Compiler Construction

Lecture 6: Syntax Analysis II (LL(k) **Grammars**)

Thomas Noll

Lehrstuhl für Informatik 2 (Software Modeling and Verification)

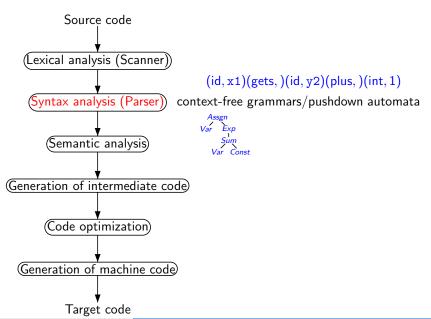
noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Summer Semester 2014

- 1 Recap: Nondeterministic Top-Down Parsing
- Correctness of NTA(G)
- 3 Adding Lookahead
- 4 LL(k) Grammars
- 5 Follow Sets
- 6 LL(1) Grammars

Conceptual Structure of a Compiler



Top-Down Parsing

Approach:

- **②** Given $G \in CFG_{\Sigma}$, construct a nondeterministic pushdown automaton (PDA) which accepts L(G) and which additionally computes corresponding leftmost derivations (similar to the proof of " $L(CFG_{\Sigma}) \subseteq L(PDA_{\Sigma})$ ")
 - input alphabet: Σ
 - pushdown alphabet: X
 - output alphabet: [p]
 - state set: not required
- **2** Remove nondeterminism by allowing lookahead on the input: $G \in LL(k)$ iff L(G) recognizable by deterministic PDA with lookahead of k symbols

The Nondeterministic Top-Down Automaton

Definition (Nondeterministic top-down parsing automaton)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$. The nondeterministic top-down parsing automaton of G, NTA(G), is defined by the following components.

- Input alphabet: Σ
- Pushdown alphabet: X
- Output alphabet: [p]
- Configurations: $\Sigma^* \times X^* \times [p]^*$ (top of pushdown to the left)
- Transitions for $w \in \Sigma^*$, $\alpha \in X^*$, and $z \in [p]^*$: expansion steps: if $\pi_i = A \to \beta$, then $(w, A\alpha, z) \vdash (w, \beta\alpha, zi)$ matching steps: for every $a \in \Sigma$, $(aw, a\alpha, z) \vdash (w, \alpha, z)$
- Initial configuration for $w \in \Sigma^*$: (w, S, ε)
- Final configurations: $\{\varepsilon\} \times \{\varepsilon\} \times [p]^*$

Remark: NTA(G) is nondeterministic iff G contains $A \rightarrow \beta \mid \gamma$

- 1 Recap: Nondeterministic Top-Down Parsing
- 2 Correctness of NTA(G)
- 3 Adding Lookahead
- 4 LL(k) Grammars
- 5 Follow Sets
- 6 LL(1) Grammars

Correctness of NTA(G)

Theorem 6.1 (Correctness of NTA(G))

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ and NTA(G) as before. Then, for every $w \in \Sigma^*$ and $z \in [p]^*$,

$$(w, S, \varepsilon) \vdash^* (\varepsilon, \varepsilon, z)$$
 iff z is a leftmost analysis of w

Proof.

⇒ (soundness): see exercises

(completeness): on the board

- Recap: Nondeterministic Top-Down Parsing
- Correctness of NTA(G)
- 3 Adding Lookahead
- 4 LL(k) Grammars
- 5 Follow Sets
- 6 LL(1) Grammars

Adding Lookahead

Goal: resolve nondeterminism of NTA(G) by supporting lookahead of $k \in \mathbb{N}$ symbols on the input

 \implies determination of expanding A-production by next k symbols

Definition 6.2 (first_k set)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$, $\alpha \in X^*$, and $k \in \mathbb{N}$. Then the first_k set of α , first_k(α) $\subseteq \Sigma^*$, is given by

$$\operatorname{first}_{k}(\alpha) := \{ v \in \Sigma^{k} \mid \operatorname{ex.} w \in \Sigma^{*} \text{ such that } \alpha \Rightarrow^{*} vw \} \cup \{ v \in \Sigma^{< k} \mid \alpha \Rightarrow^{*} v \}$$

Remark: $\operatorname{first}_k(\alpha)$ is effectively computable. If $\alpha \in \Sigma^*$, then $|\operatorname{first}_k(\alpha)| = 1$.

Example 6.3 (first_k set)

Let $G: S \rightarrow aSb \mid \varepsilon$.

- \mathfrak{S} first₃(Sa) = {a, aba, aab, aaa}

- Recap: Nondeterministic Top-Down Parsing
- Correctness of NTA(G)
- 3 Adding Lookahead
- 4 LL(k) Grammars
- 5 Follow Sets
- 6 LL(1) Grammars

LL(k) Grammars I

LL(k): reading of input from Left to right with k-lookahead, computing a Leftmost analysis

Definition 6.4 (LL(k) grammar)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ and $k \in \mathbb{N}$. Then G has the LL(k) property (notation: $G \in LL(k)$) if for all leftmost derivations of the form

$$S \Rightarrow_{l}^{*} wA\alpha \begin{cases} \Rightarrow_{l} w\beta\alpha \Rightarrow_{l}^{*} wx \\ \Rightarrow_{l} w\gamma\alpha \Rightarrow_{l}^{*} wy \end{cases}$$

such that $\beta \neq \gamma$, it follows that $\operatorname{first}_k(x) \neq \operatorname{first}_k(y)$ (i.e., different productions must not yield the same lookahead).

LL(k) Grammars II

Remarks:

• If $G \in LL(k)$, then the leftmost derivation step for $wA\alpha$ in

$$S \Rightarrow_I^* wA\alpha \begin{cases} \Rightarrow_I w\beta\alpha \Rightarrow_I^* wx \\ \Rightarrow_I w\gamma\alpha \Rightarrow_I^* wy \end{cases}$$

is determined by the next k symbols following w.

Corresponding computations of NTA(G):

- where $\pi_i = A \rightarrow \beta$ and $\pi_i = A \rightarrow \gamma$
- Deterministic decision in (*) possible if $first_k(x) \neq first_k(y)$
- **Problem:** how to determine the A-production from the lookahead (potentially infinitely many derivations $\beta \alpha \Rightarrow_{I}^{*} x / \gamma \alpha \Rightarrow_{I}^{*} y$)?

LL(k) **Grammars III**

Lemma 6.5 (Characterization of LL(k))

 $G \in LL(k)$ iff for all leftmost derivations of the form

$$S \Rightarrow_{I}^{*} wA\alpha \left\{ \begin{array}{l} \Rightarrow_{I} w\beta\alpha \\ \Rightarrow_{I} w\gamma\alpha \end{array} \right.$$

such that $\beta \neq \gamma$, it follows that $\operatorname{first}_k(\beta \alpha) \cap \operatorname{first}_k(\gamma \alpha) = \emptyset$.

Proof.

omitted

Remarks:

- If $G \in LL(k)$, then the A-production is determined by the lookahead sets $\operatorname{first}_k(\beta\alpha)$ (for every $A \to \beta \in P$).
- **Problem:** still infinitely many right contexts α to be considered (if β [or γ] "too short", i.e., $\operatorname{first}_k(\beta\alpha) \neq \operatorname{first}_k(\beta)$).
- Idea: α derives to "everything that follows A"

- 1 Recap: Nondeterministic Top-Down Parsing
- Correctness of NTA(G)
- 3 Adding Lookahead
- 4 LL(k) Grammars
- Follow Sets
- 6 LL(1) Grammars

The follow k Sets

Goal: determine all possible lookaheads from production alone (by combining all possible right contexts)

Definition 6.6 (follow k set)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$, $A \in N$, and $k \in \mathbb{N}$. Then the follow_k set of A, follow_k $(A) \subseteq \Sigma^*$, is given by

 $\operatorname{follow}_k(A) := \{ v \in \operatorname{first}_k(\alpha) \mid \operatorname{ex.} \ w \in \Sigma^*, \alpha \in X^* \text{ such that } S \Rightarrow_l^* wA\alpha \}.$

- 1 Recap: Nondeterministic Top-Down Parsing
- Correctness of NTA(G)
- 3 Adding Lookahead
- 4 LL(k) Grammars
- 5 Follow Sets
- 6 LL(1) Grammars

The Case k=1

Motivation:

- k = 1 sufficient to resolve nondeterminism in "most" practical applications
- Implementation of LL(k) parsers for k > 1 rather involved (cf. ANTLR [ANother Tool for Language Recognition; formerly PCCTS] at http://www.antlr.org/)

Abbreviations: fi := first₁, fo := follow₁, $\Sigma_{\varepsilon} := \Sigma \cup \{\varepsilon\}$

Corollary 6.7

• For every $\alpha \in X^*$,

$$\mathrm{fi}(\alpha) = \{ a \in \Sigma \mid \mathit{ex.} \ \mathit{w} \in \Sigma^* : \alpha \Rightarrow^* \mathit{aw} \} \cup \{ \varepsilon \mid \alpha \Rightarrow^* \varepsilon \} \subseteq \Sigma_\varepsilon$$

2 For every $A \in N$,

$$fo(A) = \{x \in fi(\alpha) \mid ex. \ w \in \Sigma^*, \alpha \in X^* : S \Rightarrow_I^* wA\alpha\} \subseteq \Sigma_{\varepsilon}.$$

Lookahead Sets

Definition 6.8 (Lookahead set)

Given
$$\pi = A \rightarrow \beta \in P$$
,

$$la(\pi) := fi(\beta \cdot fo(A)) \subseteq \Sigma_{\varepsilon}$$

is called the lookahead set of π (where $fi(\Gamma) := \bigcup_{\gamma \in \Gamma} fi(\gamma)$).

Corollary 6.9

- For all $a \in \Sigma$,
 - $a \in la(A \to \beta)$ iff $a \in fi(\beta)$ or $(\beta \Rightarrow^* \varepsilon \text{ and } a \in fo(A))$
- $\varepsilon \in la(A \to \beta)$ iff $\beta \Rightarrow^* \varepsilon$ and $\varepsilon \in fo(A)$