Compiler Construction Lecture 5: Syntax Analysis I (Introduction)

Thomas Noll

Lehrstuhl für Informatik 2 (Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Summer Semester 2014

Conceptual Structure of a Compiler

Problem Statement

2 Context-Free Grammars and Languages

3 Parsing Context-Free Languages

4 Nondeterministic Top-Down Parsing

Syntax: the way in which linguistic elements (as words) are put together to form constituents (as phrases or clauses)

Syntax: the way in which linguistic elements (as words) are put together to form constituents (as phrases or clauses)

- **Starting point:** sequence of symbols as produced by the scanner Here: ignore attribute information
 - Σ (finite) set of tokens (= syntactic atoms; terminals)

$$(e.g., \{id, if, int, \ldots\})$$

• $w \in \Sigma^*$ token sequence

(of course, not every $w \in \Sigma^*$ forms a valid program)

Syntax: the way in which linguistic elements (as words) are put together to form constituents (as phrases or clauses)

- **Starting point:** sequence of symbols as produced by the scanner Here: ignore attribute information
 - Σ (finite) set of tokens (= syntactic atoms; terminals)

$$(\mathsf{e.g.}, \{\mathsf{id}, \mathsf{if}, \mathsf{int}, \ldots\})$$

• $w \in \Sigma^*$ token sequence

(of course, not every $w \in \Sigma^*$ forms a valid program)

• Syntactic units:

atomic: keywords, variable/type/procedure/... identifiers, numerals, arithmetic/Boolean operators, ...

complex: declarations, arithmetic/Boolean expressions, statements, ...

Syntax: the way in which linguistic elements (as words) are put together to form constituents (as phrases or clauses)

- **Starting point:** sequence of symbols as produced by the scanner Here: ignore attribute information
 - Σ (finite) set of tokens (= syntactic atoms; terminals)

$$(e.g., \{id, if, int, \ldots\})$$

• $w \in \Sigma^*$ token sequence

(of course, not every $w \in \Sigma^*$ forms a valid program)

• Syntactic units:

atomic: keywords, variable/type/procedure/... identifiers, numerals, arithmetic/Boolean operators, ...

- complex: declarations, arithmetic/Boolean expressions, statements, ...
- **Observation:** the hierarchical structure of syntactic units can be described by context-free grammars

Compiler Construction

Definition 5.1

The goal of syntax analysis is to determine the syntactic structure of a program, given by a token sequence, according to a context-free grammar.

Definition 5.1

The goal of syntax analysis is to determine the syntactic structure of a program, given by a token sequence, according to a context-free grammar.

The corresponding program is called a parser:

Definition 5.1

The goal of syntax analysis is to determine the syntactic structure of a program, given by a token sequence, according to a context-free grammar.

The corresponding program is called a parser:

RNTHAACHEN

Problem Statement

2 Context-Free Grammars and Languages

3 Parsing Context-Free Languages

Definition 5.2 (Syntax of context-free grammars)

A context-free grammar (CFG) (over Σ) is a quadruple

 $G = \langle N, \Sigma, P, S \rangle$

where

- N is a finite set of nonterminal symbols,
- Σ is a (finite) alphabet of terminal symbols (disjoint from N),
- P is a finite set of production rules of the form A → α where A ∈ N and α ∈ X* for X := N ∪ Σ, and
- $S \in N$ is a start symbol.

The set of all context-free grammars over Σ is denoted by CFG_{Σ} .

Definition 5.2 (Syntax of context-free grammars)

A context-free grammar (CFG) (over Σ) is a quadruple

 $G = \langle N, \Sigma, P, S \rangle$

where

- N is a finite set of nonterminal symbols,
- Σ is a (finite) alphabet of terminal symbols (disjoint from N),
- P is a finite set of production rules of the form $A \to \alpha$ where $A \in N$ and $\alpha \in X^*$ for $X := N \cup \Sigma$, and
- $S \in N$ is a start symbol.

The set of all context-free grammars over Σ is denoted by CFG_{Σ} .

Remarks: as denotations we generally use

- $A, B, C, \ldots \in N$ for nonterminal symbols
- $a, b, c, \ldots \in \Sigma$ for terminal symbols
- $u, v, w, x, y, \ldots \in \Sigma^*$ for terminal words
- $\alpha, \beta, \gamma, \ldots \in X^*$ for sentences RWITHAACHEN

Compiler Construction

Context-free grammars generate context-free languages:

Definition 5.3 (Semantics of context-free grammars)

Let $G = \langle N, \Sigma, P, S \rangle$ be a context-free grammar.

• The derivation relation $\Rightarrow \subseteq X^+ \times X^*$ of G is defined by

 $\begin{array}{l} \alpha \Rightarrow \beta \text{ iff there exist } \alpha_1, \alpha_2 \in X^*, A \rightarrow \gamma \in P \\ \text{ such that } \alpha = \alpha_1 A \alpha_2 \text{ and } \beta = \alpha_1 \gamma \alpha_2. \end{array}$

Context-free grammars generate context-free languages:

Definition 5.3 (Semantics of context-free grammars)

Let $G = \langle N, \Sigma, P, S \rangle$ be a context-free grammar.

• The derivation relation $\Rightarrow \subseteq X^+ \times X^*$ of G is defined by

 $\alpha \Rightarrow \beta$ iff there exist $\alpha_1, \alpha_2 \in X^*, A \rightarrow \gamma \in P$ such that $\alpha = \alpha_1 A \alpha_2$ and $\beta = \alpha_1 \gamma \alpha_2$.

If in addition α₁ ∈ Σ* or α₂ ∈ Σ*, then we write α ⇒₁ β or α ⇒_r β, respectively (leftmost/rightmost derivation).

Context-free grammars generate context-free languages:

Definition 5.3 (Semantics of context-free grammars)

Let $G = \langle N, \Sigma, P, S \rangle$ be a context-free grammar.

• The derivation relation $\Rightarrow \subseteq X^+ \times X^*$ of G is defined by

 $\alpha \Rightarrow \beta$ iff there exist $\alpha_1, \alpha_2 \in X^*, A \rightarrow \gamma \in P$ such that $\alpha = \alpha_1 A \alpha_2$ and $\beta = \alpha_1 \gamma \alpha_2$.

- If in addition $\alpha_1 \in \Sigma^*$ or $\alpha_2 \in \Sigma^*$, then we write $\alpha \Rightarrow_I \beta$ or $\alpha \Rightarrow_r \beta$, respectively (leftmost/rightmost derivation).
- The language generated by G is given by

 $L(G) := \{ w \in \Sigma^* \mid S \Rightarrow^* w \}.$

Context-free grammars generate context-free languages:

Definition 5.3 (Semantics of context-free grammars)

Let $G = \langle N, \Sigma, P, S \rangle$ be a context-free grammar.

• The derivation relation $\Rightarrow \subseteq X^+ \times X^*$ of G is defined by

 $\alpha \Rightarrow \beta$ iff there exist $\alpha_1, \alpha_2 \in X^*, A \rightarrow \gamma \in P$ such that $\alpha = \alpha_1 A \alpha_2$ and $\beta = \alpha_1 \gamma \alpha_2$.

- If in addition $\alpha_1 \in \Sigma^*$ or $\alpha_2 \in \Sigma^*$, then we write $\alpha \Rightarrow_I \beta$ or $\alpha \Rightarrow_r \beta$, respectively (leftmost/rightmost derivation).
- The language generated by G is given by

 $L(G) := \{ w \in \Sigma^* \mid S \Rightarrow^* w \}.$

If a language L ⊆ Σ* is generated by some G ∈ CFG_Σ, then L is called context free. The set of all context-free languages over Σ is denoted by CFL_Σ.

Context-free grammars generate context-free languages:

Definition 5.3 (Semantics of context-free grammars)

Let $G = \langle N, \Sigma, P, S \rangle$ be a context-free grammar.

• The derivation relation $\Rightarrow \subseteq X^+ \times X^*$ of G is defined by

 $\alpha \Rightarrow \beta$ iff there exist $\alpha_1, \alpha_2 \in X^*, A \rightarrow \gamma \in P$ such that $\alpha = \alpha_1 A \alpha_2$ and $\beta = \alpha_1 \gamma \alpha_2$.

- If in addition $\alpha_1 \in \Sigma^*$ or $\alpha_2 \in \Sigma^*$, then we write $\alpha \Rightarrow_I \beta$ or $\alpha \Rightarrow_r \beta$, respectively (leftmost/rightmost derivation).
- The language generated by G is given by

 $L(G) := \{ w \in \Sigma^* \mid S \Rightarrow^* w \}.$

If a language L ⊆ Σ* is generated by some G ∈ CFG_Σ, then L is called context free. The set of all context-free languages over Σ is denoted by CFL_Σ.

Remark: obviously, $L(G) = \{w \in \Sigma^* \mid S \Rightarrow_l^* w\} = \{w \in \Sigma^* \mid S \Rightarrow_r^* w\}$

Context-Free Languages

Example 5.4

The grammar $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ over $\Sigma := \{a, b\}$, given by the productions

 $S \rightarrow aSb \mid \varepsilon$,

generates the context-free (and non-regular) language

 $L = \{a^n b^n \mid n \in \mathbb{N}\}.$

Context-Free Languages

Example 5.4

The grammar $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ over $\Sigma := \{a, b\}$, given by the productions

 $S \rightarrow aSb \mid \varepsilon$,

generates the context-free (and non-regular) language

 $L = \{a^n b^n \mid n \in \mathbb{N}\}.$

The example derivation

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

can be represented by the following syntax tree for *aabb*:

Observations:

- Every syntax tree yields exactly one word (= concatenation of leaves).
- Every syntax tree corresponds to exactly one leftmost derivation, and vice versa.
- Every syntax tree corresponds to exactly one rightmost derivation, and vice versa.

Thus: syntax trees are **uniquely** representable by leftmost/rightmost derivations

Observations:

- Every syntax tree yields exactly one word (= concatenation of leaves).
- Every syntax tree corresponds to exactly one leftmost derivation, and vice versa.
- Every syntax tree corresponds to exactly one rightmost derivation, and vice versa.

Thus: syntax trees are **uniquely** representable by leftmost/rightmost derivations

But: a word can have several syntax trees (see next slide)

Definition 5.5 (Ambiguity)

 A context-free grammar G ∈ CFG_Σ is called unambiguous if every word w ∈ L(G) has exactly one syntax tree. Otherwise it is called ambiguous.

Definition 5.5 (Ambiguity)

- A context-free grammar G ∈ CFG_Σ is called unambiguous if every word w ∈ L(G) has exactly one syntax tree. Otherwise it is called ambiguous.
- A context-free language L ∈ CFL_Σ is called inherently ambiguous if every grammar G ∈ CFG_Σ with L(G) = L is ambiguous.

Definition 5.5 (Ambiguity)

- A context-free grammar G ∈ CFG_Σ is called unambiguous if every word w ∈ L(G) has exactly one syntax tree. Otherwise it is called ambiguous.
- A context-free language L ∈ CFL_Σ is called inherently ambiguous if every grammar G ∈ CFG_Σ with L(G) = L is ambiguous.

Example 5.6

on the board

Definition 5.5 (Ambiguity)

- A context-free grammar G ∈ CFG_Σ is called unambiguous if every word w ∈ L(G) has exactly one syntax tree. Otherwise it is called ambiguous.
- A context-free language L ∈ CFL_Σ is called inherently ambiguous if every grammar G ∈ CFG_Σ with L(G) = L is ambiguous.

Example 5.6

on the board

Corollary 5.7

A grammar $G \in CFG_{\Sigma}$ is unambiguous iff every word $w \in L(G)$ has exactly one leftmost derivation iff every word $w \in L(G)$ has exactly one rightmost derivation.

RWTHAACHEN

Compiler Construction

Problem Statement

2 Context-Free Grammars and Languages

- Parsing Context-Free Languages
 - 4 Nondeterministic Top-Down Parsing

Problem 5.8 (Word problem for context-free languages)

Given $G \in CFG_{\Sigma}$ and $w \in \Sigma^*$, decide whether $w \in L(G)$ (and determine a corresponding syntax tree).

Problem 5.8 (Word problem for context-free languages)

Given $G \in CFG_{\Sigma}$ and $w \in \Sigma^*$, decide whether $w \in L(G)$ (and determine a corresponding syntax tree).

This problem is decidable for arbitrary CFGs:

 (for CFGs in Chomsky Normal Form) Using the tabular method by Cocke, Younger, and Kasami ("CYK Algorithm"; time/space complexity O(|w|³)/O(|w|²))

Problem 5.8 (Word problem for context-free languages)

Given $G \in CFG_{\Sigma}$ and $w \in \Sigma^*$, decide whether $w \in L(G)$ (and determine a corresponding syntax tree).

This problem is decidable for arbitrary CFGs:

- (for CFGs in Chomsky Normal Form) Using the tabular method by Cocke, Younger, and Kasami ("CYK Algorithm"; time/space complexity O(|w|³)/O(|w|²))
- Using the predecessor method:

 $w \in L(G) \iff S \in \operatorname{pre}^{*}(\{w\})$ where $\operatorname{pre}^{*}(M) := \{\alpha \in X^{*} \mid \alpha \Rightarrow^{*} \beta \text{ for some } \beta \in M\}$ (polynomial [non-linear] time complexity) **Goal:** exploit the special syntactic structures as present in programming languages (usually: no ambiguities) to devise parsing methods which are based on deterministic pushdown automata with linear space and time complexity

Goal: exploit the special syntactic structures as present in programming languages (usually: no ambiguities) to devise parsing methods which are based on deterministic pushdown automata with linear space and time complexity

Two approaches:

Top-down parsing: construction of syntax tree from the root towards the leaves, representation as leftmost derivation Bottom-up parsing: construction of syntax tree from the leaves towards the root, representation as (reversed) rightmost derivation

Goal: compact representation of left-/rightmost derivations by index sequences

Definition 5.9 (Leftmost/rightmost analysis)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ where $P = \{\pi_1, \dots, \pi_p\}$. • If $i \in [p]$, $\pi_i = A \to \gamma$, $w \in \Sigma^*$, and $\alpha \in X^*$, then we write $wA\alpha \stackrel{i}{\Rightarrow}_I w\gamma\alpha$ and $\alpha Aw \stackrel{i}{\Rightarrow}_r \alpha\gamma w$.

Goal: compact representation of left-/rightmost derivations by index sequences

Definition 5.9 (Leftmost/rightmost analysis) Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ where $P = \{\pi_1, \dots, \pi_p\}$. • If $i \in [p]$, $\pi_i = A \rightarrow \gamma$, $w \in \Sigma^*$, and $\alpha \in X^*$, then we write $wA\alpha \stackrel{i}{\Rightarrow}_I w\gamma \alpha$ and $\alpha Aw \stackrel{i}{\Rightarrow}_r \alpha \gamma w$. • If $z = i_1 \dots i_n \in [p]^*$, we write $\alpha \stackrel{Z}{\Rightarrow}_I \beta$ if there exist $\alpha_0, \dots, \alpha_n \in X^*$ such that $\alpha_0 = \alpha$, $\alpha_n = \beta$, and $\alpha_{j-1} \stackrel{i_j}{\Rightarrow}_I \alpha_j$ for every $j \in [n]$ (analogously for $\stackrel{Z}{\Rightarrow}_I$).

Goal: compact representation of left-/rightmost derivations by index sequences

Definition 5.9 (Leftmost/rightmost analysis) Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ where $P = \{\pi_1, \dots, \pi_p\}$. • If $i \in [p]$, $\pi_i = A \rightarrow \gamma$, $w \in \Sigma^*$, and $\alpha \in X^*$, then we write $wA\alpha \stackrel{i}{\Rightarrow}_I w\gamma \alpha$ and $\alpha Aw \stackrel{i}{\Rightarrow}_r \alpha \gamma w$. • If $z = i_1 \dots i_n \in [p]^*$, we write $\alpha \stackrel{Z}{\Rightarrow}_I \beta$ if there exist $\alpha_0, \dots, \alpha_n \in X^*$ such that $\alpha_0 = \alpha$, $\alpha_n = \beta$, and $\alpha_{j-1} \stackrel{i_j}{\Rightarrow}_I \alpha_j$ for every $j \in [n]$ (analogously for $\stackrel{Z}{\Rightarrow}_r$).

An index sequence z ∈ [p]* is called a leftmost analysis (rightmost analysis) of α if S ⇒_I α (S ⇒_r α), respectively.

Leftmost/Rightmost Analysis

Example 5.10

Grammar for arithmetic expressions:

$$\begin{array}{rcl} G_{AE}: & E \rightarrow E + T \mid T & (1,2) \\ & T \rightarrow T * F \mid F & (3,4) \\ & F \rightarrow (E) \mid a \mid b & (5,6,7) \end{array}$$

Example 5.10

Grammar for arithmetic expressions:

$$\begin{array}{rcl} G_{AE}: & E \rightarrow E+T \mid T & (1,2) \\ & T \rightarrow T*F \mid F & (3,4) \\ & F \rightarrow (E) \mid a \mid b & (5,6,7) \end{array}$$

Leftmost derivation of (a)*b:

$$E \stackrel{2}{\Rightarrow}_{l} T \stackrel{3}{\Rightarrow}_{l} T*F \stackrel{4}{\Rightarrow}_{l} F*F \stackrel{5}{\Rightarrow}_{l} (E)*F$$

$$\stackrel{2}{\Rightarrow}_{l} (T)*F \stackrel{4}{\Rightarrow}_{l} (F)*F \stackrel{6}{\Rightarrow}_{l} (a)*F \stackrel{7}{\Rightarrow}_{l} (a)*b$$

 \implies leftmost analysis: 23452467

Example 5.10

Grammar for arithmetic expressions:

$$\begin{array}{rcl} G_{AE}: & E \rightarrow E+T \mid T & (1,2) \\ & T \rightarrow T*F \mid F & (3,4) \\ & F \rightarrow (E) \mid a \mid b & (5,6,7) \end{array}$$

Leftmost derivation of (a)*b:

$$E \stackrel{2}{\Rightarrow}_{1} T \stackrel{3}{\Rightarrow}_{1} T*F \stackrel{4}{\Rightarrow}_{1} F*F \stackrel{5}{\Rightarrow}_{1} (E)*F$$
$$\stackrel{2}{\Rightarrow}_{1} (T)*F \stackrel{4}{\Rightarrow}_{1} (F)*F \stackrel{6}{\Rightarrow}_{1} (a)*F \stackrel{7}{\Rightarrow}_{1} (a)*b$$

 \implies leftmost analysis: 23452467

Rightmost derivation of (a) *b:

$$E \stackrel{2}{\Rightarrow}_{r} T \stackrel{3}{\Rightarrow}_{r} T*F \stackrel{7}{\Rightarrow}_{r} T*b \stackrel{4}{\Rightarrow}_{r} F*b$$

$$\stackrel{5}{\Rightarrow}_{r} (E)*b \stackrel{2}{\Rightarrow}_{r} (T)*b \stackrel{4}{\Rightarrow}_{r} (F)*b \stackrel{6}{\Rightarrow}_{r} (a)*b$$

rightmost analysis: 23745246

General assumption in the following: every grammar is reduced

Definition 5.11 (Reduced CFG)

A grammar $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ is called reduced if for every $A \in N$ there exist $\alpha, \beta \in X^*$ and $w \in \Sigma^*$ such that $S \Rightarrow^* \alpha A \beta$ (A reachable) and $A \Rightarrow^* w$ (A productive).

Problem Statement

2 Context-Free Grammars and Languages

3 Parsing Context-Free Languages

Top-Down Parsing

Approach:

- Given G ∈ CFG_Σ, construct a nondeterministic pushdown automaton (PDA) which accepts L(G) and which additionally computes corresponding leftmost derivations (similar to the proof of "L(CFG_Σ) ⊆ L(PDA_Σ)")
 - input alphabet: Σ
 - pushdown alphabet: X
 - output alphabet: [p]
 - state set: not required

Approach:

- Given G ∈ CFG_Σ, construct a nondeterministic pushdown automaton (PDA) which accepts L(G) and which additionally computes corresponding leftmost derivations (similar to the proof of "L(CFG_Σ) ⊆ L(PDA_Σ)")
 - \bullet input alphabet: Σ
 - pushdown alphabet: X
 - output alphabet: [p]
 - state set: not required
- Remove nondeterminism by allowing lookahead on the input: G ∈ LL(k) iff L(G) recognizable by deterministic PDA with lookahead of k symbols

Definition 5.12 (Nondeterministic top-down parsing automaton)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$. The nondeterministic top-down parsing automaton of G, NTA(G), is defined by the following components.

- Input alphabet: Σ
- Pushdown alphabet: X
- Output alphabet: [p]
- Configurations: $\Sigma^* \times X^* \times [p]^*$ (top of pushdown to the left)
- Transitions for w ∈ Σ*, α ∈ X*, and z ∈ [p]*: expansion steps: if π_i = A → β, then (w, Aα, z) ⊢ (w, βα, zi) matching steps: for every a ∈ Σ, (aw, aα, z) ⊢ (w, α, z)
- Initial configuration for $w \in \Sigma^*$: (w, S, ε)
- Final configurations: $\{\varepsilon\} \times \{\varepsilon\} \times [p]^*$

Definition 5.12 (Nondeterministic top-down parsing automaton)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$. The nondeterministic top-down parsing automaton of G, NTA(G), is defined by the following components.

- Input alphabet: Σ
- Pushdown alphabet: X
- Output alphabet: [p]
- Configurations: $\Sigma^* \times X^* \times [p]^*$ (top of pushdown to the left)
- Transitions for w ∈ Σ*, α ∈ X*, and z ∈ [p]*: expansion steps: if π_i = A → β, then (w, Aα, z) ⊢ (w, βα, zi) matching steps: for every a ∈ Σ, (aw, aα, z) ⊢ (w, α, z)
- Initial configuration for $w \in \Sigma^*$: (w, S, ε)
- Final configurations: $\{\varepsilon\} \times \{\varepsilon\} \times [p]^*$

Remark: NTA(G) is nondeterministic iff G contains $A \rightarrow \beta \mid \gamma$

Example 5.13

Grammar for arithmetic expressions (cf. Example 5.10):

$$\begin{array}{lll} G_{AE} : E \rightarrow E + T \mid T & (1,2) \\ T \rightarrow T * F \mid F & (3,4) \\ F \rightarrow (E) \mid a \mid b & (5,6,7) \end{array}$$

Example 5.13

Grammar for arithmetic expressions (cf. Example 5.10):

$$\begin{array}{lll} G_{AE} : \begin{tabular}{cccc} E \rightarrow E + T & T & (1,2) \\ T \rightarrow T * F & F & (3,4) \\ F \rightarrow (E) & | a | b & (5,6,7) \end{array}$$

Leftmost analysis of (a)*b: ((a)*b, E , ε

Example 5.13

Grammar for arithmetic expressions (cf. Example 5.10):

$$\begin{array}{cccc} G_{AE} : E \rightarrow E + T \mid T & (1,2) \\ \hline T \rightarrow T * F \mid F & (3,4) \\ F \rightarrow (E) \mid a \mid b & (5,6,7) \end{array}$$

Leftmost analysis of (a)*b: ((a)*b, E , ε \vdash ((a)*b, T , 2

Example 5.13

Grammar for arithmetic expressions (cf. Example 5.10):

$$\begin{array}{rcl} G_{AE} : E \rightarrow E + T \mid T & (1,2) \\ T \rightarrow T * F \mid F & (3,4) \\ F \rightarrow (E) \mid a \mid b & (5,6,7) \end{array}$$

Leftmost analysis of (a)*b: ((a)*b, E , ε \vdash ((a)*b, T , 2 \vdash ((a)*b, T*F , 23

Example 5.13

Grammar for arithmetic expressions (cf. Example 5.10):

$$\begin{array}{lll} G_{AE}: E \rightarrow E + T \mid T & (1,2) \\ T \rightarrow T * F \mid F & (3,4) \\ F \rightarrow (E) \mid a \mid b & (5,6,7) \end{array}$$

Leftmost analysis of (a)*b: ((a)*b, E , ε \vdash ((a)*b, T , 2 \vdash ((a)*b, T*F , 23 \vdash ((a)*b, F*F , 234

Example 5.13

Grammar for arithmetic expressions (cf. Example 5.10):

$$\begin{array}{lll} G_{AE}: \ E \rightarrow E + T \mid T & (1,2) \\ T \rightarrow T * F \mid F & (3,4) \\ F \rightarrow (E) \mid a \mid b & (5,6,7) \end{array}$$

$$((a)*b, E, \varepsilon)$$

 $\vdash ((a)*b, T, 2)$
 $\vdash ((a)*b, T*F, 23)$
 $\vdash ((a)*b, F*F, 234)$
 $\vdash ((a)*b, (E)*F, 2345)$

Example 5.13

Grammar for arithmetic expressions (cf. Example 5.10):

$$\begin{array}{lll} G_{AE}: \begin{tabular}{cccc} E \rightarrow E + T & T & (1,2) \\ T \rightarrow T * F & F & (3,4) \\ F \rightarrow (E) & | a | b & (5,6,7) \end{array}$$

$$\begin{array}{c} ((a)*b, E , \varepsilon \\ \vdash ((a)*b, T , 2 \\ \vdash ((a)*b, T*F , 23 \\ \vdash ((a)*b, F*F , 234 \\ \vdash ((a)*b, (E)*F, 2345 \\ \vdash (a)*b, E)*F , 2345 \end{array}$$

Example 5.13

Grammar for arithmetic expressions (cf. Example 5.10):

$$\begin{array}{lll} G_{AE} : E \rightarrow E + T \mid T & (1,2) \\ T \rightarrow T * F \mid F & (3,4) \\ F \rightarrow (E) \mid a \mid b & (5,6,7) \end{array}$$

((a)*b, E,	ε
\vdash ((a)*b, T ,	2
\vdash ((a)*b, $T*F$,	23
\vdash ((a)*b, $F*F$,	234
\vdash ((a)*b, (E)*F,	2345
\vdash (a)*b, E)*F,	2345
\vdash (a)*b, T)*F,	23452

Example 5.13

Grammar for arithmetic expressions (cf. Example 5.10):

((a)*b, E,	ε
\vdash ((a)*b, T ,	2
\vdash ((a)*b, $T*F$,	23
\vdash ((a)*b, $F*F$,	234
\vdash ((a)*b, (E)*F,	2345
\vdash (a)*b, E)*F,	2345
\vdash (a)*b, T)*F,	23452
\vdash (a)*b, F)* F ,	234524

Example 5.13

Grammar for arithmetic expressions (cf. Example 5.10):

$$\begin{array}{lll} G_{AE}: E \rightarrow E + T \mid T & (1,2) \\ T \rightarrow T * F \mid F & (3,4) \\ F \rightarrow (E) \mid a \mid b & (5,6,7) \end{array}$$

((a)*b, E,	ε
\vdash ((a)*b, T ,	2
\vdash ((a)*b, $T*F$,	23
\vdash ((a)*b, $F*F$,	234
\vdash ((a)*b, (E)*F,	2345
\vdash (a)*b, E)*F,	2345
\vdash (a)*b, T)*F,	23452
\vdash (a)*b, F)*F,	234524
\vdash (a)*b, a)*F,	2345246

Example 5.13

Grammar for arithmetic expressions (cf. Example 5.10):

$$\begin{array}{lll} G_{AE}: E \rightarrow E + T \mid T & (1,2) \\ T \rightarrow T * F \mid F & (3,4) \\ F \rightarrow (E) \mid a \mid b & (5,6,7) \end{array}$$

((a)*b, E ,	ε)
\vdash ((a)*b, T ,	2 j
\vdash ((a)*b, $T*F$,	23)
\vdash ((a)*b, $F*F$,	234)
\vdash ((a)*b, (E)*F,	2345)
\vdash (a)*b, E)*F,	2345)
\vdash (a)*b, T)*F,	23452)
\vdash (a)*b, F)*F,	234524)
\vdash (a)*b, a)*F,	2345246)
\vdash ()*b,)*F,	2345246)

Example 5.13

Grammar for arithmetic expressions (cf. Example 5.10):

$$\begin{array}{lll} G_{AE}: E \rightarrow E + T \mid T & (1,2) \\ T \rightarrow T * F \mid F & (3,4) \\ F \rightarrow (E) \mid a \mid b & (5,6,7) \end{array}$$

((a)*b, E,	ε)
\vdash ((a)*b, T ,	2)
\vdash ((a)*b, $T*F$,	23)
\vdash ((a)*b, $F*F$,	234)
\vdash ((a)*b, (E)*F,	2345)
\vdash (a)*b, E)*F,	2345)
\vdash (a)*b, T)*F,	23452)
\vdash (a)*b, F)*F,	234524)
\vdash (a)*b, a)*F,	2345246)
\vdash ()*b,)*F ,	2345246)
\vdash (*b, *F,	2345246)

Example 5.13

Grammar for arithmetic expressions (cf. Example 5.10):

$$\begin{array}{rcl} G_{AE} : E \rightarrow E + T \mid T & (1,2) \\ T \rightarrow T * F \mid F & (3,4) \\ F \rightarrow (E) \mid \mathbf{a} \mid \mathbf{b} & (5,6,7) \end{array}$$

((a)*b, E,	ε)
\vdash ((a)*b, T ,	2)
\vdash ((a)*b, $T*F$,	23)
\vdash ((a)*b, $F*F$,	234)
\vdash ((a)*b, (E)*F,	2345)
\vdash (a)*b, E)*F,	2345)
\vdash (a)*b, T)*F,	23452)
\vdash (a)*b, F)*F,	234524)
\vdash (a)*b, a)*F,	2345246)
\vdash ()*b,)*F ,	2345246)
\vdash (*b, *F,	2345246)
\vdash (b, F ,	2345246)

Example 5.13

Grammar for arithmetic expressions (cf. Example 5.10):

$$\begin{array}{lll} G_{AE}: E \rightarrow E + T \mid T & (1,2) \\ T \rightarrow T * F \mid F & (3,4) \\ F \rightarrow (E) \mid a \mid b & (5,6,7) \end{array}$$

((a)*b, E	,ε)
\vdash ((a)*b, T	, 2)
\vdash ((a)*b, $T*F$, 23)
\vdash ((a)*b, $F*F$, 234)
\vdash ((a)*b, (E)*F	, 2345)
\vdash (a)*b, E)*F	, 2345)
\vdash (a)*b, T)*F	, 23452)
\vdash (a)*b, F)*F	, 234524)
\vdash (a)*b, a)*F	, 2345246)
\vdash ()*b,)*F	, 2345246)
\vdash (*b, *F	, 2345246)
\vdash (b, F ,	, 2345246)
⊢(b, b	, 23452467)

Example 5.13

Grammar for arithmetic expressions (cf. Example 5.10):

$$\begin{array}{lll} G_{AE} : E \rightarrow E + T \mid T & (1,2) \\ T \rightarrow T * F \mid F & (3,4) \\ F \rightarrow (E) \mid a \mid b & (5,6,7) \end{array}$$

((a)*b, <i>E</i>	,ε)
⊢ ((a)*b, T	, 2)
\vdash ((a)*b, T*F	, 23)
\vdash ((a)*b, $F*F$, 234)
\vdash ((a)*b, (E)*F	, 2345)
\vdash (a)*b, E)*F	, 2345)
\vdash (a)*b, T)*F	, 23452)
\vdash (a)*b, F)*F	, 234524)
\vdash (a)*b, a)*F	, 2345246)
⊢(`)*b,)*F	, 2345246)
⊢ (`*b, *F	, 2345246)
⊢(`b, F	, 2345246)
⊢ (`b, b	, 23452467)
$\vdash (\epsilon, \varepsilon)$, 23452467)