Compiler Construction Lecture 3: Lexical Analysis II

(Extended Matching Problem)

Thomas Noll

Lehrstuhl für Informatik 2 (Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Summer Semester 2014

Outline

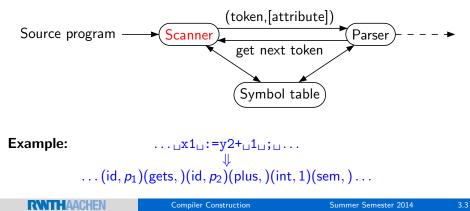
Recap: Lexical Analysis

- 2 Complexity Analysis of Simple Matching
- 3 The Extended Matching Problem
- 4 First-Longest-Match Analysis
- Implementation of FLM Analysis

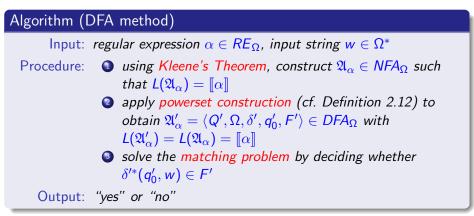
Definition

The goal of lexical analysis is to decompose a source program into a sequence of lexemes and their transformation into a sequence of symbols.

The corresponding program is called a scanner (or lexer):



Known from Formal Systems, Automata and Processes:



The DFA Method II

The powerset construction involves the following concept:

Definition (ε -closure)

Let $\mathfrak{A} = \langle Q, \Omega, \delta, q_0, F \rangle \in NFA_{\Omega}$. The ε -closure $\varepsilon(T) \subseteq Q$ of a subset

- $T \subseteq Q$ is defined by
 - $T \subseteq \varepsilon(T)$ and
 - if $q \in \varepsilon(T)$, then $\delta(q, \varepsilon) \subseteq \varepsilon(T)$

Definition (Powerset construction)

Let $\mathfrak{A} = \langle Q, \Omega, \delta, q_0, F \rangle \in NFA_{\Omega}$. The powerset automaton $\mathfrak{A}' = \langle Q', \Omega, \delta', q'_0, F' \rangle \in DFA_{\Omega}$ is defined by

- $Q' := 2^Q$
- $\forall T \subseteq Q, a \in \Omega : \delta'(T, a) := \varepsilon \left(\bigcup_{q \in T} \delta(q, a) \right)$
- $q'_0 := \varepsilon(\lbrace q_0 \rbrace)$
- $F' := \{T \subseteq Q \mid T \cap F \neq \emptyset\}$

1 Recap: Lexical Analysis

2 Complexity Analysis of Simple Matching

3 The Extended Matching Problem

4 First-Longest-Match Analysis

5 Implementation of FLM Analysis

Complexity of DFA Method

in construction phase:

- Kleene method: time and space O(|α|) (where |α| := length of α)
- Powerset construction: time and space O(2^{|𝔄α|}) = O(2^{|α|}) (where |𝔄_α| := # of states of 𝔄_α)
- 2 at runtime:
 - Word problem: time O(|w|) (where |w| := length of w), space O(1) (but O(2^{|α|}) for storing DFA)
- nice runtime behavior but memory requirements very high (and exponential time in construction phase)

The NFA Method

Idea: reduce memory requirements by applying powerset construction at runtime, i.e., only "to the run of w through \mathfrak{A}_{α} "

Algorithm 3.1 (NFA method)

Input: automaton $\mathfrak{A}_{\alpha} = \langle Q, \Omega, \delta, q_0, F \rangle \in NFA_{\Omega}$, input string $w \in \Omega^*$ Variables: $T \subseteq Q$. $a \in \Omega$ Procedure: $T := \varepsilon(\{q_0\});$ while $w \neq \varepsilon$ do $a := \mathbf{head}(w);$ $T := \varepsilon \left(\bigcup_{q \in T} \delta(q, a) \right);$ w := tail(w)od Output: if $T \cap F \neq \emptyset$ then "yes" else "no"

Complexity Analysis

For NFA method at runtime:

- Space: $\mathcal{O}(|\alpha|)$ (for storing NFA and T)
- Time: O(|α| · |w|) (in the loop's body, |T| states need to be considered)

~	•
ւ օր	narison
COIII	parison:

Method	Space	Time (for " $\mathbf{w} \in \llbracket \alpha \rrbracket$?")
DFA	$\mathcal{O}(2^{ \alpha })$	$\mathcal{O}(w)$
NFA	$\mathcal{O}(\alpha)$	$\mathcal{O}(\alpha \cdot w)$

 \implies trades exponential space for increase in time

In practice:

- Exponential blowup of DFA method usually does not occur in "real" applications (⇒ used in [f]lex)
- Improvement of NFA method: caching of transitions $\delta'(T, a)$ \implies combination of both methods

Recap: Lexical Analysis

2 Complexity Analysis of Simple Matching

3 The Extended Matching Problem

- 4 First-Longest-Match Analysis
- 5 Implementation of FLM Analysis

The Extended Matching Problem I

Definition 3.2

Let $n \ge 1$ and $\alpha_1, \ldots, \alpha_n \in RE_{\Omega}$ with $\varepsilon \notin \llbracket \alpha_i \rrbracket \neq \emptyset$ for every $i \in [n]$ (= {1,...,n}). Let $\Sigma := \{T_1, \ldots, T_n\}$ be an alphabet of corresponding tokens and $w \in \Omega^+$. If $w_1, \ldots, w_k \in \Omega^+$ such that

- $w = w_1 \dots w_k$ and
- for every $j \in [k]$ there exists $i_j \in [n]$ such that $w_j \in [\alpha_{i_j}]$,

then

(w₁,..., w_k) is called a decomposition and
 (T_{i1},..., T_{ik}) is called an analysis

of w w.r.t. $\alpha_1, \ldots, \alpha_n$.

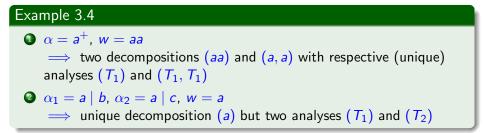
Problem 3.3 (Extended matching problem)

Given $\alpha_1, \ldots, \alpha_n \in RE_{\Omega}$ and $w \in \Omega^+$, decide whether there exists a decomposition of w w.r.t. $\alpha_1, \ldots, \alpha_n$ and determine a corresponding analysis.

RWTHAACHEN

The Extended Matching Problem II

Observation: neither the decomposition nor the analysis are uniquely determined



Goal: make both unique \implies deterministic scanning

Recap: Lexical Analysis

- 2 Complexity Analysis of Simple Matching
- 3 The Extended Matching Problem
- 4 First-Longest-Match Analysis
- Implementation of FLM Analysis

Two principles:

Principle of the longest match ("maximal munch tokenization")

- for uniqueness of decomposition
- make lexemes as long as possible
- motivated by applications: e.g., every (non-empty) prefix of an identifier is also an identifier

Principle of the first match

- for uniqueness of analysis
- choose first matching regular expression (in the given order)
- therefore: arrange keywords before identifiers (if keywords protected)

Principle of the Longest Match

Definition 3.5 (Longest-match decomposition)

A decomposition (w_1, \ldots, w_k) of $w \in \Omega^+$ w.r.t. $\alpha_1, \ldots, \alpha_n \in RE_{\Omega}$ is called a longest-match decomposition (LM decomposition) if, for every $i \in [k], x \in \Omega^+$, and $y \in \Omega^*$,

 $w = w_1 \dots w_i xy \implies$ there is no $j \in [n]$ such that $w_i x \in [\alpha_j]$

Corollary 3.6

Given w and $\alpha_1, \ldots, \alpha_n$,

- at most one LM decomposition of w exists (clear by definition) and
- it is possible that w has a decomposition but no LM decomposition (see following example).

Example 3.7

 $w = aab, \ lpha_1 = a^+, \ lpha_2 = ab$

 \implies (a, ab) is a decomposition but no LM decomposition exists

RWTHAACHEN

Compiler Construction

Principle of the First Match

Problem: a (unique) LM decomposition can have several associated analyses (since $[\alpha_i] \cap [\alpha_j] \neq \emptyset$ with $i \neq j$ is possible; cf. keyword/identifier problem)

Definition 3.8 (First-longest-match analysis)

Let (w_1, \ldots, w_k) be the LM decomposition of $w \in \Omega^+$ w.r.t. $\alpha_1, \ldots, \alpha_n \in RE_{\Omega}$. Its first-longest-match analysis (FLM analysis) $(T_{i_1}, \ldots, T_{i_k})$ is determined by

$$i_j := \min\{l \in [n] \mid w_j \in \llbracket \alpha_l \rrbracket\}$$

for every $j \in [k]$.

Corollary 3.9

Given w and $\alpha_1, \ldots, \alpha_n$, there is at most one FLM analysis of w. It exists iff the LM decomposition of w exists.

RWTHAACHEN

Compiler Construction

1 Recap: Lexical Analysis

- 2 Complexity Analysis of Simple Matching
- 3 The Extended Matching Problem
- 4 First-Longest-Match Analysis
- 5 Implementation of FLM Analysis

Algorithm 3.10 (FLM analysis – overview)

Input: expressions $\alpha_1, \ldots, \alpha_n \in RE_{\Omega}$, tokens $\{T_1, \ldots, T_n\}$, input word $w \in \Omega^+$

- Procedure: **()** for every $i \in [n]$, construct $\mathfrak{A}_i \in DFA_0$ such that $L(\mathfrak{A}_i) = \llbracket \alpha_i \rrbracket$ (see **DFA method**; Algorithm 2.9)
 - **2** construct the product automaton $\mathfrak{A} \in DFA_{\Omega}$ such that $L(\mathfrak{A}) = \bigcup_{i=1}^{n} \llbracket \alpha_i \rrbracket$
 - If \mathfrak{g} partition the set of final states of \mathfrak{A} to follow the first-match principle
 - extend the resulting DFA to a backtracking DFA which implements the longest-match principle
 - Iet the backtracking DFA run on w

Output: FLM analysis of w (if existing)

Definition 3.11 (Product automaton)

Let $\mathfrak{A}_i = \langle Q_i, \Omega, \delta_i, q_0^{(i)}, F_i \rangle \in DFA_{\Omega}$ for every $i \in [n]$. The product automaton $\mathfrak{A} = \langle Q, \Omega, \delta, q_0, F \rangle \in DFA_{\Omega}$ is defined by

• $Q := Q_1 \times \ldots \times Q_n$ • $q_0 := (q_0^{(1)}, \ldots, q_0^{(n)})$ • $\delta((q^{(1)}, \ldots, q^{(n)}), a) := (\delta_1(q^{(1)}, a), \ldots, \delta_n(q^{(n)}, a))$ • $(q^{(1)}, \ldots, q^{(n)}) \in F$ iff there ex. $i \in [n]$ such that $q^{(i)} \in F_i$

Lemma 3.12

The above construction yields $L(\mathfrak{A}) = \bigcup_{i=1}^{n} L(\mathfrak{A}_i) \ (= \bigcup_{i=1}^{n} \llbracket \alpha_i \rrbracket).$

Remark: similar construction for intersection $(F := F_1 \times \ldots \times F_n)$

RWTHAACHEN

(3) Partitioning the Final States

Definition 3.13 (Partitioning of final states)

Let $\mathfrak{A} = \langle Q, \Omega, \delta, q_0, F \rangle \in DFA_{\Omega}$ be the product automaton as constructed before. Its set of final states is partitioned into $F = \biguplus_{i=1}^{n} F^{(i)}$ by the requirement

 $(q^{(1)}, \ldots, q^{(n)}) \in F^{(i)} \iff q^{(i)} \in F_i \text{ and } \forall j \in [i-1] : q^{(j)} \notin F_j$ (or: $F^{(i)} := (Q_1 \setminus F_1) \times \ldots \times (Q_{i-1} \setminus F_{i-1}) \times F_i \times Q_{i+1} \times \ldots \times Q_n)$

Corollary 3.14

The above construction yields ($w \in \Omega^+$, $i \in [n]$):

$$\delta^*(q_0,w)\in {\sf F}^{(i)}$$
 iff $w\in \llbracket lpha_i
rbracket$ and $w
otin \bigcup \llbracket lpha_j
rbracket.$

Definition 3.15 (Productive states)

Given \mathfrak{A} as above, $q \in Q$ is called productive if there exists $w \in \Omega^*$ such that $\delta^*(q, w) \in F$. Notation: productive states $P \subseteq Q$ (thus $F \subseteq P$).

RWTHAACHEN

i-1

j=1

(4) The Backtracking DFA I

Goal: extend \mathfrak{A} to the backtracking DFA \mathfrak{B} with output by equipping the input tape with two pointers: a backtracking head for marking the last encountered match, and a lookahead for determining the longest match.

A configuration of $\mathfrak B$ has three components

(remember: $\Sigma := \{T_1, \ldots, T_n\}$ denotes the set of tokens):

- **()** a mode $m \in \{N\} \uplus \Sigma$:
 - m = N ("normal"): look for initial match (no final state reached yet)
 - $m = T \in \Sigma$: token T has been recognized, looking for possible longer match
- 2 an input tape $vqw \in \Omega^* \cdot Q \cdot \Omega^*$:
 - v: lookahead part of input $(v \neq \varepsilon \implies m \in \Sigma)$
 - q: current state of \mathfrak{A}
 - w: remaining input
- **an output tape** $W \in \Sigma^* \cdot \{\varepsilon, \text{lexerr}\}$:
 - Σ^* : sequence of tokens recognized so far
 - lexerr: a lexical error has occurred (i.e., a non-productive state was entered or the suffix of the input is not a valid lexeme)

(4) The Backtracking DFA II

Definition 3.16 (Backtracking DFA)

• The set of configurations of \mathfrak{B} is given by

 $(\{N\} \uplus \Sigma) \times \Omega^* \cdot Q \cdot \Omega^* \times \Sigma^* \cdot \{\varepsilon, \mathsf{lexerr}\}$

- The initial configuration for an input word $w \in \Omega^+$ is $(N, q_0 w, \varepsilon)$.
- The transitions of \mathfrak{B} are defined as follows (where $q' := \delta(q, a)$):
 - normal mode: look for initial match

$$(N, qaw, W) \vdash egin{cases} (T_i, q'w, W) & ext{if } q' \in F^{(i)} \ (N, q'w, W) & ext{if } q' \in P \setminus F \ \mathbf{output:} \ W \cdot ext{lexerr} & ext{if } q' \notin P \end{cases}$$

• backtrack mode: look for longest match

$$(T, vqaw, W) \vdash \begin{cases} (T_i, q'w, W) & \text{if } q' \in F^{(i)} \\ (T, vaq'w, W) & \text{if } q' \in P \setminus F \\ (N, q_0 vaw, WT) & \text{if } q' \notin P \end{cases}$$

end of input

$$\begin{array}{ll} (T,q,W) \vdash \textbf{output:} & WT & \text{if } q \in F \\ (N,q,W) \vdash \textbf{output:} & W \cdot \text{lexerr} & \text{if } q \in P \setminus F \\ (T,vaq,W) \vdash (N,q_0va,WT) & \text{if } q \in P \setminus F \end{array}$$

RWITHAACHEN

Compiler Construction

(4) The Backtracking DFA III

Lemma 3.17

Given the backtracking DFA \mathfrak{B} as before and $w \in \Omega^+$,

 $(N, q_0 w, \varepsilon) \vdash^* \begin{cases} W \in \Sigma^* & \text{iff } W \text{ is the FLM analysis of } w \\ W \cdot \text{lexerr} & \text{iff no FLM analysis of } w \text{ exists} \end{cases}$

Proof.

(omitted)

Example 3.18

- $\Omega = \{a, b\}, w = aaba$
- n = 3, $\Sigma = \{T_1, T_2, T_3\}$

• $\alpha_1 = a$ ("keyword"), $\alpha_2 = a^+$ ("identifier"), $\alpha_3 = b$ ("operator")

(on the board)

(4) The Backtracking DFA IV

Remarks:

• Time complexity: $\mathcal{O}(|w|^2)$ in worst case

Example 3.19

 $\alpha_1 = a, \ \alpha_2 = a^*b, \ w = a^m \text{ requires } \mathcal{O}(m^2)$

• Improvement by tabular method (similar to Knuth-Morris-Pratt Algorithm for pattern matching in strings)

Literature: Th. Reps: *"Maximal-Munch" Tokenization in Linear Time*, ACM TOPLAS 20(2), 1998, 259–273

