Compiler Construction

Lecture 5: Syntax Analysis I (Introduction)

Thomas Noll

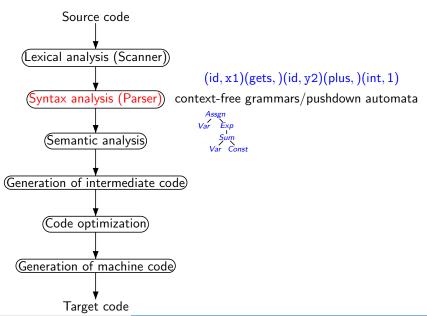
Lehrstuhl für Informatik 2 (Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Summer Semester 2014

Conceptual Structure of a Compiler



Outline

- Problem Statement
- 2 Context-Free Grammars and Languages
- Parsing Context-Free Languages
- 4 Nondeterministic Top-Down Parsing

Syntactic Structures

From Merriam-Webster's Online Dictionary

Syntax: the way in which linguistic elements (as words) are put together to form constituents (as phrases or clauses)

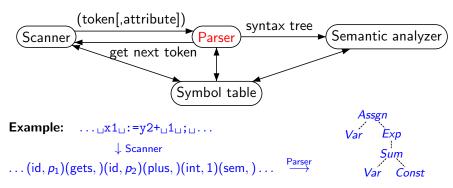
- Starting point: sequence of symbols as produced by the scanner Here: ignore attribute information
 - Σ (finite) set of tokens (= syntactic atoms; terminals)
 (e.g., {id, if, int, ...})
 - $w \in \Sigma^*$ token sequence (of course, not every $w \in \Sigma^*$ forms a valid program)
- Syntactic units:
 - atomic: keywords, variable/type/procedure/... identifiers, numerals, arithmetic/Boolean operators, ...
 - complex: declarations, arithmetic/Boolean expressions, statements, ...
- **Observation:** the hierarchical structure of syntactic units can be described by context-free grammars

Syntax Analysis

Definition 5.1

The goal of syntax analysis is to determine the syntactic structure of a program, given by a token sequence, according to a context-free grammar.

The corresponding program is called a parser:



Outline

- Problem Statement
- Context-Free Grammars and Languages
- Parsing Context-Free Languages
- 4 Nondeterministic Top-Down Parsing

Context-Free Grammars I

Definition 5.2 (Syntax of context-free grammars)

A context-free grammar (CFG) (over Σ) is a quadruple

$$G = \langle N, \Sigma, P, S \rangle$$

where

- N is a finite set of nonterminal symbols,
- Σ is a (finite) alphabet of terminal symbols (disjoint from N),
- P is a finite set of production rules of the form $A \to \alpha$ where $A \in N$ and $\alpha \in X^*$ for $X := N \cup \Sigma$, and
- $S \in N$ is a start symbol.

The set of all context-free grammars over Σ is denoted by CFG_{Σ} .

Remarks: as denotations we generally use

- $A, B, C, \ldots \in N$ for nonterminal symbols
- $a, b, c, \ldots \in \Sigma$ for terminal symbols
- $u, v, w, x, y, \ldots \in \Sigma^*$ for terminal words
- $\alpha, \beta, \gamma, \ldots \in X^*$ for sentences

Context-Free Grammars II

Context-free grammars generate context-free languages:

Definition 5.3 (Semantics of context-free grammars)

Let $G = \langle N, \Sigma, P, S \rangle$ be a context-free grammar.

• The derivation relation $\Rightarrow \subseteq X^+ \times X^*$ of G is defined by

$$\alpha \Rightarrow \beta$$
 iff there exist $\alpha_1, \alpha_2 \in X^*, A \rightarrow \gamma \in P$ such that $\alpha = \alpha_1 A \alpha_2$ and $\beta = \alpha_1 \gamma \alpha_2$.

- If in addition $\alpha_1 \in \Sigma^*$ or $\alpha_2 \in \Sigma^*$, then we write $\alpha \Rightarrow_I \beta$ or $\alpha \Rightarrow_r \beta$, respectively (leftmost/rightmost derivation).
- The language generated by G is given by

$$L(G) := \{ w \in \Sigma^* \mid S \Rightarrow^* w \}.$$

• If a language $L \subseteq \Sigma^*$ is generated by some $G \in CFG_{\Sigma}$, then L is called context free. The set of all context-free languages over Σ is denoted by CFL_{Σ} .

Remark: obviously, $L(G) = \{ w \in \Sigma^* \mid S \Rightarrow_l^* w \} = \{ w \in \Sigma^* \mid S \Rightarrow_r^* w \}$

Context-Free Languages

Example 5.4

The grammar $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ over $\Sigma := \{a, b\}$, given by the productions

$$S \rightarrow aSb \mid \varepsilon$$
,

generates the context-free (and non-regular) language

$$L = \{a^n b^n \mid n \in \mathbb{N}\}.$$

The example derivation

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

can be represented by the following syntax tree for aabb:



Syntax Trees, Derivations, and Words

Observations:

- Every syntax tree yields exactly one word (= concatenation of leaves).
- Every syntax tree corresponds to exactly one leftmost derivation, and vice versa.
- Every syntax tree corresponds to exactly one rightmost derivation, and vice versa.

Thus: syntax trees are uniquely representable by leftmost/rightmost derivations

But: a word can have several syntax trees (see next slide)

Ambiguity of CFGs and CFLs

Definition 5.5 (Ambiguity)

- A context-free grammar $G \in CFG_{\Sigma}$ is called unambiguous if every word $w \in L(G)$ has exactly one syntax tree. Otherwise it is called ambiguous.
- A context-free language $L \in CFL_{\Sigma}$ is called inherently ambiguous if every grammar $G \in CFG_{\Sigma}$ with L(G) = L is ambiguous.

Example 5.6

on the board

Corollary 5.7

A grammar $G \in CFG_{\Sigma}$ is unambiguous iff every word $w \in L(G)$ has exactly one leftmost derivation iff every word $w \in L(G)$ has exactly one rightmost derivation.

Outline

- Problem Statement
- 2 Context-Free Grammars and Languages
- Parsing Context-Free Languages
- 4 Nondeterministic Top-Down Parsing

The Word Problem for Context-Free Languages

Problem 5.8 (Word problem for context-free languages)

Given $G \in CFG_{\Sigma}$ and $w \in \Sigma^*$, decide whether $w \in L(G)$ (and determine a corresponding syntax tree).

This problem is decidable for arbitrary CFGs:

- (for CFGs in Chomsky Normal Form)
 Using the tabular method by Cocke, Younger, and Kasami
 ("CYK Algorithm"; time/space complexity $\mathcal{O}(|w|^3)/\mathcal{O}(|w|^2)$)
- Using the predecessor method:

$$w \in L(G) \iff S \in \operatorname{pre}^*(\{w\})$$

where $\operatorname{pre}^*(M) := \{\alpha \in X^* \mid \alpha \Rightarrow^* \beta \text{ for some } \beta \in M\}$
(polynomial [non-linear] time complexity)

Parsing Context-Free Languages

Goal: exploit the special syntactic structures as present in programming languages (usually: no ambiguities) to devise parsing methods which are based on deterministic pushdown automata with linear space and time complexity

Two approaches:

Top-down parsing: construction of syntax tree from the root towards the leaves, representation as leftmost derivation

Bottom-up parsing: construction of syntax tree from the leaves towards the root, representation as (reversed) rightmost derivation

Leftmost/Rightmost Analysis I

Goal: compact representation of left-/rightmost derivations by index sequences

Definition 5.9 (Leftmost/rightmost analysis)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ where $P = \{\pi_1, \dots, \pi_p\}$.

- If $i \in [p]$, $\pi_i = A \to \gamma$, $w \in \Sigma^*$, and $\alpha \in X^*$, then we write $wA\alpha \stackrel{i}{\Rightarrow}_{l} w\gamma\alpha$ and $\alpha Aw \stackrel{i}{\Rightarrow}_{r} \alpha\gamma w$.
- If $z = i_1 \dots i_n \in [p]^*$, we write $\alpha \stackrel{\not s}{\Rightarrow}_I \beta$ if there exist $\alpha_0, \dots, \alpha_n \in X^*$ such that $\alpha_0 = \alpha$, $\alpha_n = \beta$, and $\alpha_{j-1} \stackrel{i_j}{\Rightarrow}_I \alpha_j$ for every $j \in [n]$ (analogously for $\stackrel{\not s}{\Rightarrow}_I$).
- An index sequence $z \in [p]^*$ is called a leftmost analysis (rightmost analysis) of α if $S \stackrel{Z}{\Rightarrow}_{l} \alpha$ ($S \stackrel{Z}{\Rightarrow}_{r} \alpha$), respectively.

Leftmost/Rightmost Analysis

Example 5.10

Grammar for arithmetic expressions:

Leftmost derivation of (a)*b:

$$E \stackrel{?}{\Rightarrow}_{l} T \stackrel{?}{\Rightarrow}_{l} T*F \stackrel{4}{\Rightarrow}_{l} F*F \stackrel{5}{\Rightarrow}_{l} (E)*F$$

$$\stackrel{?}{\Rightarrow}_{l} (T)*F \stackrel{4}{\Rightarrow}_{l} (F)*F \stackrel{6}{\Rightarrow}_{l} (a)*F \stackrel{7}{\Rightarrow}_{l} (a)*b$$

⇒ leftmost analysis: 23452467

Rightmost derivation of (a)*b:

$$E \stackrel{2}{\Rightarrow}_{r} T \stackrel{3}{\Rightarrow}_{r} T*F \stackrel{7}{\Rightarrow}_{r} T*b \stackrel{4}{\Rightarrow}_{r} F*b$$

$$\stackrel{5}{\Rightarrow}_{r} (E)*b \stackrel{2}{\Rightarrow}_{r} (T)*b \stackrel{4}{\Rightarrow}_{r} (F)*b \stackrel{6}{\Rightarrow}_{r} (a)*b$$

⇒ rightmost analysis: 23745246

Reducedness of Context-Free Grammars

General assumption in the following: every grammar is reduced

Definition 5.11 (Reduced CFG)

A grammar $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ is called reduced if for every $A \in N$ there exist $\alpha, \beta \in X^*$ and $w \in \Sigma^*$ such that $S \Rightarrow^* \alpha A \beta \quad (A \text{ reachable}) \text{ and}$ $A \Rightarrow^* w \qquad (A \text{ productive}).$

Outline

- Problem Statement
- 2 Context-Free Grammars and Languages
- Parsing Context-Free Languages
- 4 Nondeterministic Top-Down Parsing

Top-Down Parsing

Approach:

- **②** Given $G \in CFG_{\Sigma}$, construct a nondeterministic pushdown automaton (PDA) which accepts L(G) and which additionally computes corresponding leftmost derivations (similar to the proof of " $L(CFG_{\Sigma}) \subseteq L(PDA_{\Sigma})$ ")
 - input alphabet: Σ
 - pushdown alphabet: X
 - output alphabet: [p]
 - state set: not required
- Remove nondeterminism by allowing lookahead on the input: $G \in LL(k)$ iff L(G) recognizable by deterministic PDA with lookahead of k symbols

The Nondeterministic Top-Down Automaton I

Definition 5.12 (Nondeterministic top-down parsing automaton)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$. The nondeterministic top-down parsing automaton of G, NTA(G), is defined by the following components.

- Input alphabet: Σ
- Pushdown alphabet: X
- Output alphabet: [p]
- Configurations: $\Sigma^* \times X^* \times [p]^*$ (top of pushdown to the left)
- Transitions for $w \in \Sigma^*$, $\alpha \in X^*$, and $z \in [p]^*$: expansion steps: if $\pi_i = A \to \beta$, then $(w, A\alpha, z) \vdash (w, \beta\alpha, zi)$ matching steps: for every $a \in \Sigma$, $(aw, a\alpha, z) \vdash (w, \alpha, z)$
- Initial configuration for $w \in \Sigma^*$: (w, S, ε)
- Final configurations: $\{\varepsilon\} \times \{\varepsilon\} \times [p]^*$

Remark: NTA(G) is nondeterministic iff G contains $A \rightarrow \beta \mid \gamma$

The Nondeterministic Top-Down Automaton II

Example 5.13

Grammar for arithmetic expressions (cf. Example 5.10):

$$G_{AE}: E \to E+T \mid T$$
 (1,2)
 $T \to T*F \mid F$ (3,4)
 $F \to (E) \mid a \mid b$ (5,6,7)

Leftmost analysis of (a)*b:

```
((a)*b, E, \varepsilon)
    \vdash ((a)*b, T , 2
   \vdash ((a)*b, T*F, 23
\vdash ((a)*b, F*F, 234
   \vdash ((a)*b, (E)*F, 2345
    \vdash (a)*b, E)*F, 2345
    \vdash (a)*b, T)*F, 23452
    \vdash (a)*b, F)*F , 234524
    \vdash (a)*b, a)*F, 2345246
    \vdash ( )*b, )*F , 2345246
    \vdash ( *b, *F , 2345246
   b, h ( 2345246 )

b, b , 23452467)
    ⊢ ( b, F , 2345246
         \varepsilon, \varepsilon , 23452467)
```