Compiler Construction Lecture 4: Lexical Analysis III (Practical Aspects)

Thomas Noll

Lehrstuhl für Informatik 2 (Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Summer Semester 2014

1 Recap: First-Longest-Match Analysis

- 2 Time Complexity of First-Longest-Match Analysis
- 3 First-Longest-Match Analysis with NFA
- 4 Longest Match in Practice
- 5 Regular Definitions
- 6 Generating Scanners Using [f]lex
- Preprocessing

The Extended Matching Problem

Definition

Let $n \ge 1$ and $\alpha_1, \ldots, \alpha_n \in RE_{\Omega}$ with $\varepsilon \notin \llbracket \alpha_i \rrbracket \neq \emptyset$ for every $i \in [n]$ (= {1,...,n}). Let $\Sigma := \{T_1, \ldots, T_n\}$ be an alphabet of corresponding tokens and $w \in \Omega^+$. If $w_1, \ldots, w_k \in \Omega^+$ such that

- $w = w_1 \dots w_k$ and
- for every $j \in [k]$ there exists $i_j \in [n]$ such that $w_j \in [\alpha_{i_j}]$,

then

(w₁,..., w_k) is called a decomposition and
 (T_{i1},..., T_{ik}) is called an analysis

of w w.r.t. $\alpha_1, \ldots, \alpha_n$.

Problem (Extended matching problem)

Given $\alpha_1, \ldots, \alpha_n \in RE_{\Omega}$ and $w \in \Omega^+$, decide whether there exists a decomposition of w w.r.t. $\alpha_1, \ldots, \alpha_n$ and determine a corresponding analysis.

RWTHAACHEN

Two principles:

Principle of the longest match ("maximal munch tokenization")

- for uniqueness of decomposition
- make lexemes as long as possible
- motivated by applications: e.g., every (non-empty) prefix of an identifier is also an identifier

Principle of the first match

- for uniqueness of analysis
- choose first matching regular expression (in the given order)
- therefore: arrange keywords before identifiers (if keywords protected)

Algorithm (FLM analysis – overview)

Input: expressions $\alpha_1, \ldots, \alpha_n \in RE_{\Omega}$, tokens $\{T_1, \ldots, T_n\}$, input word $w \in \Omega^+$

- Procedure: **(1)** for every $i \in [n]$, construct $\mathfrak{A}_i \in DFA_{\Omega}$ such that $L(\mathfrak{A}_i) = \llbracket \alpha_i \rrbracket$ (see **DFA method**; Algorithm 2.9)
 - **2** construct the product automaton $\mathfrak{A} \in DFA_{\Omega}$ such that $L(\mathfrak{A}) = \bigcup_{i=1}^{n} \llbracket \alpha_i \rrbracket$
 - Solution the set of final states of \mathfrak{A} to follow the first-match principle
 - extend the resulting DFA to a backtracking DFA which implements the longest-match principle
 - Iet the backtracking DFA run on w

Output: FLM analysis of w (if existing)

(4) The Backtracking DFA

Definition (Backtracking DFA)

• The set of configurations of \mathfrak{B} is given by

 $(\{N\} \uplus \Sigma) \times \Omega^* \cdot Q \cdot \Omega^* \times \Sigma^* \cdot \{\varepsilon, \mathsf{lexerr}\}$

- The initial configuration for an input word $w \in \Omega^+$ is $(N, q_0 w, \varepsilon)$.
- The transitions of \mathfrak{B} are defined as follows (where $q' := \delta(q, a)$):
 - normal mode: look for initial match

$$(N, qaw, W) \vdash egin{cases} (T_i, q'w, W) & ext{if } q' \in F^{(i)} \ (N, q'w, W) & ext{if } q' \in P \setminus F \ \mathbf{output:} \ W \cdot ext{lexerr} & ext{if } q' \notin P \end{cases}$$

backtrack mode: look for longest match

$$(T, vqaw, W) \vdash \begin{cases} (T_i, q'w, W) & \text{if } q' \in F^{(i)} \\ (T, vaq'w, W) & \text{if } q' \in P \setminus F \\ (N, q_0 vaw, WT) & \text{if } q' \notin P \end{cases}$$

end of input

$$\begin{array}{ll} (T,q,W) \vdash \textbf{output:} & WT & \text{if } q \in F \\ (N,q,W) \vdash \textbf{output:} & W \cdot \text{lexerr} & \text{if } q \in P \setminus F \\ (T, vaq, W) \vdash (N, q_0 va, WT) & \text{if } q \in P \setminus F \end{array}$$

RWITHAACHEN

Compiler Construction

1 Recap: First-Longest-Match Analysis

Time Complexity of First-Longest-Match Analysis

- 3 First-Longest-Match Analysis with NFA
- 4 Longest Match in Practice
- 5 Regular Definitions
- 6 Generating Scanners Using [f]lex
- Preprocessing

Time Complexity of FLM Analysis

Lemma 4.1

The worst-case time complexity of FLM analysis using the backtracking DFA on input $w \in \Omega^+$ is $\mathcal{O}(|w|^2)$.

Proof.

- lower bound: $\alpha_1 = a$, $\alpha_2 = a^*b$, $w = a^m$ requires $\mathcal{O}(m^2)$
- upper bound:
 - each run from mode N to T ∈ Σ consumes at least one input symbol (and possibly reads all input symbols), involving at most ∑^{|w|}_{i=1} = n(n+1)/2 transitions
 if no Σ model is reached, lower is reported after < |w| transitions

 - if no Σ -mode is reached, lexerr is reported after $\leq |w|$ transitions

Remark: possible improvement by tabular method (similar to Knuth-Morris-Pratt Algorithm for pattern matching in strings) **Literature:** Th. Reps: *"Maximal-Munch" Tokenization in Linear Time*, ACM TOPLAS 20(2), 1998, 259–273

RWTHAACHEN

Compiler Construction

- 1 Recap: First-Longest-Match Analysis
- 2 Time Complexity of First-Longest-Match Analysis
- First-Longest-Match Analysis with NFA
 - 4 Longest Match in Practice
- 5 Regular Definitions
- 6 Generating Scanners Using [f]lex
- Preprocessing

A Backtracking NFA

A similar construction is possible for the NFA method:

- $\mathfrak{A}_i = \langle Q_i, \Omega, \delta_i, q_0^{(i)}, F_i \rangle \in NFA_{\Omega}$ $(i \in [n])$ by NFA method
- **2** "Product" automaton: $Q := \{q_0\} \uplus \biguplus_{i=1}^n Q_i$

Operation Partitioning of final states:

• $M \subseteq Q$ is called a T_i -matching if

 $M \cap F_i \neq \emptyset$ and for all $j \in [i-1] : M \cap F_j = \emptyset$

- yields set of T_i -matchings $F^{(i)} \subseteq 2^Q$
- $M \subseteq Q$ is called productive if there exists a productive $q \in M$
- yields productive state sets $P \subseteq 2^Q$
- Backtracking automaton: similar to DFA case

- 1 Recap: First-Longest-Match Analysis
- 2 Time Complexity of First-Longest-Match Analysis
- 3 First-Longest-Match Analysis with NFA
- 4 Longest Match in Practice
- 5 Regular Definitions
- 6 Generating Scanners Using [f]lex
- Preprocessing

Longest Match in Practice

• In general: lookahead of arbitrary length required

- that is, |v| unbounded in configurations (T, vqw, W)
- see Lemma 4.1: $\alpha_1 = a$, $\alpha_2 = a^*b$, $w = a \dots a$
- "Modern" programming languages (Pascal, Java, ...): lookahead of one or two characters sufficient
 - separation of keywords, identifiers, etc. by spaces
 - Pascal: two-character lookahead required to distinguish 1.5 (real number) from 1..5 (integer range)

However: principle of longest match not always applicable!

Inadequacy of Longest Match I

Example 4.2 (Longest match in FORTRAN)

Relational expressions

- valid lexemes: .EQ. (relational operator), EQ (identifier), 12 (integer), 12., .12 (reals)
- input string: 12...EQ...12 → 12.EQ.12 (ignoring blanks!)
- intended analysis: (int, 12)(relop, eq)(int, 12)
- LM yields: (real, 12.0)(id, EQ)(real, 0.12)
- ⇒ wrong interpretation
- D loops
 - (correct) input string: $DO_{\Box}5_{\Box}I_{\Box}=_{\Box}1,_{\Box}20 \rightsquigarrow DO5I=1,20$
 - intended analysis:
 - (do,)(label, 5)(id, I)(gets,)(int, 1)(comma,)(int, 20)
 - LM analysis (wrong): (id, D05I)(gets,)(int, 1)(comma,)(int, 20)
 - (erroneous) input string: $DO_{\Box}5_{\Box}I_{\Box}=_{\Box}1._{\Box}20 \rightarrow D05I=1.20$
 - LM analysis (correct): (id, D051)(gets,)(real, 1.2)

Inadequacy of Longest Match II

Example 4.3 (Longest match in C)

- valid lexemes:
 - x (identifier)
 - = (assignment)
 - =- (subtractive assignment; K&R/ANSI-C: -=)
 - 1, -1 (integers)
- input string: x=-1
- intended analysis: (id, x)(gets,)(int, -1)
- LM yields: (id, x)(dec,)(int, 1)

 \Rightarrow wrong interpretation

Possible solutions:

- Hand-written (non-FLM) scanners
- FLM with lookahead (later)

- 1 Recap: First-Longest-Match Analysis
- 2 Time Complexity of First-Longest-Match Analysis
- 3 First-Longest-Match Analysis with NFA
- 4 Longest Match in Practice
- 6 Regular Definitions
- 6 Generating Scanners Using [f]lex
- Preprocessing

Regular Definitions I

Goal: modularizing the representation of regular sets by introducing additional identifiers

Definition 4.4 (Regular definition)

Let $\{R_1, \ldots, R_n\}$ be a set of symbols disjoint from Ω . A regular definition (over Ω) is a sequence of equations

 \mathbf{P}_{\cdot} — \mathbf{Q}_{\cdot}

$$R_{1} = \alpha_{1}$$

$$\vdots$$

$$R_{n} = \alpha_{n}$$
ch that, for every $i \in [n], \ \alpha_{i} \in RE_{\Omega \models \{R_{1}, \dots, R_{i-1}\}}$

Remark: since recursion is not involved, every R_i can (iteratively) be substituted by a regular expression $\alpha \in RE_{\Omega}$ (otherwise \implies context-free languages)

SU

Example 4.5 (Symbol classes in Pascal)

Identifiers:	$\begin{array}{l} \textit{Letter} = A \mid \ldots \mid Z \mid a \mid \ldots \mid z \\ \textit{Digit} = 0 \mid \ldots \mid 9 \\ \textit{Id} = \textit{Letter} (\textit{Letter} \mid \textit{Digit})^* \end{array}$
Numerals: (unsigned)	Digits = Digit ⁺ Empty = Ø* OptFrac = .Digits Empty OptExp = E (+ - Empty) Digits Empty Num = Digits OptFrac OptExp
Rel. operators:	<i>RelOp</i> = < <= = <> > >=
Keywords:	lf = if Then = then Else = else

- Recap: First-Longest-Match Analysis
- 2 Time Complexity of First-Longest-Match Analysis
- 3 First-Longest-Match Analysis with NFA
- 4 Longest Match in Practice
- 5 Regular Definitions
- 6 Generating Scanners Using [f]lex
 - Preprocessing

The [f]lex Tool

Usage of [f]lex ("[fast] lexical analyzer generator"):

A [f]lex specification is of the form

Definitions (optional) %% Rules %% Auxiliary procedures (optional)

[f]lex Specifications

Definitions:

- C code for declarations etc.: %{ Code %}
 - Regular definitions: Name RegExp ... (non-recursive!)

Rules: of the form *Pattern* { *Action* }

- Pattern: regular expression, possibly using Names
- Action: C code for computing symbol = (token, attribute)
 - token: integer return value, 0 = EOF
 - attribute: passed in global variable yylval
 - lexeme: accessible by yytext
- matching rule found by FLM strategy
- lexical errors catched by . (any character)

```
%{
 #include <stdio.h>
 typedef enum {EOF, IF, ID, RELOP, LT, ...} token_t;
 unsigned int yylval; /* attribute values */
%}
LETTER
          [A-Za-z]
      [0-9]
DIGIT
ALPHANUM {LETTER} | {DIGIT}
           [ \t\n]
SPACE
%%
"if"
                      return IF; }
"<"
                     { yylval = LT; return RELOP; }
{LETTER}{ALPHANUM}* { yylval = install_id(); return ID; }
{SPACE}+
                    /* eat up whitespace */
                     { fprintf (stderr, "Invalid character '%c'\n", yytext[0]); }
%%
int main(void) {
 token t token:
 while ((token = yylex()) != EOF)
   printf ("(Token %d, Attribute %d)\n", token, yylval);
 exit (0);
unsigned int install_id () {...} /* identifier name in yytext */
```

Regular Expressions in [f]lex

Syntax	Meaning
printable character	this character
\n, \t, \123, etc.	newline, tab, octal representation, etc.
•	any character except \n
[Chars]	one of <i>Chars</i> ; ranges possible ("0-9")
[^Chars]	none of <i>Chars</i>
\ \., \[, etc.	., [, etc.
"Text"	<i>Text</i> without interpretation of $., [, etc.$
^α	lpha at beginning of line
α \$	α at end of line
{Name}	<i>RegExp</i> for <i>Name</i>
α ?	zero or one $lpha$
$\alpha *$	zero or more α
α +	one or more α
α {n,m}	between <i>n</i> and <i>m</i> times α (", <i>m</i> " optional)
(α)	α
$\alpha_1 \alpha_2$	concatenation
$\alpha_1 \alpha_2$	alternative
α_1/α_2	α_1 but only if followed by α_2 (lookahead)

RWITHAACHEN

Compiler Construction

Example 4.6 (Lookahead in FORTRAN)

D loops (cf. Example 4.2)

- input string: D0 5 I = 1, 20
- LM yields: (id,)(gets,)(int, 1)(comma,)(int, 20)
- observation: decision for do token only possible after reading ","
- specification of DO keyword in [f]lex, using lookahead:
 DO / ({LETTER}|{DIGIT})* = ({LETTER}|{DIGIT})* ,

IF statement

- problem: FORTRAN keywords not reserved
- example: IF(I,J) = 3 (assignment to an element of matrix IF)
- conditional: IF (condition) THEN ... (with IF keyword)
- specification of IF keyword in [f]lex, using lookahead:
 IF / \(.* \) THEN

Longest Match and Lookahead in [f]lex

```
%{
  #include <stdio.h>
  typedef enum {EoF, AB, A} token_t;
%}
%%
        { return AB; }
ab
a/bc
        { return A; }
        { fprintf (stderr, "Invalid character '%c'\n", yytext[0]); }
%%
int main(void) {
  token t token:
  while ((token = yylex()) != EoF) printf ("Token %d\n", token);
  exit (0);
}
returns on input
  • a: Invalid character 'a'
  ab: Token 1
  • abc: Token 2 Invalid character 'b' Invalid character 'c'
\implies lookahead counts for length of match
   RNTHAACHEN
                            Compiler Construction
                                                       Summer Semester 2014
```

4.24

- 1 Recap: First-Longest-Match Analysis
- 2 Time Complexity of First-Longest-Match Analysis
- 3 First-Longest-Match Analysis with NFA
- 4 Longest Match in Practice
- 5 Regular Definitions
- 6 Generating Scanners Using [f]lex
- Preprocessing

Preprocessing

Preprocessing = preparation of source code before (lexical) analysis

Preprocessing steps

macro substitution

```
#define is_capital(ch) ((ch) >= 'A' && (ch) <= 'Z')</pre>
```

• file inclusion

```
#include "header.h"
```

conditional compilation

```
#ifdef UNIX
char* separator = '/'
#endif
#ifdef WINDOWS
char* separator = '\\'
#endif
```

elimination of comments