Compiler Construction Lecture 9: Syntax Analysis V (LR(k) Grammars)

Thomas Noll

Lehrstuhl für Informatik 2 (Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Summer Semester 2014

Outline

1 Recap: Nondeterministic Bottom-Up Parsing

- 2 Resolving Termination Nondeterminism
- 3 LR(k) Grammars
 - 4 LR(0) Grammars
 - 5 Examples of *LR*(0) Conflicts
 - 6 *LR*(0) Parsing

Approach:

- Given G ∈ CFG_Σ, construct a nondeterministic bottom-up parsing automaton (NBA) which accepts L(G) and which additionally computes corresponding (reversed) rightmost analyses
 - input alphabet: Σ
 - pushdown alphabet: X
 - output alphabet: [p] (where p := |P|)
 - state set: omitted
 - transitions:

 Remove nondeterminism by allowing lookahead on the input: G ∈ LR(k) iff L(G) recognizable by deterministic bottom-up parsing automaton with lookahead of k symbols

Nondeterministic Bottom-Up Automaton I

Definition (Nondeterministic bottom-up parsing automaton)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$. The nondeterministic bottom-up parsing automaton of G, NBA(G), is defined by the following components.

- Input alphabet: Σ
- Pushdown alphabet: X
- Output alphabet: [p]
- Configurations: $\Sigma^* \times X^* \times [p]^*$ (top of pushdown to the right)

Transitions for w ∈ Σ*, α ∈ X*, and z ∈ [p]*: shifting steps: (aw, α, z) ⊢ (w, αa, z) if a ∈ Σ reduction steps: (w, αβ, z) ⊢ (w, αA, zi) if π_i = A → β

- Initial configuration for $w \in \Sigma^*$: $(w, \varepsilon, \varepsilon)$
- Final configurations: $\{\varepsilon\} \times \{S\} \times [p]^*$

Nondeterminisn in NBA(G)

Observation: NBA(G) is generally nondeterministicShift or reduce? Example:

$$(bw, \alpha a, z) \vdash \begin{cases} (w, \alpha ab, z) \\ (bw, \alpha A, zi) \end{cases}$$
 if $\pi_i = A \rightarrow a$

• If reduce: which "handle" β ? Example:

$$(w, \alpha ab, z) \vdash \begin{cases} (w, \alpha A, zi) \\ (w, \alpha aB, zj) \end{cases}$$
 if $\pi_i = A \rightarrow ab$ and $\pi_j = B \rightarrow b$

• If reduce β : which left-hand side A? Example:

$$(w, \alpha a, z) \vdash \begin{cases} (w, \alpha A, zi) \\ (w, \alpha B, zj) \end{cases}$$
 if $\pi_i = A \rightarrow a$ and $\pi_j = B \rightarrow a$

• When to terminate parsing? Example:

$$\underbrace{(\varepsilon, S, z)}_{\text{final}} \vdash (\varepsilon, A, zi) \text{ if } \pi_i = A \rightarrow S$$

Recap: Nondeterministic Bottom-Up Parsing

- 2 Resolving Termination Nondeterminism
- 3 LR(k) Grammars
 - 4 LR(0) Grammars
 - 5 Examples of *LR*(0) Conflicts
 - 6 *LR*(0) Parsing

Resolving Termination Nondeterminism I

General assumption to avoid nondeterminism of last type: every grammar is start separated

Definition 9.1 (Start separation)

A grammar $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ is called start separated if S only occurs in productions of the form $S \to A$ where $A \neq S$.

Remarks:

- Start separation always possible by adding $S' \to S$ with new start symbol S'
- From now on consider only reduced grammars of this form $(\pi_0 := S' \to S)$

Resolving Termination Nondeterminism II

Start separation removes last form of nondeterminism ("When to terminate parsing?"):

Lemma 9.2

If $G \in CFG_{\Sigma}$ is start separated, then no successor of a final configuration (ε, S', z) in NBA(G) is again a final configuration. (Thus parsing should be stopped in the first final configuration.)

Proof.

- To (ε, S', z), only reductions by ε-productions can be applied:
 (ε, S', z) ⊢ (ε, S'A, zi) if π_i = A → ε
- Thereafter, only reductions by productions of the form $A_0 \rightarrow A_1 \dots A_n \ (n \ge 0)$ can be applied
- Every resulting configuration is of the (non-final) form

 $(\varepsilon, S'B_1 \dots B_k, z)$ where $k \ge 1$

Recap: Nondeterministic Bottom-Up Parsing

2 Resolving Termination Nondeterminism

3 LR(k) Grammars

4 LR(0) Grammars

5 Examples of *LR*(0) Conflicts

6 *LR*(0) Parsing

LR(k) Grammars I

Goal: resolve remaining nondeterminism of NBA(G) by supporting lookahead of $k \in \mathbb{N}$ symbols on the input $\implies LR(k)$: reading of input from left to right with k-lookahead, computing a rightmost analysis

Definition 9.3 (LR(k) grammar)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ be start separated and $k \in \mathbb{N}$. Then G has the LR(k) property (notation: $G \in LR(k)$) if for all rightmost derivations of the form

$$S\begin{cases} \Rightarrow_r^* \alpha A w \Rightarrow_r \alpha \beta w\\ \Rightarrow_r^* \gamma B x \Rightarrow_r \alpha \beta y\end{cases}$$

such that $\operatorname{first}_k(w) = \operatorname{first}_k(y)$, it follows that $\alpha = \gamma$, A = B, and x = y.

LR(k) Grammars II

Remarks:

- If $G \in LR(k)$, then the reduction of $\alpha\beta w$ to αAw is already determined by $\operatorname{first}_k(w)$.
- Therefore NBA(G) in configuration (w, αβ, z) can decide to reduce and how to reduce.
- Computation of NBA(G) for $S \Rightarrow_r^* \alpha A w \Rightarrow_r \alpha \beta w$:

$$(w'w,\varepsilon,\varepsilon)\vdash^* (w,\alpha\beta,z) \stackrel{\mathsf{red}}{\vdash} (w,\alpha A,zi)\vdash \ldots$$

where $\pi_i = \mathbf{A} \rightarrow \beta$

- Computation of $\operatorname{NBA}(G)$ for $S \Rightarrow_r^* \gamma Bx \Rightarrow_r \alpha \beta y$:
 - with direct reduction $(y = x, \alpha\beta = \gamma\delta, \pi_j = B \rightarrow \delta)$:

$$(y'y,\varepsilon,\varepsilon) \vdash^* (y,\alpha\beta,z') = (x,\gamma\delta,z') \stackrel{\mathsf{red}_J}{\vdash} (x,\gamma B,z'j) \vdash \dots$$

• with previous shifts $(y = x'x, \alpha\beta x' = \gamma\delta, \pi_j = B \rightarrow \delta)$:

Recap: Nondeterministic Bottom-Up Parsing

- 2 Resolving Termination Nondeterminism
- 3 LR(k) Grammars

4 LR(0) Grammars

- 5 Examples of *LR*(0) Conflicts
- 6 LR(0) Parsing

The case k = 0 is relevant (in contrast to LL(0)): here the decision is just based on the contents of the pushdown, without any lookahead.

Corollary 9.4 (LR(0) grammar)

 $G \in CFG_{\Sigma}$ has the LR(0) property if for all rightmost derivations of the form

$$5\begin{cases} \Rightarrow_r^* \alpha A w \Rightarrow_r \alpha \beta w\\ \Rightarrow_r^* \gamma B x \Rightarrow_r \alpha \beta y\end{cases}$$

it follows that $\alpha = \gamma$, A = B, and x = y.

Goal: derive a finite information from the pushdown which suffices to resolve the nondeterminism (similar to abstraction of right context in LL parsing by fo-sets)

LR(0) Items and Sets I

Example 9.5

$$G: S' \rightarrow S \qquad (0)$$

$$S \rightarrow B \mid C \qquad (1,2)$$

$$B \rightarrow aB \mid b \qquad (3,4)$$

$$C \rightarrow aC \mid c \qquad (5,6)$$

$$NBA(G):$$

$$(ab, \varepsilon, \varepsilon)$$

$$\vdash (b, a, \varepsilon)$$

$$\vdash (\varepsilon, ab, \varepsilon)$$

$$\vdash (\varepsilon, aB, 4)$$

$$\vdash (\varepsilon, S, 431)$$

$$\vdash (\varepsilon, S', 4310)$$

$$S'[S' \to .S][S' \to S.]$$

$$S[S \to .B][S \to B.]$$

$$B[B \to .aB][B \to a.B][B \to aB.]$$

$$B[B \to .b][B \to b.]$$

RWTHAACHEN

LR(0) Items and Sets II

Definition 9.6 (LR(0) items and sets)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ be start separated by $S' \to S$ and $S' \Rightarrow_r^* \alpha A w \Rightarrow_r \alpha \beta_1 \beta_2 w$ (i.e., $A \to \beta_1 \beta_2 \in P$).

- $[A \rightarrow \beta_1 \cdot \beta_2]$ is called an *LR*(0) item for $\alpha \beta_1$.
- Given γ ∈ X*, LR(0)(γ) denotes the set of all LR(0) items for γ, called the LR(0) set (or: LR(0) information) of γ.
- $LR(0)(G) := \{LR(0)(\gamma) \mid \gamma \in X^*\}.$

Corollary 9.7

- For every $\gamma \in X^*$, $LR(0)(\gamma)$ is finite.
- \bigcirc LR(0)(G) is finite.
- The item $[A \to \beta \cdot] \in LR(0)(\gamma)$ indicates the possible reduction $(w, \alpha\beta, z) \vdash (w, \alpha A, zi)$ where $\pi_i = A \to \beta$ and $\gamma = \alpha\beta$.
- The item $[A \to \beta_1 \cdot Y\beta_2] \in LR(0)(\gamma)$ indicates an incomplete handle β_1 (to be completed by shift operations or ε -reductions).

LR(0) Conflicts

Definition 9.8 (LR(0) conflicts)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ and $I \in LR(0)(G)$.

 I has a shift/reduce conflict if there exist A → α₁aα₂, B → β ∈ P such that

$$[A \to \alpha_1 \cdot a\alpha_2], [B \to \beta \cdot] \in I.$$

• I has a reduce/reduce conflict if there exist $A \to \alpha, B \to \beta \in P$ with $A \neq B$ or $\alpha \neq \beta$ such that

 $[A \to \alpha \cdot], [B \to \beta \cdot] \in I.$

Lemma 9.9

RANGE HAA(2HIEN

 $G \in LR(0)$ iff no $I \in LR(0)(G)$ contains conflicting items.

Proof. omitted

Theorem 9.10 (Computing LR(0) sets)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ be start separated by $S' \to S$ and reduced. • $LR(0)(\varepsilon)$ is the least set such that • $[S' \to \cdot S] \in LR(0)(\varepsilon)$ and • if $[A \to \cdot B\gamma] \in LR(0)(\varepsilon)$ and $B \to \beta \in P$, then $[B \to \cdot\beta] \in LR(0)(\varepsilon)$. • $LR(0)(\alpha Y)$ ($\alpha \in X^*, Y \in X$) is the least set such that • if $[A \to \gamma_1 \cdot Y\gamma_2] \in LR(0)(\alpha)$, then $[A \to \gamma_1 Y \cdot \gamma_2] \in LR(0)(\alpha Y)$ and • if $[A \to \gamma_1 \cdot B\gamma_2] \in LR(0)(\alpha Y)$ and $B \to \beta \in P$, then $[B \to \cdot\beta] \in LR(0)(\alpha Y)$.

Computing LR(0) **Sets II**

Example 9.11 (cf. Example 9.5)

$G: S' \to S$ $S \to B \mid C$ $B \to aB \mid b$ $C \to aC \mid c$ $LR(0)(\varepsilon) \stackrel{[A \to \beta\gamma] \in C}{\Longrightarrow} B \to \beta$	$[S' \to \cdot S] \in$ $LR(0)(\varepsilon), B \to \beta \in P [A \to \gamma_1 \cdot Y\gamma_1] \in LR(0)(\varepsilon) \qquad \Longrightarrow [A \to \gamma_1] $	$_{2}] \in LR(0)(lpha)$ $_{1}Y \cdot \gamma_{2}] \in LR(0)(lpha Y)$
$l_1 := LR(0)(S) : [S] l_2 := LR(0)(B) : [S]$	$ \begin{array}{l} \stackrel{\prime}{\rightarrow} \cdot S \\ {\rightarrow} \cdot b \\ \stackrel{\prime}{\rightarrow} \cdot S \end{array} \qquad \begin{bmatrix} S \rightarrow \cdot B \\ [C \rightarrow \cdot aC] \end{array} \qquad \begin{bmatrix} S \rightarrow \cdot C \\ [C \rightarrow \cdot c] \end{array} \\ \begin{array}{l} {\rightarrow} B \cdot \\ {\rightarrow} C \cdot \end{bmatrix} $	$[B ightarrow \cdot aB]$
$I_4 := LR(0)(a): [B] \\ [C] I_5 := LR(0)(b): [B] \\ I_6 := LR(0)(c): [C] \\ I_7 := LR(0)(aB): [B]$	$ \begin{array}{l} \rightarrow a \cdot B \\ \rightarrow \cdot aC \\ \rightarrow \cdot aC \\ \rightarrow \cdot c \\ \rightarrow c \cdot \end{array} \begin{bmatrix} C \rightarrow a \cdot C \\ [C \rightarrow \cdot c] \\ \rightarrow c \cdot \end{bmatrix} \begin{bmatrix} B \rightarrow \cdot aB \\ [C \rightarrow \cdot c] \\ \rightarrow c \cdot \end{bmatrix} $	$[B ightarrow \cdot b]$
(LR(0)(aa) = LR(0)(a) LR(0)(ac) = LR(0)(c)		naining cases) mer Semester 2014 9.18

Recap: Nondeterministic Bottom-Up Parsing

- 2 Resolving Termination Nondeterminism
- 3 LR(k) Grammars
 - 4 LR(0) Grammars
- **5** Examples of LR(0) Conflicts

6 *LR*(0) Parsing

Reduce/Reduce Conflicts

Example 9.12					
$\begin{array}{rcc} G: & S' \to S \\ & S & \to A \\ & A & \to a \\ & B & \to a \end{array}$	a Bb				
$LR(0)(\varepsilon)$: LR(0)(S) : LR(0)(A) : LR(0)(B) :	$[S' \rightarrow S \cdot]$	[S ightarrow Aa]	[S ightarrow Bb]	$[A ightarrow \cdot a]$	$[B ightarrow \cdot a]$
LR(0)(a) : LR(0)(Aa) :	$[A ightarrow a \cdot]$	$[B ightarrow a \cdot]$			

Note: *G* is unambiguous

Example 9.13

$$egin{array}{rcl} G:&S' o S\ &S o aS\mid a \end{array}$$

Note: G is unambiguous

Recap: Nondeterministic Bottom-Up Parsing

- 2 Resolving Termination Nondeterminism
- 3 LR(k) Grammars
 - 4 LR(0) Grammars
 - 5 Examples of *LR*(0) Conflicts
- 6 LR(0) Parsing

The goto Function I

Observation: if $G \in LR(0)$, then $LR(0)(\gamma)$ yields deterministic shift/reduce decision for NBA(G) in a configuration with pushdown $\gamma \implies$ new pushdown alphabet: LR(0)(G) in place of X

Moreover $LR(0)(\gamma Y)$ is determined by $LR(0)(\gamma)$ and Y but independent from γ in the following sense:

 $LR(0)(\gamma) = LR(0)(\gamma') \implies LR(0)(\gamma Y) = LR(0)(\gamma' Y)$

Definition 9.14 (LR(0) goto function)

The function goto : $LR(0)(G) \times X \to LR(0)(G)$ is determined by goto(I, Y) = I' iff there exists $\gamma \in X^*$ such that $I = LR(0)(\gamma)$ and $I' = LR(0)(\gamma Y)$.

The goto Function II

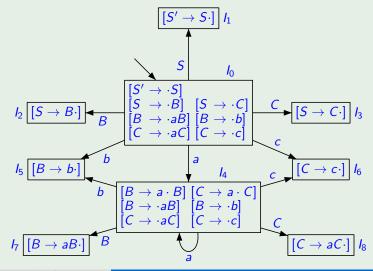
Example 9.15 (cf. Example 9.11)

$$\begin{split} & l_{0} := LR(0)(\varepsilon) : \quad \begin{bmatrix} S' \to \cdot S \\ S \to \cdot B \end{bmatrix} \quad \begin{bmatrix} S \to \cdot C \\ B \to \cdot a B \end{bmatrix} \quad \begin{bmatrix} B \to \cdot b \\ B \to \cdot a B \end{bmatrix} \quad \begin{bmatrix} B \to \cdot b \\ C \to \cdot a C \end{bmatrix} \quad \begin{bmatrix} C \to \cdot c \\ I_{0} & I_{1} & I_{2} & I_{3} & I_{4} & I_{5} & I_{6} \\ I_{1} & I_{2} & I_{3} & I_{4} & I_{5} & I_{6} \\ I_{1} & I_{2} & I_{3} & I_{4} & I_{5} & I_{6} \\ I_{3} & I_{3} & I_{4} & I_{5} & I_{6} \\ I_{4} & I_{7} & I_{8} & I_{4} & I_{5} & I_{6} \\ I_{5} & I_{6} & I_{7} & I_{8} & I_{4} & I_{5} & I_{6} \\ I_{5} & I_{6} & I_{7} & I_{8} & I_{4} & I_{5} & I_{6} \\ I_{7} & I_{8} & I_{4} & I_{5} & I_{6} \\ I_{7} & I_{8} & I_{4} & I_{5} & I_{6} \\ I_{7} & I_{8} & I_{4} & I_{5} & I_{6} \\ I_{7} & I_{8} & I_{4} & I_{5} & I_{6} \\ I_{7} & I_{8} & I_{4} & I_{5} & I_{6} \\ I_{7} & I_{8} & I_{4} & I_{5} & I_{6} \\ I_{7} & I_{8} & I_{4} & I_{5} & I_{6} \\ I_{7} & I_{8} & I_{4} & I_{5} & I_{6} \\ I_{7} & I_{8} & I_{4} & I_{5} & I_{6} \\ I_{7} & I_{8} & I_{4} & I_{5} & I_{6} \\ I_{7} & I_{8} & I_{4} & I_{5} & I_{6} \\ I_{7} & I_{8} & I_{4} & I_{5} & I_{6} \\ I_{7} & I_{8} & I_{4} & I_{5} & I_{6} \\ I_{7} & I_{8} & I_{4} & I_{5} & I_{6} \\ I_{7} & I_{8} & I_{4} & I_{5} & I_{6} \\ I_{7} & I_{8} & I_{4} & I_{5} & I_{6} \\ I_{7} & I_{8} & I_{4} & I_{5} & I_{6} \\ I_{9} & I_{1} & I_{1} & I_{2} & I_{2} \\ I_{1} & I_{1} & I_{2} & I_{3} & I_{4} & I_{5} & I_{6} \\ I_{5} & I_{6} & I_{7} & I_{8} & I_{4} & I_{5} & I_{6} \\ I_{7} & I_{8} & I_{4} & I_{5} & I_{6} \\ I_{7} & I_{8} & I_{4} & I_{5} & I_{6} \\ I_{9} & I_{1} & I_{1} & I_{2} & I_{2} \\ I_{1} & I_{2} & I_{2} & I_{1} & I_{2} & I_{2} \\ I_{1} & I_{1} & I_{2} & I_{2} & I_{1} \\ I_{2} & I_{1} & I_{1} & I_{2} & I_{2} \\ I_{1} & I_{1} & I_{2} & I_{2} & I_{2} \\ I_{1} & I_{1} & I_{2} & I_{2} & I_{2} \\ I_{1} & I_{1} & I_{2} & I_{2} & I_{2} \\ I_{1} & I_{1} & I_{2} & I_{2} & I_{2} \\ I_{2} & I_{2} & I_{2} & I_{2} \\ I_{2} & I_{2} & I_{2} & I_{2} & I_{2} \\ I_{2} & I_{2} & I_{2} & I_{2} & I_{2} \\ I_{2} & I_{2} & I_{2} & I_{2} & I_{2} \\ I_{2} & I_{2} & I_{2} & I_{2} & I_{2} & I_{2} \\ I_{2} & I_{2} & I_{2} & I_{2} & I_{2} & I_{2} & I_{2} \\ I_{2} & I_{2} & I_{2} & I_{2} & I_{2} & I_{2} & I_{2}$$

The goto Function III

Example 9.15 (continued)

Representation of goto funtion as finite automaton:



RNTHAACHEN

The LR(0) Action Function

The parsing automaton will be defined using another table, the action function, which determines the shift/reduce decision. (Reminder: $\pi_0 = S' \rightarrow S$)

Definition 9.16 (LR(0) action function)

The LR(0) action function

act : $LR(0)(G) \rightarrow \{ red i \mid i \in [p] \} \cup \{ shift, accept, error \}$

is defined by

$$\operatorname{act}(I) := \begin{cases} \operatorname{red} i & \text{if } i \neq 0, \pi_i = A \to \alpha \text{ and } [A \to \alpha \cdot] \in I \\ \operatorname{shift} & \text{if } [A \to \alpha_1 \cdot a\alpha_2] \in I \\ \operatorname{accept} & \text{if } [S' \to S \cdot] \in I \\ \operatorname{error} & \text{if } I = \emptyset \end{cases}$$

Corollary 9.17

For every $G \in CFG_{\Sigma}$, $G \in LR(0)$ iff act is well defined.

RWTHAACHEN

Compiler Construction