Compiler Construction

Lecture 6: Syntax Analysis Il (LL(k) Grammars)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Summer Semester 2014


noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ss-14/cc14/

@ Recap: Nondeterministic Top-Down Parsing

m Compiler Construction Summer Semester 2014 6.2



Conceptual Structure of a Compiler

Source code

(Lexical analysis (Scanner))

v (id, x1)(gets, )(id, y2)(plus, )(int, 1)
Gyntax analysis (Parser)) context-free grammars/pushdown automata
Assgn
Va{ \E>I<p

(Semantic analysis) 2R
ar onst

L
(Generation of intermediate code

Y
(Code optimization)

Y
(Generation of machine code

Target code
Rw.rH Compiler Construction Summer Semester 2014 6.3



Top-Down Parsing

Approach:

@ Given G € CFGy, construct a nondeterministic pushdown automaton
(PDA) which accepts L(G) and which additionally computes
corresponding leftmost derivations (similar to the proof of
“L(CFGx) C L(PDAx)")

input alphabet: >

pushdown alphabet: X

output alphabet: [p]

state set: not required

¢ € ¢ ¢

© Remove nondeterminism by allowing lookahead on the input:
G € LL(k) iff L(G) recognizable by deterministic PDA with lookahead
of k symbols

mH Compiler Construction Summer Semester 2014 6.4



The Nondeterministic Top-Down Automaton

Definition (Nondeterministic top-down parsing automaton)

Let G = (N,X,P,S) € CFGx. The nondeterministic top-down parsing
automaton of G, NTA(G), is defined by the following components.

@ Input alphabet: ¥
@ Pushdown alphabet: X
@ Output alphabet: [p]
o Configurations: * x X* x [p]* (top of pushdown to the left)
@ Transitions for w € *, o € X*, and z € [p]*:
expansion steps: if m1; = A — f3, then (w, Aa, z) F (w, Ba, zi)
matching steps: for every a € X, (aw, ac, z) F (w, «, 2)

@ Initial configuration for w € X*: (w, S,¢)

@ Final configurations: {e} x {e} x [p]*

Remark: NTA(G) is nondeterministic iff G contains A — 8 | v

mH Compiler Construction Summer Semester 2014 6.5



© Correctness of NTA(G)

m Compiler Construction Summer Semester 2014 6.6



Correctness of NTA(G)

Theorem 6.1 (Correctness of NTA(G))

Let G = (N,X,P,S) € CFGy and NTA(G) as before. Then, for every
w € X* and z € [p]*,

(w,S,e) F* (e,e,z) iff zis a leftmost analysis of w

— (soundness): see exercises

<= (completeness): on the board

mH Compiler Construction Summer Semester 2014 6.7



© Adding Lookahead

m Compiler Construction Summer Semester 2014 6.8



Adding Lookahead

Goal: resolve nondeterminism of NTA(G) by supporting lookahead of
k € N symbols on the input
= determination of expanding A-production by next k symbols

Definition 6.2 (firsty set)

Let G = (N,X,P,S) € CFGyx, o € X*, and k € N. Then the first, set of
a, firstg(a) € X*, is given by

firsty () := {v € ¥ | ex. w € Z* such that a =* vw} U
{vexr<k|la=*v}

Remark: firsty(«) is effectively computable. If & € X*, then |[first,(«)| = 1.

Example 6.3 (firsty set)

Let G: S — aSb | e.
Q firsty(ab) = {a} = firsto(a)
Q first3(S) = {¢, ab, aab, aaa}
© first3(Sa) = {a, aba, aab, aaa}

mH Compiler Construction Summer Semester 2014 6.9



Q LL(k) Grammars

m Compiler Construction Summer Semester 2014 6.10



LL(k) Grammars |

LL(k): reading of input from Left to right with k-lookahead, computing a
Leftmost analysis

Definition 6.4 (LL(k) grammar)

Let G = (N,X,P,S) € CFGy and k € N. Then G has the LL(k) property
(notation: G € LL(k)) if for all leftmost derivations of the form

« = wha =7 wx
D = WA {:>/ wya =7 wy
such that § # v, it follows that firsty(x) # first,(y)
(i.e., different productions must not yield the same lookahead).

mH Compiler Construction Summer Semester 2014 6.11



LL(k) Grammars Il

Remarks:
@ If G € LL(k), then the leftmost derivation step for wA« in

= wha =] wx

*
S = WAa{:>/ wyo =7 wy
is determined by the next k symbols following w.

@ Corresponding computations of NTA(G):
(*)
(wx,S,e) H* (x,Aa,z) F (x,Ba,zi) F* (e, ziZ)
(*)
(wy,S,e) H* (v,Aa,2) + (y,va,z)) H* (g,e,zZ2")
where 1 = A — fand mj = A — v
@ Deterministic decision in (x) possible if firsty(x) # firstx(y)

@ Problem: how to determine the A-production from the lookahead
(potentially infinitely many derivations fa =7 x / ya =7 y)?

m Compiler Construction Summer Semester 2014 6.12



LL(k) Grammars Il

Lemma 6.5 (Characterization of LL(k))

G € LL(k) iff for all leftmost derivations of the form

= wla

S = WAa{ Gt

such that B # ~, it follows that first,(Ba) N firstx(ya) = 0.

omitted O

Remarks:
e If G € LL(k), then the A-production is determined by the lookahead
sets firsty(Sa) (for every A — 5 € P).
@ Problem: still infinitely many right contexts « to be considered
(if B [or 7] “too short”, i.e., firsty(Bar) # firstx(5)).
o ldea: « derives to “everything that follows A”

mH Compiler Construction Summer Semester 2014 6.13



© Follow Sets

m Compiler Construction Summer Semester 2014 6.14



The follow, Sets

Goal: determine all possible lookaheads from production alone
(by combining all possible right contexts)

Definition 6.6 (follow set)

Let G=(N,X,P,S) € CFGx, A€ N, and k € N. Then the follow, set
of A, follow,(A) C ¥, is given by

followy (A) := {v € firsty(a) | ex. w € ¥, v € X* such that § =] wAa}.

mH Compiler Construction Summer Semester 2014 6.15



© LL(1) Grammars

m Compiler Construction Summer Semester 2014 6.16



The Case k=1

Motivation:
@ k =1 sufficient to resolve nondeterminism in “most” practical
applications
@ Implementation of LL(k) parsers for k > 1 rather involved
(cf. ANTLR [ANother Tool for Language Recognition; formerly
PCCTS] at http://www.antlr.org/)

Abbreviations: fi := first;, fo := follow;, X, : =X U {e}

Corollary 6.7
@ For every a € X*,
filo)={acl|exweX:a="aw}U{ec|a="c} C X,

Q Forevery A€ N,
fo(A) ={x efi(a) |ex. w e X", a € X* : § =] wAa} C ..

mH Compiler Construction Summer Semester 2014 6.17


http://www.antlr.org/

Lookahead Sets

Definition 6.8 (Lookahead set)

Givenmt=A— € P,
la(m) := fi(5 - fo(A)) C X,
is called the lookahead set of 7 (where fi(T') := (U, < fi(7))-

Corollary 6.9
@ Forallacy,
aela(A— B)iffacfi(B) or (B="¢ and a € fo(A))

Q ccla(A— B) iff =%¢ and ¢ € fo(A)

mH Compiler Construction Summer Semester 2014 6.18



	Recap: Nondeterministic Top-Down Parsing
	Correctness of NTA(G)
	Adding Lookahead
	LL(k) Grammars
	Follow Sets
	LL(1) Grammars

