
Compiler Construction
Lecture 4: Lexical Analysis III

(Practical Aspects)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Summer Semester 2014

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Outline

1 Recap: First-Longest-Match Analysis

2 Time Complexity of First-Longest-Match Analysis

3 First-Longest-Match Analysis with NFA

4 Longest Match in Practice

5 Regular Definitions

6 Generating Scanners Using [f]lex

7 Preprocessing

Compiler Construction Summer Semester 2014 4.2

The Extended Matching Problem

Definition

Let n ≥ 1 and α1, . . . , αn ∈ REΩ with ε /∈ JαiK 6= ∅ for every i ∈ [n]
(= {1, . . . , n}). Let Σ := {T1, . . . ,Tn} be an alphabet of corresponding
tokens and w ∈ Ω+. If w1, . . . ,wk ∈ Ω+ such that

w = w1 . . .wk and
for every j ∈ [k] there exists ij ∈ [n] such that wj ∈ Jαij K,

then

(w1, . . . ,wk) is called a decomposition and
(Ti1 , . . . ,Tik) is called an analysis

of w w.r.t. α1, . . . , αn.

Problem (Extended matching problem)

Given α1, . . . , αn ∈ REΩ and w ∈ Ω+, decide whether there exists a
decomposition of w w.r.t. α1, . . . , αn and determine a corresponding
analysis.

Compiler Construction Summer Semester 2014 4.3

Ensuring Uniqueness

Two principles:
1 Principle of the longest match (“maximal munch tokenization”)

for uniqueness of decomposition
make lexemes as long as possible
motivated by applications: e.g., every (non-empty) prefix of an
identifier is also an identifier

2 Principle of the first match

for uniqueness of analysis
choose first matching regular expression (in the given order)
therefore: arrange keywords before identifiers (if keywords protected)

Compiler Construction Summer Semester 2014 4.4

Implementation of FLM Analysis

Algorithm (FLM analysis – overview)

Input: expressions α1, . . . , αn ∈ REΩ, tokens {T1, . . . ,Tn},
input word w ∈ Ω+

Procedure: 1 for every i ∈ [n], construct Ai ∈ DFAΩ such that
L(Ai) = JαiK (see DFA method; Algorithm 2.9)

2 construct the product automaton A ∈ DFAΩ such that
L(A) =

⋃n
i=1Jαi K

3 partition the set of final states of A to follow the
first-match principle

4 extend the resulting DFA to a backtracking DFA which
implements the longest-match principle

5 let the backtracking DFA run on w

Output: FLM analysis of w (if existing)

Compiler Construction Summer Semester 2014 4.5

(4) The Backtracking DFA

Definition (Backtracking DFA)

The set of configurations of B is given by

({N} ⊎ Σ)× Ω∗ ·Q · Ω∗ × Σ∗ · {ε, lexerr}

The initial configuration for an input word w ∈ Ω+ is (N , q0w , ε).

The transitions of B are defined as follows (where q′ := δ(q, a)):

normal mode: look for initial match

(N , qaw ,W) ⊢







(Ti , q
′w ,W) if q′ ∈ F (i)

(N , q′w ,W) if q′ ∈ P \ F
output: W · lexerr if q′ /∈ P

backtrack mode: look for longest match

(T , vqaw ,W) ⊢







(Ti , q
′w ,W) if q′ ∈ F (i)

(T , vaq′w ,W) if q′ ∈ P \ F
(N , q0vaw ,WT) if q′ /∈ P

end of input
(T , q,W) ⊢ output: WT if q ∈ F
(N , q,W) ⊢ output: W · lexerr if q ∈ P \ F

(T , vaq,W) ⊢ (N , q0va,WT) if q ∈ P \ F
Compiler Construction Summer Semester 2014 4.6

Outline

1 Recap: First-Longest-Match Analysis

2 Time Complexity of First-Longest-Match Analysis

3 First-Longest-Match Analysis with NFA

4 Longest Match in Practice

5 Regular Definitions

6 Generating Scanners Using [f]lex

7 Preprocessing

Compiler Construction Summer Semester 2014 4.7

Time Complexity of FLM Analysis

Lemma 4.1

The worst-case time complexity of FLM analysis using the backtracking
DFA on input w ∈ Ω+ is O(|w |2).

Proof.

lower bound: α1 = a, α2 = a∗b, w = am requires O(m2)

upper bound:

each run from mode N to T ∈ Σ consumes at least one input symbol
(and possibly reads all input symbols), involving at most
∑|w|

i=1 =
n(n+1)

2 transitions
if no Σ-mode is reached, lexerr is reported after ≤ |w | transitions

Remark: possible improvement by tabular method (similar to
Knuth-Morris-Pratt Algorithm for pattern matching in strings)

Literature: Th. Reps: “Maximal-Munch” Tokenization in Linear Time,
ACM TOPLAS 20(2), 1998, 259–273

Compiler Construction Summer Semester 2014 4.8

Outline

1 Recap: First-Longest-Match Analysis

2 Time Complexity of First-Longest-Match Analysis

3 First-Longest-Match Analysis with NFA

4 Longest Match in Practice

5 Regular Definitions

6 Generating Scanners Using [f]lex

7 Preprocessing

Compiler Construction Summer Semester 2014 4.9

A Backtracking NFA

A similar construction is possible for the NFA method:

1 Ai = 〈Qi ,Ω, δi , q
(i)
0 ,Fi〉 ∈ NFAΩ (i ∈ [n]) by NFA method

2 “Product” automaton: Q := {q0} ⊎
⊎n

i=1Qi

q0

A1

An

...

ε

ε

3 Partitioning of final states:
M ⊆ Q is called a Ti -matching if

M ∩ Fi 6= ∅ and for all j ∈ [i − 1] : M ∩ Fj = ∅

yields set of Ti -matchings F (i) ⊆ 2Q

M ⊆ Q is called productive if there exists a productive q ∈ M
yields productive state sets P ⊆ 2Q

4 Backtracking automaton: similar to DFA case
Compiler Construction Summer Semester 2014 4.10

Outline

1 Recap: First-Longest-Match Analysis

2 Time Complexity of First-Longest-Match Analysis

3 First-Longest-Match Analysis with NFA

4 Longest Match in Practice

5 Regular Definitions

6 Generating Scanners Using [f]lex

7 Preprocessing

Compiler Construction Summer Semester 2014 4.11

Longest Match in Practice

In general: lookahead of arbitrary length required

that is, |v | unbounded in configurations (T , vqw ,W)
see Lemma 4.1: α1 = a, α2 = a∗b, w = a . . . a

“Modern” programming languages (Pascal, Java, ...):
lookahead of one or two characters sufficient

separation of keywords, identifiers, etc. by spaces
Pascal: two-character lookahead required to distinguish 1.5 (real
number) from 1..5 (integer range)

However: principle of longest match not always applicable!

Compiler Construction Summer Semester 2014 4.12

Inadequacy of Longest Match I

Example 4.2 (Longest match in FORTRAN)

1 Relational expressions

valid lexemes: .EQ. (relational operator), EQ (identifier),
12 (integer), 12., .12 (reals)
input string: 12 .EQ. 12 12.EQ.12 (ignoring blanks!)
intended analysis: (int, 12)(relop, eq)(int, 12)
LM yields: (real, 12.0)(id, EQ)(real, 0.12)

⇒ wrong interpretation

2 DO loops
(correct) input string: DO 5 I = 1, 20 DO5I=1,20

intended analysis:
(do,)(label, 5)(id, I)(gets,)(int, 1)(comma,)(int, 20)
LM analysis (wrong): (id, DO5I)(gets,)(int, 1)(comma,)(int, 20)

(erroneous) input string: DO 5 I = 1. 20 DO5I=1.20

LM analysis (correct): (id, DO5I)(gets,)(real, 1.2)

Compiler Construction Summer Semester 2014 4.13

Inadequacy of Longest Match II

Example 4.3 (Longest match in C)

valid lexemes:

x (identifier)
= (assignment)
=- (subtractive assignment; K&R/ANSI-C: -=)
1, -1 (integers)

input string: x=-1

intended analysis: (id, x)(gets,)(int,−1)

LM yields: (id, x)(dec,)(int, 1)

⇒ wrong interpretation

Possible solutions:

Hand-written (non-FLM) scanners

FLM with lookahead (later)

Compiler Construction Summer Semester 2014 4.14

Outline

1 Recap: First-Longest-Match Analysis

2 Time Complexity of First-Longest-Match Analysis

3 First-Longest-Match Analysis with NFA

4 Longest Match in Practice

5 Regular Definitions

6 Generating Scanners Using [f]lex

7 Preprocessing

Compiler Construction Summer Semester 2014 4.15

Regular Definitions I

Goal: modularizing the representation of regular sets by introducing
additional identifiers

Definition 4.4 (Regular definition)

Let {R1, . . . ,Rn} be a set of symbols disjoint from Ω. A regular definition
(over Ω) is a sequence of equations

R1 = α1
...

Rn = αn

such that, for every i ∈ [n], αi ∈ REΩ⊎{R1,...,Ri−1}.

Remark: since recursion is not involved, every Ri can (iteratively) be
substituted by a regular expression α ∈ REΩ

(otherwise =⇒ context-free languages)

Compiler Construction Summer Semester 2014 4.16

Regular Definitions II

Example 4.5 (Symbol classes in Pascal)

Identifiers: Letter = A | . . . | Z | a | . . . | z
Digit = 0 | . . . | 9

Id = Letter (Letter | Digit)∗

Numerals: Digits = Digit+

(unsigned) Empty = ∅∗

OptFrac = .Digits | Empty
OptExp = E (+ | - | Empty)Digits | Empty

Num = Digits OptFrac OptExp

Rel. operators: RelOp = < | <= | = | <> | > | >=

Keywords: If = if
Then = then
Else = else

Compiler Construction Summer Semester 2014 4.17

Outline

1 Recap: First-Longest-Match Analysis

2 Time Complexity of First-Longest-Match Analysis

3 First-Longest-Match Analysis with NFA

4 Longest Match in Practice

5 Regular Definitions

6 Generating Scanners Using [f]lex

7 Preprocessing

Compiler Construction Summer Semester 2014 4.18

The [f]lex Tool

Usage of [f]lex (“[fast] lexical analyzer generator”):

spec.l
[f]lex
−→ lex.yy.c

cc
−→ a.out

[f]lex specification Scanner (in C) Executable

Program
a.out
−→ Symbol sequence

A [f]lex specification is of the form

Definitions (optional)
%%

Rules
%%

Auxiliary procedures (optional)

Compiler Construction Summer Semester 2014 4.19

[f]lex Specifications

Definitions: C code for declarations etc.: %{ Code %}
Regular definitions: Name RegExp ...
(non-recursive!)

Rules: of the form Pattern { Action }

Pattern: regular expression, possibly using Names
Action: C code for computing
symbol = (token, attribute)

token: integer return value, 0 = EOF

attribute: passed in global variable yylval
lexeme: accessible by yytext

matching rule found by FLM strategy
lexical errors catched by . (any character)

Compiler Construction Summer Semester 2014 4.20

Example [f]lex Specification

%{
#include <stdio.h>

typedef enum {EOF, IF, ID, RELOP, LT, ...} token_t;

unsigned int yylval; /* attribute values */

%}
LETTER [A-Za-z]

DIGIT [0-9]

ALPHANUM {LETTER}|{DIGIT}
SPACE [\t\n]

%%

"if" { return IF; }
"<" { yylval = LT; return RELOP; }
{LETTER}{ALPHANUM}* { yylval = install_id(); return ID; }
{SPACE}+ /* eat up whitespace */

. { fprintf (stderr, "Invalid character ’%c’\n", yytext[0]); }
%%

int main(void) {
token_t token;

while ((token = yylex()) != EOF)

printf ("(Token %d, Attribute %d)\n", token, yylval);

exit (0);

}
unsigned int install_id () {...} /* identifier name in yytext */

Compiler Construction Summer Semester 2014 4.21

Regular Expressions in [f]lex

Syntax Meaning

printable character this character
\n, \t, \123, etc. newline, tab, octal representation, etc.
. any character except \n
[Chars] one of Chars; ranges possible (“0-9”)
[^Chars] none of Chars
\\, \., \[, etc. \, ., [, etc.
"Text" Text without interpretation of ., [, \, etc.
^α α at beginning of line
α$ α at end of line
{Name} RegExp for Name
α? zero or one α
α* zero or more α
α+ one or more α
α{n,m} between n and m times α (“,m” optional)
(α) α
α1α2 concatenation
α1|α2 alternative
α1/α2 α1 but only if followed by α2 (lookahead)

Compiler Construction Summer Semester 2014 4.22

Using the Lookahead Operator

Example 4.6 (Lookahead in FORTRAN)

1 DO loops (cf. Example 4.2)

input string: DO 5 I = 1, 20

LM yields: (id,)(gets,)(int, 1)(comma,)(int, 20)
observation: decision for do token only possible after reading “,”
specification of DO keyword in [f]lex, using lookahead:
DO / ({LETTER}|{DIGIT})* = ({LETTER}|{DIGIT})* ,

2 IF statement

problem: FORTRAN keywords not reserved
example: IF(I,J) = 3 (assignment to an element of matrix IF)
conditional: IF (condition) THEN ... (with IF keyword)
specification of IF keyword in [f]lex, using lookahead:
IF / \(.* \) THEN

Compiler Construction Summer Semester 2014 4.23

Longest Match and Lookahead in [f]lex

%{
#include <stdio.h>

typedef enum {EoF, AB, A} token_t;

%}
%%

ab { return AB; }
a/bc { return A; }
. { fprintf (stderr, "Invalid character ’%c’\n", yytext[0]); }
%%

int main(void) {
token_t token;

while ((token = yylex()) != EoF) printf ("Token %d\n", token);

exit (0);

}

returns on input

a: Invalid character ’a’

ab: Token 1

abc: Token 2 Invalid character ’b’ Invalid character ’c’

=⇒ lookahead counts for length of match

Compiler Construction Summer Semester 2014 4.24

Outline

1 Recap: First-Longest-Match Analysis

2 Time Complexity of First-Longest-Match Analysis

3 First-Longest-Match Analysis with NFA

4 Longest Match in Practice

5 Regular Definitions

6 Generating Scanners Using [f]lex

7 Preprocessing

Compiler Construction Summer Semester 2014 4.25

Preprocessing

Preprocessing = preparation of source code before (lexical) analysis

Preprocessing steps

macro substitution

#define is capital(ch) ((ch) >= ’A’ && (ch) <= ’Z’)

file inclusion

#include "header.h"

conditional compilation

#ifdef UNIX
char* separator = ’/’
#endif
#ifdef WINDOWS
char* separator = ’\\’
#endif

elimination of comments

Compiler Construction Summer Semester 2014 4.26

	Recap: First-Longest-Match Analysis
	Time Complexity of First-Longest-Match Analysis
	First-Longest-Match Analysis with NFA
	Longest Match in Practice
	Regular Definitions
	Generating Scanners Using [f]lex
	Preprocessing

