
Compiler Construction
Lecture 3: Lexical Analysis II
(Extended Matching Problem)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Summer Semester 2014

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Outline

1 Recap: Lexical Analysis

2 Complexity Analysis of Simple Matching

3 The Extended Matching Problem

4 First-Longest-Match Analysis

5 Implementation of FLM Analysis

Compiler Construction Summer Semester 2014 3.2

Lexical Analysis

Definition

The goal of lexical analysis is to decompose a source program into a
sequence of lexemes and their transformation into a sequence of symbols.

The corresponding program is called a scanner (or lexer):

Source program Scanner Parser

Symbol table

(token,[attribute])

get next token

Example: . . . x1 :=y2+ 1 ; . . .
⇓

. . . (id, p1)(gets,)(id, p2)(plus,)(int, 1)(sem,) . . .

Compiler Construction Summer Semester 2014 3.3

The DFA Method I

Known from Formal Systems, Automata and Processes:

Algorithm (DFA method)

Input: regular expression α ∈ REΩ, input string w ∈ Ω∗

Procedure: 1 using Kleene’s Theorem, construct Aα ∈ NFAΩ such
that L(Aα) = JαK

2 apply powerset construction (cf. Definition 2.12) to
obtain A

′
α
= 〈Q ′,Ω, δ′, q′0,F

′〉 ∈ DFAΩ with
L(A′

α
) = L(Aα) = JαK

3 solve the matching problem by deciding whether
δ′∗(q′0,w) ∈ F ′

Output: “yes” or “no”

Compiler Construction Summer Semester 2014 3.4

The DFA Method II

The powerset construction involves the following concept:

Definition (ε-closure)

Let A = 〈Q,Ω, δ, q0,F 〉 ∈ NFAΩ. The ε-closure ε(T) ⊆ Q of a subset
T ⊆ Q is defined by

T ⊆ ε(T) and

if q ∈ ε(T), then δ(q, ε) ⊆ ε(T)

Definition (Powerset construction)

Let A = 〈Q,Ω, δ, q0,F 〉 ∈ NFAΩ. The powerset automaton
A
′ = 〈Q ′,Ω, δ′, q′0,F

′〉 ∈ DFAΩ is defined by

Q ′ := 2Q

∀T ⊆ Q, a ∈ Ω : δ′(T , a) := ε
(

⋃

q∈T δ(q, a)
)

q′0 := ε({q0})

F ′ := {T ⊆ Q | T ∩ F 6= ∅}

Compiler Construction Summer Semester 2014 3.5

Outline

1 Recap: Lexical Analysis

2 Complexity Analysis of Simple Matching

3 The Extended Matching Problem

4 First-Longest-Match Analysis

5 Implementation of FLM Analysis

Compiler Construction Summer Semester 2014 3.6

Complexity of DFA Method

1 in construction phase:

Kleene method: time and space O(|α|)
(where |α| := length of α)
Powerset construction: time and space O(2|Aα|) = O(2|α|)
(where |Aα| := # of states of Aα)

2 at runtime:

Word problem: time O(|w |) (where |w | := length of w),
space O(1) (but O(2|α|) for storing DFA)

=⇒ nice runtime behavior but memory requirements very high
(and exponential time in construction phase)

Compiler Construction Summer Semester 2014 3.7

The NFA Method

Idea: reduce memory requirements by applying powerset construction at
runtime, i.e., only “to the run of w through Aα”

Algorithm 3.1 (NFA method)

Input: automaton Aα = 〈Q,Ω, δ, q0,F 〉 ∈ NFAΩ,
input string w ∈ Ω∗

Variables: T ⊆ Q, a ∈ Ω

Procedure: T := ε({q0});
while w 6= ε do

a := head(w);

T := ε
(

⋃

q∈T δ(q, a)
)

;

w := tail(w)
od

Output: if T ∩ F 6= ∅ then “yes” else “no”

Compiler Construction Summer Semester 2014 3.8

Complexity Analysis

For NFA method at runtime:

Space: O(|α|) (for storing NFA and T)

Time: O(|α| · |w |)
(in the loop’s body, |T | states need to be considered)

Comparison: Method Space Time (for “w ∈ JαK?”)

DFA O(2|α|) O(|w |)
NFA O(|α|) O(|α| · |w |)

=⇒ trades exponential space for increase in time

In practice:

Exponential blowup of DFA method usually does not occur in “real”
applications (=⇒ used in [f]lex)

Improvement of NFA method: caching of transitions δ′(T , a)
=⇒ combination of both methods

Compiler Construction Summer Semester 2014 3.9

Outline

1 Recap: Lexical Analysis

2 Complexity Analysis of Simple Matching

3 The Extended Matching Problem

4 First-Longest-Match Analysis

5 Implementation of FLM Analysis

Compiler Construction Summer Semester 2014 3.10

The Extended Matching Problem I

Definition 3.2

Let n ≥ 1 and α1, . . . , αn ∈ REΩ with ε /∈ JαiK 6= ∅ for every i ∈ [n]
(= {1, . . . , n}). Let Σ := {T1, . . . ,Tn} be an alphabet of corresponding
tokens and w ∈ Ω+. If w1, . . . ,wk ∈ Ω+ such that

w = w1 . . .wk and
for every j ∈ [k] there exists ij ∈ [n] such that wj ∈ Jαij K,

then

(w1, . . . ,wk) is called a decomposition and
(Ti1 , . . . ,Tik) is called an analysis

of w w.r.t. α1, . . . , αn.

Problem 3.3 (Extended matching problem)

Given α1, . . . , αn ∈ REΩ and w ∈ Ω+, decide whether there exists a
decomposition of w w.r.t. α1, . . . , αn and determine a corresponding
analysis.

Compiler Construction Summer Semester 2014 3.11

The Extended Matching Problem II

Observation: neither the decomposition nor the analysis are uniquely
determined

Example 3.4

1 α = a+, w = aa
=⇒ two decompositions (aa) and (a, a) with respective (unique)
analyses (T1) and (T1,T1)

2 α1 = a | b, α2 = a | c , w = a
=⇒ unique decomposition (a) but two analyses (T1) and (T2)

Goal: make both unique =⇒ deterministic scanning

Compiler Construction Summer Semester 2014 3.12

Outline

1 Recap: Lexical Analysis

2 Complexity Analysis of Simple Matching

3 The Extended Matching Problem

4 First-Longest-Match Analysis

5 Implementation of FLM Analysis

Compiler Construction Summer Semester 2014 3.13

Ensuring Uniqueness

Two principles:
1 Principle of the longest match (“maximal munch tokenization”)

for uniqueness of decomposition
make lexemes as long as possible
motivated by applications: e.g., every (non-empty) prefix of an
identifier is also an identifier

2 Principle of the first match

for uniqueness of analysis
choose first matching regular expression (in the given order)
therefore: arrange keywords before identifiers (if keywords protected)

Compiler Construction Summer Semester 2014 3.14

Principle of the Longest Match

Definition 3.5 (Longest-match decomposition)

A decomposition (w1, . . . ,wk) of w ∈ Ω+ w.r.t. α1, . . . , αn ∈ REΩ is
called a longest-match decomposition (LM decomposition) if, for every
i ∈ [k], x ∈ Ω+, and y ∈ Ω∗,

w = w1 . . .wixy =⇒ there is no j ∈ [n] such that wix ∈ JαjK

Corollary 3.6

Given w and α1, . . . , αn,

at most one LM decomposition of w exists (clear by definition) and

it is possible that w has a decomposition but no LM decomposition
(see following example).

Example 3.7

w = aab, α1 = a+, α2 = ab
=⇒ (a, ab) is a decomposition but no LM decomposition exists

Compiler Construction Summer Semester 2014 3.15

Principle of the First Match

Problem: a (unique) LM decomposition can have several associated
analyses (since JαiK∩ JαjK 6= ∅ with i 6= j is possible; cf. keyword/identifier
problem)

Definition 3.8 (First-longest-match analysis)

Let (w1, . . . ,wk) be the LM decomposition of w ∈ Ω+ w.r.t.
α1, . . . , αn ∈ REΩ. Its first-longest-match analysis (FLM analysis)
(Ti1 , . . . ,Tik) is determined by

ij := min{l ∈ [n] | wj ∈ JαlK}

for every j ∈ [k].

Corollary 3.9

Given w and α1, . . . , αn, there is at most one FLM analysis of w.
It exists iff the LM decomposition of w exists.

Compiler Construction Summer Semester 2014 3.16

Outline

1 Recap: Lexical Analysis

2 Complexity Analysis of Simple Matching

3 The Extended Matching Problem

4 First-Longest-Match Analysis

5 Implementation of FLM Analysis

Compiler Construction Summer Semester 2014 3.17

Implementation of FLM Analysis

Algorithm 3.10 (FLM analysis – overview)

Input: expressions α1, . . . , αn ∈ REΩ, tokens {T1, . . . ,Tn},
input word w ∈ Ω+

Procedure: 1 for every i ∈ [n], construct Ai ∈ DFAΩ such that
L(Ai) = JαiK (see DFA method; Algorithm 2.9)

2 construct the product automaton A ∈ DFAΩ such that
L(A) =

⋃n
i=1Jαi K

3 partition the set of final states of A to follow the
first-match principle

4 extend the resulting DFA to a backtracking DFA which
implements the longest-match principle

5 let the backtracking DFA run on w

Output: FLM analysis of w (if existing)

Compiler Construction Summer Semester 2014 3.18

(2) The Product Automaton

Definition 3.11 (Product automaton)

Let Ai = 〈Qi ,Ω, δi , q
(i)
0 ,Fi〉 ∈ DFAΩ for every i ∈ [n]. The product

automaton A = 〈Q,Ω, δ, q0,F 〉 ∈ DFAΩ is defined by

Q := Q1 × . . . × Qn

q0 := (q
(1)
0 , . . . , q

(n)
0)

δ((q(1), . . . , q(n)), a) := (δ1(q
(1), a), . . . , δn(q

(n), a))

(q(1), . . . , q(n)) ∈ F iff there ex. i ∈ [n] such that q(i) ∈ Fi

Lemma 3.12

The above construction yields L(A) =
⋃n

i=1 L(Ai) (=
⋃n

i=1JαiK).

Remark: similar construction for intersection (F := F1 × . . . × Fn)

Compiler Construction Summer Semester 2014 3.19

(3) Partitioning the Final States

Definition 3.13 (Partitioning of final states)

Let A = 〈Q,Ω, δ, q0,F 〉 ∈ DFAΩ be the product automaton as constructed
before. Its set of final states is partitioned into F =

⊎n
i=1 F

(i) by the
requirement

(q(1), . . . , q(n)) ∈ F (i) ⇐⇒ q(i) ∈ Fi and ∀j ∈ [i − 1] : q(j) /∈ Fj

(or: F (i) := (Q1 \ F1)× . . .× (Qi−1 \ Fi−1)× Fi × Qi+1 × . . .× Qn)

Corollary 3.14

The above construction yields (w ∈ Ω+, i ∈ [n]):

δ∗(q0,w) ∈ F (i) iff w ∈ JαiK and w /∈
i−1
⋃

j=1

JαjK.

Definition 3.15 (Productive states)

Given A as above, q ∈ Q is called productive if there exists w ∈ Ω∗ such
that δ∗(q,w) ∈ F . Notation: productive states P ⊆ Q (thus F ⊆ P).

Compiler Construction Summer Semester 2014 3.20

(4) The Backtracking DFA I

Goal: extend A to the backtracking DFA B with output by equipping the input
tape with two pointers: a backtracking head for marking the last encountered
match, and a lookahead for determining the longest match.

A configuration of B has three components
(remember: Σ := {T1, . . . ,Tn} denotes the set of tokens):

1 a mode m ∈ {N} ⊎ Σ:

m = N (“normal”): look for initial match (no final state reached yet)
m = T ∈ Σ: token T has been recognized, looking for possible longer
match

2 an input tape vqw ∈ Ω∗ ·Q · Ω∗:

v : lookahead part of input (v 6= ε =⇒ m ∈ Σ)
q: current state of A
w : remaining input

3 an output tape W ∈ Σ∗ · {ε, lexerr}:

Σ∗: sequence of tokens recognized so far
lexerr: a lexical error has occurred (i.e., a non-productive state was
entered or the suffix of the input is not a valid lexeme)

Compiler Construction Summer Semester 2014 3.21

(4) The Backtracking DFA II

Definition 3.16 (Backtracking DFA)

The set of configurations of B is given by

({N} ⊎ Σ)× Ω∗ ·Q · Ω∗ × Σ∗ · {ε, lexerr}

The initial configuration for an input word w ∈ Ω+ is (N , q0w , ε).

The transitions of B are defined as follows (where q′ := δ(q, a)):

normal mode: look for initial match

(N , qaw ,W) ⊢

(Ti , q
′w ,W) if q′ ∈ F (i)

(N , q′w ,W) if q′ ∈ P \ F
output: W · lexerr if q′ /∈ P

backtrack mode: look for longest match

(T , vqaw ,W) ⊢

(Ti , q
′w ,W) if q′ ∈ F (i)

(T , vaq′w ,W) if q′ ∈ P \ F
(N , q0vaw ,WT) if q′ /∈ P

end of input
(T , q,W) ⊢ output: WT if q ∈ F
(N , q,W) ⊢ output: W · lexerr if q ∈ P \ F

(T , vaq,W) ⊢ (N , q0va,WT) if q ∈ P \ F
Compiler Construction Summer Semester 2014 3.22

(4) The Backtracking DFA III

Lemma 3.17

Given the backtracking DFA B as before and w ∈ Ω+,

(N, q0w , ε) ⊢∗

{

W ∈ Σ∗ iff W is the FLM analysis of w
W · lexerr iff no FLM analysis of w exists

Proof.

(omitted)

Example 3.18

Ω = {a, b}, w = aaba

n = 3, Σ = {T1,T2.T3}

α1 = a (“keyword”), α2 = a+ (“identifier”), α3 = b (“operator”)

(on the board)

Compiler Construction Summer Semester 2014 3.23

(4) The Backtracking DFA IV

Remarks:

Time complexity: O(|w |2) in worst case

Example 3.19

α1 = a, α2 = a∗b, w = am requires O(m2)

Improvement by tabular method (similar to Knuth-Morris-Pratt
Algorithm for pattern matching in strings)

Literature: Th. Reps: “Maximal-Munch” Tokenization in Linear
Time, ACM TOPLAS 20(2), 1998, 259–273

Compiler Construction Summer Semester 2014 3.24

	Recap: Lexical Analysis
	Complexity Analysis of Simple Matching
	The Extended Matching Problem
	First-Longest-Match Analysis
	Implementation of FLM Analysis

