap: Nondeterministic Bottom-Up Parsing

2 Resolving Termination Nondeterminism

3 LR(k) Grammars

4 LR(0) Grammars

5 Examples of LR(0) Conflicts

6 LR(0) Parsing

Compiler Construction Summer Semester 2014 9.22

The goto Function I

Observation: if G ∈ LR(0), then LR(0)(γ) yields deterministic
shift/reduce decision for NBA(G) in a configuration with pushdown γ
=⇒ new pushdown alphabet: LR(0)(G) in place of X

Moreover LR(0)(γY) is determined by LR(0)(γ) and Y but independent
from γ in the following sense:

LR(0)(γ) = LR(0)(γ′) =⇒ LR(0)(γY) = LR(0)(γ′Y)

Definition 9.14 (LR(0) goto function)

The function goto : LR(0)(G)× X → LR(0)(G) is determined by

goto(I ,Y) = I ′ iff there exists γ ∈ X ∗ such that
I = LR(0)(γ) and I ′ = LR(0)(γY).

Compiler Construction Summer Semester 2014 9.23

The goto Function II

Example 9.15 (cf. Example 9.11)

I0 := LR(0)(ε) : [S ′ → ·S]
[S → ·B] [S → ·C]
[B → ·aB] [B → ·b]
[C → ·aC] [C → ·c]

I1 := LR(0)(S) : [S ′ → S ·]
I2 := LR(0)(B) : [S → B ·]
I3 := LR(0)(C) : [S → C ·]
I4 := LR(0)(a) : [B → a · B] [C → a · C]

[B → ·aB] [B → ·b]
[C → ·aC] [C → ·c]

I5 := LR(0)(b) : [B → b·]
I6 := LR(0)(c) : [C → c ·]
I7 := LR(0)(aB) : [B → aB ·]
I8 := LR(0)(aC) : [C → aC ·]
I9 := ∅

goto S B C a b c
I0 I1 I2 I3 I4 I5 I6
I1
I2
I3
I4 I7 I8 I4 I5 I6
I5
I6
I7
I8
I9

(empty = I9)

Compiler Construction Summer Semester 2014 9.24

The goto Function III

Example 9.15 (continued)

Representation of goto funtion as finite automaton:

[S ′ → ·S]
[S → ·B] [S → ·C]
[B → ·aB] [B → ·b]
[C → ·aC] [C → ·c]

[S ′ → S ·]

[S → B·] [S → C ·]

[B → a · B] [C → a · C]
[B → ·aB] [B → ·b]
[C → ·aC] [C → ·c]

[B → b·] [C → c ·]

[B → aB·] [C → aC ·]

I0

I1

I2 I3

I4I5 I6

I7 I8

S

B

C

ab

c

b

c

B

C

a

(omitted: sink state I9 = ∅) Compiler Construction Summer Semester 2014 9.25

The LR(0) Action Function

The parsing automaton will be defined using another table, the action
function, which determines the shift/reduce decision.
(Reminder: π0 = S ′ → S)

Definition 9.16 (LR(0) action function)

The LR(0) action function

act : LR(0)(G) → {red i | i ∈ [p]} ∪ {shift, accept, error}

is defined by

act(I) :=







red i if i 6= 0, πi = A → α and [A → α·] ∈ I
shift if [A → α1 · aα2] ∈ I
accept if [S ′ → S ·] ∈ I
error if I = ∅

Corollary 9.17

For every G ∈ CFGΣ, G ∈ LR(0) iff act is well defined.

Together, act and goto form the LR(0) parsing table of G .Compiler Construction Summer Semester 2014 9.26

	Recap: Nondeterministic Bottom-Up Parsing
	Resolving Termination Nondeterminism
	LR(k) Grammars
	LR(0) Grammars
	Examples of LR(0) Conflicts
	LR(0) Parsing

