Compiler Construction
 Lecture 4: Lexical Analysis III (Practical Aspects)

Thomas Noll

Lehrstuhl für Informatik 2 (Software Modeling and Verification)

RWTHAACHEN UNIVERSITY

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Summer Semester 2014

Outline

(1) Recap: First-Longest-Match Analysis
(2) Time Complexity of First-Longest-Match Analysis
(3) First-Longest-Match Analysis with NFA
(4) Longest Match in Practice
(5) Regular Definitions

6 Generating Scanners Using [f]lex
(7) Preprocessing

The Extended Matching Problem

Definition

Let $n \geq 1$ and $\alpha_{1}, \ldots, \alpha_{n} \in R E_{\Omega}$ with $\varepsilon \notin \llbracket \alpha_{i} \rrbracket \neq \emptyset$ for every $i \in[n]$ $(=\{1, \ldots, n\})$. Let $\Sigma:=\left\{T_{1}, \ldots, T_{n}\right\}$ be an alphabet of corresponding tokens and $w \in \Omega^{+}$. If $w_{1}, \ldots, w_{k} \in \Omega^{+}$such that

- $w=w_{1} \ldots w_{k}$ and
- for every $j \in[k]$ there exists $i_{j} \in[n]$ such that $w_{j} \in \llbracket \alpha_{i j} \rrbracket$, then
- $\left(w_{1}, \ldots, w_{k}\right)$ is called a decomposition and
- $\left(T_{i_{1}}, \ldots, T_{i_{k}}\right)$ is called an analysis
of w w.r.t. $\alpha_{1}, \ldots, \alpha_{n}$.

Problem (Extended matching problem)

Given $\alpha_{1}, \ldots, \alpha_{n} \in R E_{\Omega}$ and $w \in \Omega^{+}$, decide whether there exists a decomposition of w w.r.t. $\alpha_{1}, \ldots, \alpha_{n}$ and determine a corresponding analysis.

Ensuring Uniqueness

Two principles:

(1) Principle of the longest match ("maximal munch tokenization")

- for uniqueness of decomposition
- make lexemes as long as possible
- motivated by applications: e.g., every (non-empty) prefix of an identifier is also an identifier
(2) Principle of the first match
- for uniqueness of analysis
- choose first matching regular expression (in the given order)
- therefore: arrange keywords before identifiers (if keywords protected)

Implementation of FLM Analysis

Algorithm (FLM analysis - overview)

Input: expressions $\alpha_{1}, \ldots, \alpha_{n} \in R E_{\Omega}$, tokens $\left\{T_{1}, \ldots, T_{n}\right\}$, input word $w \in \Omega^{+}$
Procedure: (1) for every $i \in[n]$, construct $\mathfrak{A}_{i} \in D F A_{\Omega}$ such that $L\left(\mathfrak{A}_{i}\right)=\llbracket \alpha_{i} \rrbracket$ (see DFA method; Algorithm 2.9)
(2) construct the product automaton $\mathfrak{A} \in D F A_{\Omega}$ such that $L(\mathfrak{A})=\bigcup_{i=1}^{n} \llbracket \alpha_{i} \rrbracket$
(3) partition the set of final states of \mathfrak{A} to follow the first-match principle
(9) extend the resulting DFA to a backtracking DFA which implements the longest-match principle
(5) let the backtracking DFA run on w

Output: FLM analysis of w (if existing)

(4) The Backtracking DFA

Definition (Backtracking DFA)

- The set of configurations of \mathfrak{B} is given by

$$
(\{N\} \uplus \Sigma) \times \Omega^{*} \cdot Q \cdot \Omega^{*} \times \Sigma^{*} \cdot\{\varepsilon, \text { lexerr }\}
$$

- The initial configuration for an input word $w \in \Omega^{+}$is $\left(N, q_{0} w, \varepsilon\right)$.
- The transitions of \mathfrak{B} are defined as follows (where $q^{\prime}:=\delta(q, a)$):
- normal mode: look for initial match

$$
(N, \text { qaw, } W) \vdash \begin{cases}\left(T_{i}, q^{\prime} w, W\right) & \text { if } q^{\prime} \in F^{(i)} \\ \left(N, q^{\prime} w, W\right) & \text { if } q^{\prime} \in P \backslash F \\ \text { output: } W \cdot \text { lexerr } & \text { if } q^{\prime} \notin P\end{cases}
$$

- backtrack mode: look for longest match

$$
(T, \text { vqaw, } W) \vdash \begin{cases}\left(T_{i}, q^{\prime} w, W\right) & \text { if } q^{\prime} \in F^{(i)} \\ \left(T, v a q^{\prime} w, W\right) & \text { if } q^{\prime} \in P \backslash F \\ \left(N, q_{0} v a w, W T\right) & \text { if } q^{\prime} \notin P\end{cases}
$$

- end of input

$$
\begin{array}{ll}
(T, q, W) \vdash \text { output: } W T & \text { if } q \in F \\
(N, q, W) \vdash \text { output: } W \cdot \text { lexerr } & \text { if } q \in P \backslash F \\
(T, v a q, W) \vdash\left(N, q_{0} v a, W T\right) & \text { if } q \in P \backslash F
\end{array}
$$

Outline

(1) Recap: First-Longest-Match Analysis
(2) Time Complexity of First-Longest-Match Analysis

3 First-Longest-Match Analysis with NFA
(4) Longest Match in Practice
(5) Regular Definitions
(6) Generating Scanners Using [f]lex
(7) Preprocessing

Lemma 4.1

The worst-case time complexity of FLM analysis using the backtracking DFA on input $w \in \Omega^{+}$is $\mathcal{O}\left(|w|^{2}\right)$.

Time Complexity of FLM Analysis

Lemma 4.1

The worst-case time complexity of FLM analysis using the backtracking DFA on input $w \in \Omega^{+}$is $\mathcal{O}\left(|w|^{2}\right)$.

Proof.

- lower bound: $\alpha_{1}=a, \alpha_{2}=a^{*} b, w=a^{m}$ requires $\mathcal{O}\left(m^{2}\right)$

Time Complexity of FLM Analysis

Lemma 4.1

The worst-case time complexity of FLM analysis using the backtracking DFA on input $w \in \Omega^{+}$is $\mathcal{O}\left(|w|^{2}\right)$.

Proof.

- lower bound: $\alpha_{1}=a, \alpha_{2}=a^{*} b, w=a^{m}$ requires $\mathcal{O}\left(m^{2}\right)$
- upper bound:
- each run from mode N to $T \in \Sigma$ consumes at least one input symbol (and possibly reads all input symbols), involving at most
$\sum_{i=1}^{|w|}=\frac{n(n+1)}{2}$ transitions
- if no \sum-mode is reached, lexerr is reported after $\leq|w|$ transitions

Time Complexity of FLM Analysis

Lemma 4.1

The worst-case time complexity of FLM analysis using the backtracking DFA on input $w \in \Omega^{+}$is $\mathcal{O}\left(|w|^{2}\right)$.

Proof.

- lower bound: $\alpha_{1}=a, \alpha_{2}=a^{*} b, w=a^{m}$ requires $\mathcal{O}\left(m^{2}\right)$
- upper bound:
- each run from mode N to $T \in \Sigma$ consumes at least one input symbol (and possibly reads all input symbols), involving at most $\sum_{i=1}^{|w|}=\frac{n(n+1)}{2}$ transitions
- if no Σ-mode is reached, lexerr is reported after $\leq|w|$ transitions

Remark: possible improvement by tabular method (similar to Knuth-Morris-Pratt Algorithm for pattern matching in strings) Literature: Th. Reps: "Maximal-Munch" Tokenization in Linear Time, ACM TOPLAS 20(2), 1998, 259-273

Outline

(1) Recap: First-Longest-Match Analysis
(2) Time Complexity of First-Longest-Match Analysis
(3) First-Longest-Match Analysis with NFA
(4) Longest Match in Practice
(5) Regular Definitions
(6) Generating Scanners Using [f]lex
(7) Preprocessing

A Backtracking NFA

A similar construction is possible for the NFA method:
(1) $\mathfrak{A}_{i}=\left\langle Q_{i}, \Omega, \delta_{i}, q_{0}^{(i)}, F_{i}\right\rangle \in N F A_{\Omega}(i \in[n])$ by NFA method

A Backtracking NFA

A similar construction is possible for the NFA method:
(1) $\mathfrak{A}_{i}=\left\langle Q_{i}, \Omega, \delta_{i}, q_{0}^{(i)}, F_{i}\right\rangle \in N F A_{\Omega}(i \in[n])$ by NFA method
(2) "Product" automaton: $Q:=\left\{q_{0}\right\} \uplus \biguplus_{i=1}^{n} Q_{i}$

A Backtracking NFA

A similar construction is possible for the NFA method:
(1) $\mathfrak{A}_{i}=\left\langle Q_{i}, \Omega, \delta_{i}, q_{0}^{(i)}, F_{i}\right\rangle \in N F A_{\Omega}(i \in[n])$ by NFA method
(2) "Product" automaton: $Q:=\left\{q_{0}\right\} \uplus \biguplus_{i=1}^{n} Q_{i}$

(3) Partitioning of final states:

- $M \subseteq Q$ is called a T_{i}-matching if

$$
M \cap F_{i} \neq \emptyset \text { and for all } j \in[i-1]: M \cap F_{j}=\emptyset
$$

- yields set of T_{i}-matchings $F^{(i)} \subseteq 2^{Q}$
- $M \subseteq Q$ is called productive if there exists a productive $q \in M$
- yields productive state sets $P \subseteq 2^{Q}$

A Backtracking NFA

A similar construction is possible for the NFA method:
(1) $\mathfrak{A}_{i}=\left\langle Q_{i}, \Omega, \delta_{i}, q_{0}^{(i)}, F_{i}\right\rangle \in N F A_{\Omega}(i \in[n])$ by NFA method
(2) "Product" automaton: $Q:=\left\{q_{0}\right\} \uplus \biguplus_{i=1}^{n} Q_{i}$

(3) Partitioning of final states:

- $M \subseteq Q$ is called a T_{i}-matching if

$$
M \cap F_{i} \neq \emptyset \text { and for all } j \in[i-1]: M \cap F_{j}=\emptyset
$$

- yields set of T_{i}-matchings $F^{(i)} \subseteq 2^{Q}$
- $M \subseteq Q$ is called productive if there exists a productive $q \in M$
- yields productive state sets $P \subseteq 2^{Q}$
(3) Backtracking automaton: similar to DFA case

Outline

(1) Recap: First-Longest-Match Analysis
(2) Time Complexity of First-Longest-Match Analysis
(3) First-Longest-Match Analysis with NFA
4. Longest Match in Practice
(5) Regular Definitions
(6) Generating Scanners Using [f]lex
(7) Preprocessing

Longest Match in Practice

- In general: lookahead of arbitrary length required
- that is, $|v|$ unbounded in configurations ($T, v q w, W$)
- see Lemma 4.1: $\alpha_{1}=a, \alpha_{2}=a^{*} b, w=a \ldots a$
- In general: lookahead of arbitrary length required
- that is, $|v|$ unbounded in configurations ($T, v q w, W$)
- see Lemma 4.1: $\alpha_{1}=a, \alpha_{2}=a^{*} b, w=a \ldots a$
- "Modern" programming languages (Pascal, Java, ...): lookahead of one or two characters sufficient
- separation of keywords, identifiers, etc. by spaces
- Pascal: two-character lookahead required to distinguish 1.5 (real number) from 1. . 5 (integer range)
- In general: lookahead of arbitrary length required
- that is, $|v|$ unbounded in configurations ($T, v q w, W$)
- see Lemma 4.1: $\alpha_{1}=a, \alpha_{2}=a^{*} b, w=a \ldots a$
- "Modern" programming languages (Pascal, Java, ...): lookahead of one or two characters sufficient
- separation of keywords, identifiers, etc. by spaces
- Pascal: two-character lookahead required to distinguish 1.5 (real number) from 1. . 5 (integer range)

However: principle of longest match not always applicable!

Inadequacy of Longest Match I

Example 4.2 (Longest match in FORTRAN)

(1) Relational expressions

- valid lexemes: .EQ. (relational operator), EQ (identifier), 12 (integer), 12., . 12 (reals)
- input string: 12 」.EQ. $\quad 12 \rightsquigarrow 12$.EQ. 12 (ignoring blanks!)

Inadequacy of Longest Match I

Example 4.2 (Longest match in FORTRAN)

(1) Relational expressions

- valid lexemes: .EQ. (relational operator), EQ (identifier), 12 (integer), 12., . 12 (reals)
- input string: 12」.EQ. $12 \rightsquigarrow 12$.EQ. 12 (ignoring blanks!)
- intended analysis: (int, 12)(relop, eq)(int, 12)

Inadequacy of Longest Match I

Example 4.2 (Longest match in FORTRAN)

(1) Relational expressions

- valid lexemes: .EQ. (relational operator), EQ (identifier), 12 (integer), 12., . 12 (reals)
- input string: 12」.EQ. $12 \rightsquigarrow 12$.EQ. 12 (ignoring blanks!)
- intended analysis: (int, 12)(relop, eq), (int, 12)
- LM yields: (real, 12.0)(id, EQ)(real, 0.12)
\Rightarrow wrong interpretation

Inadequacy of Longest Match I

Example 4.2 (Longest match in FORTRAN)

(1) Relational expressions

- valid lexemes: .EQ. (relational operator), EQ (identifier), 12 (integer), 12., . 12 (reals)
- input string: 12」.EQ. $12 \rightsquigarrow 12$.EQ. 12 (ignoring blanks!)
- intended analysis: (int, 12)(relop, eq), (int, 12)
- LM yields: (real, 12.0)(id, EQ)(real, 0.12)
\Rightarrow wrong interpretation
(2) DO loops
- (correct) input string: $\left.\mathrm{DO}_{\sqcup} 5_{\sqcup} \mathrm{I}_{\sqcup}=\sqcup 1,\right\lrcorner 20 \rightsquigarrow$ D05I=1,20

Inadequacy of Longest Match I

Example 4.2 (Longest match in FORTRAN)

(1) Relational expressions

- valid lexemes: .EQ. (relational operator), EQ (identifier), 12 (integer), 12., . 12 (reals)
- input string: 12」.EQ. $12 \rightsquigarrow 12$.EQ. 12 (ignoring blanks!)
- intended analysis: (int, 12)(relop, eq), (int, 12)
- LM yields: (real, 12.0)(id, EQ)(real, 0.12)
\Rightarrow wrong interpretation
(2) DO loops
- (correct) input string: $\left.\mathrm{DO}_{\llcorner } 5_{\sqcup} \mathrm{I}_{\sqcup}=\sqcup 1,\right\lrcorner 20 \rightsquigarrow$ DO5I=1,20
- intended analysis:

$$
(\text { do, })(\text { label, } 5)(\text { id, I })(\text { gets, })(\text { int, } 1)(\text { comma, })(\text { int, 20) }
$$

Inadequacy of Longest Match I

Example 4.2 (Longest match in FORTRAN)

(1) Relational expressions

- valid lexemes: .EQ. (relational operator), EQ (identifier), 12 (integer), 12., . 12 (reals)
- input string: 12」.EQ. $12 \rightsquigarrow 12$.EQ. 12 (ignoring blanks!)
- intended analysis: (int, 12)(relop, eq), (int, 12)
- LM yields: (real, 12.0)(id, EQ)(real, 0.12)
\Rightarrow wrong interpretation
(2) DO loops
- (correct) input string: $\mathrm{DO}_{\llcorner } 5_{\sqcup} \mathrm{I}_{\sqcup}=\sqcup 1, \sqcup 20 \rightsquigarrow$ D05I=1,20
- intended analysis:
(do,)(label, 5)(id, I)(gets,)(int, 1)(comma,)(int, 20)
- LM analysis (wrong): (id, D05I)(gets,)(int, 1)(comma,)(int, 20)

Inadequacy of Longest Match I

Example 4.2 (Longest match in FORTRAN)

(1) Relational expressions

- valid lexemes: .EQ. (relational operator), EQ (identifier), 12 (integer), 12., . 12 (reals)
- input string: 12」.EQ. $12 \rightsquigarrow 12$.EQ. 12 (ignoring blanks!)
- intended analysis: (int, 12)(relop, eq), (int, 12)
- LM yields: (real, 12.0)(id, EQ)(real, 0.12)
\Rightarrow wrong interpretation
(2) DO loops
- (correct) input string: $\mathrm{DO}_{\sqcup} 5_{\sqcup} \mathrm{I}_{\sqcup}=\sqcup 1, \sqcup 20 \rightsquigarrow$ D05I=1,20
- intended analysis:
(do,)(label, 5)(id, I)(gets,)(int, 1)(comma,)(int, 20)
- LM analysis (wrong): (id, D05I)(gets,)(int, 1)(comma,)(int, 20)
- (erroneous) input string: $\mathrm{DO}_{\sqcup} 5_{\sqcup} \mathrm{I}_{\sqcup}=\sqcup 1 . \sqcup 20 \rightsquigarrow \mathrm{DO5I}=1.20$
- LM analysis (correct): (id, D05I)(gets,)(real, 1.2)

Inadequacy of Longest Match II

Example 4.3 (Longest match in C)

- valid lexemes:
- x (identifier)
- = (assignment)
- =- (subtractive assignment; K\&R/ANSI-C: -=)
- 1, -1 (integers)
- input string: $x=-1$

Inadequacy of Longest Match II

Example 4.3 (Longest match in C)

- valid lexemes:
- x (identifier)
- = (assignment)
- =- (subtractive assignment; K\&R/ANSI-C: -=)
- 1, -1 (integers)
- input string: $x=-1$
- intended analysis: (id, x)(gets,)(int, -1)

Inadequacy of Longest Match II

Example 4.3 (Longest match in C)

- valid lexemes:
- x (identifier)
- = (assignment)
- =- (subtractive assignment; K\&R/ANSI-C: -=)
- 1, -1 (integers)
- input string: $x=-1$
- intended analysis: (id, x)(gets,)(int, -1)
- LM yields: (id, x)(dec,)(int, 1)
\Rightarrow wrong interpretation

Inadequacy of Longest Match II

Example 4.3 (Longest match in C)

- valid lexemes:
- x (identifier)
- = (assignment)
- =- (subtractive assignment; K\&R/ANSI-C: -=)
- 1, -1 (integers)
- input string: $x=-1$
- intended analysis: (id, x)(gets,)(int, -1)
- LM yields: (id, x)(dec,)(int, 1)
\Rightarrow wrong interpretation

Possible solutions:

- Hand-written (non-FLM) scanners
- FLM with lookahead (later)

Outline

(1) Recap: First-Longest-Match Analysis
(2) Time Complexity of First-Longest-Match Analysis
(3) First-Longest-Match Analysis with NFA

4 Longest Match in Practice
(5) Regular Definitions
(6) Generating Scanners Using [f]lex
(7) Preprocessing

Regular Definitions I

Goal: modularizing the representation of regular sets by introducing additional identifiers

Regular Definitions I

Goal: modularizing the representation of regular sets by introducing additional identifiers

Definition 4.4 (Regular definition)

Let $\left\{R_{1}, \ldots, R_{n}\right\}$ be a set of symbols disjoint from Ω. A regular definition (over Ω) is a sequence of equations

$$
\begin{aligned}
R_{1} & =\alpha_{1} \\
& \vdots \\
R_{n} & =\alpha_{n}
\end{aligned}
$$

such that, for every $i \in[n], \alpha_{i} \in R E_{\Omega \uplus\left\{R_{1}, \ldots, R_{i-1}\right\}}$.

Regular Definitions I

Goal: modularizing the representation of regular sets by introducing additional identifiers

Definition 4.4 (Regular definition)

Let $\left\{R_{1}, \ldots, R_{n}\right\}$ be a set of symbols disjoint from Ω. A regular definition (over Ω) is a sequence of equations

$$
\begin{aligned}
R_{1} & =\alpha_{1} \\
& \vdots \\
R_{n}= & \alpha_{n}
\end{aligned}
$$

such that, for every $i \in[n], \alpha_{i} \in R E_{\Omega \uplus\left\{R_{1}, \ldots, R_{i-1}\right\}}$.

Remark: since recursion is not involved, every R_{i} can (iteratively) be substituted by a regular expression $\alpha \in R E_{\Omega}$ (otherwise \Longrightarrow context-free languages)

Regular Definitions II

Example 4.5 (Symbol classes in Pascal)

Identifiers:

$$
\begin{aligned}
\text { Letter } & =\mathrm{A}|\ldots| \mathrm{Z}|\mathrm{a}| \ldots \mid \mathrm{z} \\
\text { Digit } & =0|\ldots| \mathrm{y} \\
\text { Id } & =\text { Letter }(\text { Letter } \mid \text { Digit })^{*}
\end{aligned}
$$

Numerals: \quad Digits $=$ Digit $^{+}$
(unsigned) Empty $=\emptyset^{*}$
OptFrac $=$. Digits \mid Empty
OptExp $=\mathrm{E}(+|-|$ Empty) Digits \mid Empty
Num $=$ Digits OptFrac OptExp
Rel. operators:
RelOp $=<|<=|=|<>|>|>=$
Keywords:

$$
\text { If }=\text { if }
$$

Then $=$ then
Else $=$ else

Outline

(1) Recap: First-Longest-Match Analysis
(2) Time Complexity of First-Longest-Match Analysis
(3) First-Longest-Match Analysis with NFA

4 Longest Match in Practice
(5) Regular Definitions
6) Generating Scanners Using [f]lex
(7) Preprocessing

The [f]lex Tool

Usage of [f]lex ("[fast] lexical analyzer generator"):

The [f]lex Tool

Usage of [f]lex ("[fast] lexical analyzer generator"):

A [f]lex specification is of the form
Definitions (optional)
\%\%
Rules
\%\%
Auxiliary procedures (optional)

[f]lex Specifications

Definitions: - C code for declarations etc.: \%\{ Code \%\}

- Regular definitions: Name RegExp ... (non-recursive!)

[f] lex Specifications

Definitions: - C code for declarations etc.: \%\{ Code \%\}

- Regular definitions: Name RegExp ... (non-recursive!)
Rules: of the form Pattern \{ Action \}
- Pattern: regular expression, possibly using Names
- Action: C code for computing symbol $=$ (token, attribute)
- token: integer return value, $0=$ EOF
- attribute: passed in global variable yylval
- lexeme: accessible by yytext
- matching rule found by FLM strategy
- lexical errors catched by . (any character)

Example [f]lex Specification

```
%{
    #include <stdio.h>
    typedef enum {EOF, IF, ID, RELOP, LT, ...} token_t;
    unsigned int yylval; /* attribute values */
%}
LETTER [A-Za-z]
DIGIT [0-9]
ALPHANUM {LETTER}|{DIGIT}
SPACE [ \t\n]
%%
"if" {return IF; }
"<" { yylval = LT; return RELOP; }
{LETTER}{ALPHANUM}* { yylval = install_id(); return ID; }
{SPACE}+ /* eat up whitespace */
    { fprintf (stderr, "Invalid character '%c'\n", yytext[0]); }
%%
int main(void) {
    token_t token;
    while ((token = yylex()) != EOF)
        printf ("(Token %d, Attribute %d)\n", token, yylval);
    exit (0);
}
unsigned int install_id () {...} /* identifier name in yytext */
```


Regular Expressions in [f]lex

Syntax	Meaning
printable character	this character
$\backslash \mathrm{n}, \backslash \mathrm{t}, \backslash 123$, etc.	newline, tab, octal representation, etc.
\cdot	any character except $\backslash \mathrm{n}$
[Chars]	one of Chars; ranges possible ("0-9")
$[\wedge$ Chars $]$	none of Chars
$\backslash \backslash, \backslash ., \backslash[$, etc.	$\backslash, .$, [, etc.
${ }^{\prime \prime}$ Text"	Text without interpretation of ., [,
, etc.	
${ }^{\wedge} \alpha$	α at beginning of line
$\alpha \$$	α at end of line
$\{N a m e\}$	RegExp for Name
$\alpha ?$	zero or one α
$\alpha *$	zero or more α
$\alpha+$	one or more α
$\alpha\{n, m\}$	between n and m times α (", $m^{\prime \prime}$ optional)
(α)	α
$\alpha_{1} \alpha_{2}$	concatenation
$\alpha_{1} \mid \alpha_{2}$	alternative
α_{1} / α_{2}	α_{1} but only if followed by α_{2} (lookahead)

Using the Lookahead Operator

Example 4.6 (Lookahead in FORTRAN)

(1) DO loops (cf. Example 4.2)

- input string: DO 5 I = 1, 20
- LM yields: (id,)(gets,)(int, 1)(comma,)(int, 20)
- observation: decision for do token only possible after reading ","
- specification of DO keyword in [f] lex, using lookahead:

DO / (\{LETTER $\} \mid\{D I G I T\}) *=(\{\operatorname{LETTER}\} \mid\{D I G I T\}) *$,

Using the Lookahead Operator

Example 4.6 (Lookahead in FORTRAN)

(1) DO loops (cf. Example 4.2)

- input string: DO 5 I = 1, 20
- LM yields: (id,)(gets,)(int, 1)(comma,)(int, 20)
- observation: decision for do token only possible after reading ","
- specification of DO keyword in [f]lex, using lookahead:

DO / (\{LETTER\}|\{DIGIT\})* = (\{LETTER\}|\{DIGIT\})* ,
(2) IF statement

- problem: FORTRAN keywords not reserved
- example: $\operatorname{IF}(I, J)=3$ (assignment to an element of matrix IF)
- conditional: IF (condition) THEN ... (with IF keyword)
- specification of IF keyword in [f]lex, using lookahead: IF /
(.*
) THEN

Longest Match and Lookahead in $[f]$ lex

```
%{
    #include <stdio.h>
    typedef enum {EoF, AB, A} token_t;
%}
%%
ab { return AB; }
a/bc { return A; }
{ fprintf (stderr, "Invalid character '%c'\n", yytext[0]); }
%%
int main(void) {
    token_t token;
    while ((token = yylex()) != EoF) printf ("Token %d\n", token);
    exit (0);
}
```


Longest Match and Lookahead in $[f]$ lex

```
%{
    #include <stdio.h>
    typedef enum {EoF, AB, A} token_t;
%}
%%
ab { return AB; }
a/bc { return A; }
{ fprintf (stderr, "Invalid character '%c'\n", yytext[0]); }
%%
int main(void) {
    token_t token;
    while ((token = yylex()) != EoF) printf ("Token %d\n", token);
    exit (0);
}
returns on input
    O a: Invalid character 'a'
    - ab: Token 1
    0 abc: Token 2 Invalid character 'b' Invalid character 'c'
lookahead counts for length of match
```


Outline

(1) Recap: First-Longest-Match Analysis
(2) Time Complexity of First-Longest-Match Analysis

3 First-Longest-Match Analysis with NFA
(4) Longest Match in Practice
(5) Regular Definitions
(6) Generating Scanners Using [f]lex
(7) Preprocessing

Preprocessing

Preprocessing $=$ preparation of source code before (lexical) analysis

Preprocessing steps

- macro substitution
\#define is_capital(ch) ((ch) >= 'A' \&\& (ch) <= 'Z')
- file inclusion
\#include "header.h"
- conditional compilation

```
#ifdef UNIX
char* separator = '/'
#endif
#ifdef WINDOWS
char* separator = '\\'
#endif
```

- elimination of comments

