Compiler Construction

Lecture 3: Lexical Analysis II (Extended Matching Problem)

Thomas Noll

Lehrstuhl für Informatik 2 (Software Modeling and Verification)

RWTHAACHEN UNIVERSITY

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Summer Semester 2014

Outline

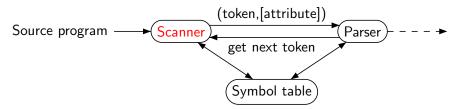
- Recap: Lexical Analysis
- 2 Complexity Analysis of Simple Matching
- The Extended Matching Problem
- 4 First-Longest-Match Analysis
- Implementation of FLM Analysis

Lexical Analysis

Definition

The goal of lexical analysis is to decompose a source program into a sequence of lexemes and their transformation into a sequence of symbols.

The corresponding program is called a scanner (or lexer):



The DFA Method I

Known from Formal Systems, Automata and Processes:

Algorithm (DFA method)

Input: regular expression $\alpha \in RE_{\Omega}$, input string $w \in \Omega^*$

- Procedure: using Kleene's Theorem, construct $\mathfrak{A}_{\alpha} \in NFA_{\Omega}$ such that $L(\mathfrak{A}_{\alpha}) = \llbracket \alpha \rrbracket$
 - **2** apply powerset construction (cf. Definition 2.12) to obtain $\mathfrak{A}'_{\alpha} = \langle Q', \Omega, \delta', q'_0, F' \rangle \in DFA_{\Omega}$ with $L(\mathfrak{A}'_{\alpha}) = L(\mathfrak{A}_{\alpha}) = \llbracket \alpha \rrbracket$
 - **3** solve the matching problem by deciding whether $\delta'^*(q_0', w) \in F'$

Output: "yes" or "no"

The DFA Method II

The powerset construction involves the following concept:

Definition (ε -closure)

Let $\mathfrak{A}=\langle Q,\Omega,\delta,q_0,F\rangle\in \mathit{NFA}_\Omega$. The $\varepsilon\text{-closure }\varepsilon(T)\subseteq Q$ of a subset $T\subseteq Q$ is defined by

- $T \subseteq \varepsilon(T)$ and
- if $q \in \varepsilon(T)$, then $\delta(q, \varepsilon) \subseteq \varepsilon(T)$

Definition (Powerset construction)

Let $\mathfrak{A}=\langle Q,\Omega,\delta,q_0,F\rangle\in \mathit{NFA}_\Omega.$ The powerset automaton $\mathfrak{A}'=\langle Q',\Omega,\delta',q_0',F'\rangle\in \mathit{DFA}_\Omega$ is defined by

- $Q' := 2^Q$
- $\forall T \subseteq Q, a \in \Omega : \delta'(T, a) := \varepsilon \left(\bigcup_{q \in T} \delta(q, a)\right)$
- $q_0' := \varepsilon(\{q_0\})$
- $F' := \{ T \subset Q \mid T \cap F \neq \emptyset \}$

Outline

- Recap: Lexical Analysis
- Complexity Analysis of Simple Matching
- 3 The Extended Matching Problem
- 4 First-Longest-Match Analysis
- Implementation of FLM Analysis

Complexity of DFA Method

- in construction phase:
 - Kleene method: time and space $\mathcal{O}(|\alpha|)$ (where $|\alpha| := \text{length of } \alpha$)
 - Powerset construction: time and space $\mathcal{O}(2^{|\mathfrak{A}_{\alpha}|}) = \mathcal{O}(2^{|\alpha|})$ (where $|\mathfrak{A}_{\alpha}| := \#$ of states of \mathfrak{A}_{α})

Complexity of DFA Method

- in construction phase:
 - Kleene method: time and space $\mathcal{O}(|\alpha|)$ (where $|\alpha| := \text{length of } \alpha$)
 - Powerset construction: time and space $\mathcal{O}(2^{|\mathfrak{A}_{\alpha}|}) = \mathcal{O}(2^{|\alpha|})$ (where $|\mathfrak{A}_{\alpha}| := \#$ of states of \mathfrak{A}_{α})
- at runtime:
 - Word problem: time $\mathcal{O}(|w|)$ (where |w| := length of w), space $\mathcal{O}(1)$ (but $\mathcal{O}(2^{|\alpha|})$ for storing DFA)

Complexity of DFA Method

- in construction phase:
 - Kleene method: time and space $\mathcal{O}(|\alpha|)$ (where $|\alpha| := \text{length of } \alpha$)
 - Powerset construction: time and space $\mathcal{O}(2^{|\mathfrak{A}_{\alpha}|}) = \mathcal{O}(2^{|\alpha|})$ (where $|\mathfrak{A}_{\alpha}| := \#$ of states of \mathfrak{A}_{α})
- at runtime:
 - Word problem: time $\mathcal{O}(|w|)$ (where |w| := length of w), space $\mathcal{O}(1)$ (but $\mathcal{O}(2^{|\alpha|})$ for storing DFA)
- nice runtime behavior but memory requirements very high (and exponential time in construction phase)

Idea: reduce memory requirements by applying powerset construction at runtime, i.e., only "to the run of w through \mathfrak{A}_{α} "

Idea: reduce memory requirements by applying powerset construction at runtime, i.e., only "to the run of w through \mathfrak{A}_{α} "

Algorithm 3.1 (NFA method)

Input: automaton $\mathfrak{A}_{\alpha} = \langle Q, \Omega, \delta, q_0, F \rangle \in NFA_{\Omega}$, input string $w \in \Omega^*$

Idea: reduce memory requirements by applying powerset construction at runtime, i.e., only "to the run of w through \mathfrak{A}_{α} "

Algorithm 3.1 (NFA method)

```
Input: automaton \ \mathfrak{A}_{\alpha} = \langle Q, \Omega, \delta, q_0, F \rangle \in \mathit{NFA}_{\Omega}, input string \ w \in \Omega^*

Variables: T \subseteq Q, \ a \in \Omega

Procedure: T := \varepsilon(\{q_0\}); while w \neq \varepsilon do
a := \mathbf{head}(w);
T := \varepsilon\left(\bigcup_{q \in T} \delta(q, a)\right);
w := \mathbf{tail}(w)
od
```

Idea: reduce memory requirements by applying powerset construction at runtime, i.e., only "to the run of w through \mathfrak{A}_{α} "

Algorithm 3.1 (NFA method)

```
Input: automaton \mathfrak{A}_{\alpha} = \langle Q, \Omega, \delta, q_0, F \rangle \in NFA_{\Omega},
                    input string \mathbf{w} \in \Omega^*
 Variables: T \subseteq Q, a \in \Omega
Procedure: T := \varepsilon(\{q_0\});
                    while w \neq \varepsilon do
                        a := \mathbf{head}(w);
                        T := \varepsilon \left( \bigcup_{q \in T} \delta(q, a) \right);
                        w := \mathbf{tail}(w)
                    od
    Output: if T \cap F \neq \emptyset then "yes" else "no"
```

Complexity Analysis

For NFA method at runtime:

- Space: $\mathcal{O}(|\alpha|)$ (for storing NFA and T)
- Time: $\mathcal{O}(|\alpha| \cdot |w|)$ (in the loop's body, |T| states need to be considered)

Complexity Analysis

For NFA method at runtime:

- Space: $\mathcal{O}(|\alpha|)$ (for storing NFA and T)
- Time: $\mathcal{O}(|\alpha| \cdot |w|)$ (in the loop's body, |T| states need to be considered)

Comparison:

Method	Space	Time (for " $\mathbf{w} \in [\alpha]$?")
DFA	$\mathcal{O}(2^{ \alpha })$	$\mathcal{O}(w)$
NFA	$\mathcal{O}(\alpha)$	$\mathcal{O}(\alpha \cdot w)$

⇒ trades exponential space for increase in time

Complexity Analysis

For NFA method at runtime:

- Space: $\mathcal{O}(|\alpha|)$ (for storing NFA and T)
- Time: $\mathcal{O}(|\alpha| \cdot |w|)$ (in the loop's body, |T| states need to be considered)

Comparison:

Method	Space	Time (for " $\mathbf{w} \in [\alpha]$?")
DFA	$\mathcal{O}(2^{ \alpha })$	$\mathcal{O}(w)$
NFA	$\mathcal{O}(\alpha)$	$\mathcal{O}(\alpha \cdot w)$

⇒ trades exponential space for increase in time

In practice:

- Exponential blowup of DFA method usually does not occur in "real" applications (used in [f]lex)
- Improvement of NFA method: caching of transitions $\delta'(T, a)$ \Longrightarrow combination of both methods

Outline

- Recap: Lexical Analysis
- Complexity Analysis of Simple Matching
- 3 The Extended Matching Problem
- 4 First-Longest-Match Analysis
- Implementation of FLM Analysis

The Extended Matching Problem I

Definition 3.2

Let $n \geq 1$ and $\alpha_1, \ldots, \alpha_n \in RE_{\Omega}$ with $\varepsilon \notin \llbracket \alpha_i \rrbracket \neq \emptyset$ for every $i \in [n]$ $(=\{1,\ldots,n\})$. Let $\Sigma := \{T_1,\ldots,T_n\}$ be an alphabet of corresponding tokens and $w \in \Omega^+$. If $w_1,\ldots,w_k \in \Omega^+$ such that

- $w = w_1 \dots w_k$ and
- for every $j \in [k]$ there exists $i_j \in [n]$ such that $w_j \in [\alpha_{i_j}]$,

then

- (w_1, \ldots, w_k) is called a decomposition and
- $(T_{i_1}, \ldots, T_{i_k})$ is called an analysis

of \boldsymbol{w} w.r.t. $\alpha_1, \ldots, \alpha_n$.

The Extended Matching Problem I

Definition 3.2

Let $n \geq 1$ and $\alpha_1, \ldots, \alpha_n \in RE_{\Omega}$ with $\varepsilon \notin \llbracket \alpha_i \rrbracket \neq \emptyset$ for every $i \in [n]$ $(=\{1,\ldots,n\})$. Let $\Sigma := \{T_1,\ldots,T_n\}$ be an alphabet of corresponding tokens and $w \in \Omega^+$. If $w_1,\ldots,w_k \in \Omega^+$ such that

- \bullet $w = w_1 \dots w_k$ and
- for every $j \in [k]$ there exists $i_j \in [n]$ such that $w_j \in [\alpha_{i_j}]$,

then

- (w_1, \ldots, w_k) is called a decomposition and
- $(T_{i_1}, \ldots, T_{i_k})$ is called an analysis

of \boldsymbol{w} w.r.t. $\alpha_1, \ldots, \alpha_n$.

Problem 3.3 (Extended matching problem)

Given $\alpha_1, \ldots, \alpha_n \in RE_{\Omega}$ and $w \in \Omega^+$, decide whether there exists a decomposition of w w.r.t. $\alpha_1, \ldots, \alpha_n$ and determine a corresponding analysis.

The Extended Matching Problem II

Observation: neither the decomposition nor the analysis are uniquely determined

Example 3.4

$$\alpha = a^+, w = aa$$

 \implies two decompositions (aa) and (a, a) with respective (unique) analyses (T_1) and (T_1, T_1)

The Extended Matching Problem II

Observation: neither the decomposition nor the analysis are uniquely determined

Example 3.4

- $\alpha = a^+$, w = aa \implies two decompositions (aa) and (a, a) with respective (unique) analyses (T_1) and (T_1 , T_1)
- ② $\alpha_1 = a \mid b, \ \alpha_2 = a \mid c, \ w = a$ \implies unique decomposition (a) but two analyses (T_1) and (T_2)

The Extended Matching Problem II

Observation: neither the decomposition nor the analysis are uniquely determined

Example 3.4

- $\alpha = a^+$, w = aa \implies two decompositions (aa) and (a, a) with respective (unique) analyses (T_1) and (T_1 , T_1)
- ② $\alpha_1 = a \mid b$, $\alpha_2 = a \mid c$, w = a \Rightarrow unique decomposition (a) but two analyses (T_1) and (T_2)

Goal: make both unique ⇒ deterministic scanning

Outline

- Recap: Lexical Analysis
- Complexity Analysis of Simple Matching
- The Extended Matching Problem
- 4 First-Longest-Match Analysis
- Implementation of FLM Analysis

Ensuring Uniqueness

Two principles:

- Principle of the longest match ("maximal munch tokenization")
 - for uniqueness of decomposition
 - make lexemes as long as possible
 - motivated by applications: e.g., every (non-empty) prefix of an identifier is also an identifier

Ensuring Uniqueness

Two principles:

- Principle of the longest match ("maximal munch tokenization")
 - for uniqueness of decomposition
 - make lexemes as long as possible
 - motivated by applications: e.g., every (non-empty) prefix of an identifier is also an identifier
- Principle of the first match
 - for uniqueness of analysis
 - choose first matching regular expression (in the given order)
 - therefore: arrange keywords before identifiers (if keywords protected)

Principle of the Longest Match

Definition 3.5 (Longest-match decomposition)

A decomposition (w_1, \ldots, w_k) of $w \in \Omega^+$ w.r.t. $\alpha_1, \ldots, \alpha_n \in RE_{\Omega}$ is called a longest-match decomposition (LM decomposition) if, for every $i \in [k]$, $x \in \Omega^+$, and $y \in \Omega^*$,

$$w = w_1 \dots w_i xy \implies$$
 there is no $j \in [n]$ such that $w_i x \in [\alpha_j]$

Principle of the Longest Match

Definition 3.5 (Longest-match decomposition)

A decomposition (w_1,\ldots,w_k) of $w\in\Omega^+$ w.r.t. $\alpha_1,\ldots,\alpha_n\in RE_\Omega$ is called a longest-match decomposition (LM decomposition) if, for every $i\in[k]$, $x\in\Omega^+$, and $y\in\Omega^*$,

 $w = w_1 \dots w_i xy \implies$ there is no $j \in [n]$ such that $w_i x \in [\alpha_j]$

Corollary 3.6

Given w and $\alpha_1, \ldots, \alpha_n$,

• at most one LM decomposition of w exists (clear by definition) and

Principle of the Longest Match

Definition 3.5 (Longest-match decomposition)

A decomposition (w_1, \ldots, w_k) of $w \in \Omega^+$ w.r.t. $\alpha_1, \ldots, \alpha_n \in RE_{\Omega}$ is called a longest-match decomposition (LM decomposition) if, for every $i \in [k]$, $x \in \Omega^+$, and $y \in \Omega^*$,

$$w = w_1 \dots w_i xy \implies$$
 there is no $j \in [n]$ such that $w_i x \in [\alpha_j]$

Corollary 3.6

Given w and $\alpha_1, \ldots, \alpha_n$,

- at most one LM decomposition of w exists (clear by definition) and
- it is possible that w has a decomposition but no LM decomposition (see following example).

Example 3.7

$$w = aab$$
, $\alpha_1 = a^+$, $\alpha_2 = ab$

 \Rightarrow (a, ab) is a decomposition but no LM decomposition exists

Principle of the First Match

Problem: a (unique) LM decomposition can have several associated analyses (since $[\![\alpha_i]\!] \cap [\![\alpha_j]\!] \neq \emptyset$ with $i \neq j$ is possible; cf. keyword/identifier problem)

Principle of the First Match

Problem: a (unique) LM decomposition can have several associated analyses (since $[\alpha_i] \cap [\alpha_j] \neq \emptyset$ with $i \neq j$ is possible; cf. keyword/identifier problem)

Definition 3.8 (First-longest-match analysis)

Let (w_1, \ldots, w_k) be the LM decomposition of $w \in \Omega^+$ w.r.t. $\alpha_1, \ldots, \alpha_n \in RE_{\Omega}$. Its first-longest-match analysis (FLM analysis) $(T_{i_1}, \ldots, T_{i_k})$ is determined by

$$i_j := \min\{l \in [n] \mid w_j \in [\alpha_l]\}$$

for every $j \in [k]$.

Principle of the First Match

Problem: a (unique) LM decomposition can have several associated analyses (since $[\![\alpha_i]\!] \cap [\![\alpha_j]\!] \neq \emptyset$ with $i \neq j$ is possible; cf. keyword/identifier problem)

Definition 3.8 (First-longest-match analysis)

Let (w_1, \ldots, w_k) be the LM decomposition of $w \in \Omega^+$ w.r.t. $\alpha_1, \ldots, \alpha_n \in RE_{\Omega}$. Its first-longest-match analysis (FLM analysis) $(T_{i_1}, \ldots, T_{i_k})$ is determined by

$$i_j := \min\{l \in [n] \mid w_j \in [\alpha_l]\}$$

for every $j \in [k]$.

Corollary 3.9

Given w and $\alpha_1, \ldots, \alpha_n$, there is at most one FLM analysis of w. It exists iff the LM decomposition of w exists.

Outline

- Recap: Lexical Analysis
- 2 Complexity Analysis of Simple Matching
- 3 The Extended Matching Problem
- 4 First-Longest-Match Analysis
- 5 Implementation of FLM Analysis

Algorithm 3.10 (FLM analysis – overview)

Input: expressions $\alpha_1, \ldots, \alpha_n \in RE_{\Omega}$, tokens $\{T_1, \ldots, T_n\}$, input word $w \in \Omega^+$

Algorithm 3.10 (FLM analysis – overview)

```
Input: expressions \alpha_1, \ldots, \alpha_n \in RE_{\Omega}, tokens \{T_1, \ldots, T_n\}, input word w \in \Omega^+
```

Procedure: • for every $i \in [n]$, construct $\mathfrak{A}_i \in DFA_{\Omega}$ such that $L(\mathfrak{A}_i) = [\alpha_i]$ (see DFA method; Algorithm 2.9)

Algorithm 3.10 (FLM analysis – overview)

```
Input: expressions \alpha_1, \ldots, \alpha_n \in RE_{\Omega}, tokens \{T_1, \ldots, T_n\},
          input word w \in \Omega^+
```

- Procedure: for every $i \in [n]$, construct $\mathfrak{A}_i \in DFA_{\mathbb{Q}}$ such that $L(\mathfrak{A}_i) = [\alpha_i]$ (see DFA method; Algorithm 2.9)
 - 2 construct the product automaton $\mathfrak{A} \in DFA_{\Omega}$ such that $L(\mathfrak{A}) = \bigcup_{i=1}^n \llbracket \alpha_i \rrbracket$

Algorithm 3.10 (FLM analysis – overview)

```
Input: expressions \alpha_1, \ldots, \alpha_n \in RE_{\Omega}, tokens \{T_1, \ldots, T_n\},
          input word w \in \Omega^+
```

- Procedure: for every $i \in [n]$, construct $\mathfrak{A}_i \in DFA_{\mathbb{Q}}$ such that $L(\mathfrak{A}_i) = [\alpha_i]$ (see DFA method; Algorithm 2.9)
 - 2 construct the product automaton $\mathfrak{A} \in DFA_{\Omega}$ such that $L(\mathfrak{A}) = \bigcup_{i=1}^n \llbracket \alpha_i \rrbracket$
 - \odot partition the set of final states of \mathfrak{A} to follow the first-match principle

Implementation of FLM Analysis

Algorithm 3.10 (FLM analysis – overview)

```
Input: expressions \alpha_1, \ldots, \alpha_n \in RE_{\Omega}, tokens \{T_1, \ldots, T_n\},
          input word w \in \Omega^+
```

- Procedure: for every $i \in [n]$, construct $\mathfrak{A}_i \in DFA_{\mathbb{Q}}$ such that $L(\mathfrak{A}_i) = \llbracket \alpha_i \rrbracket$ (see DFA method; Algorithm 2.9)
 - 2 construct the product automaton $\mathfrak{A} \in DFA_{\Omega}$ such that $L(\mathfrak{A}) = \bigcup_{i=1}^n \llbracket \alpha_i \rrbracket$
 - \odot partition the set of final states of \mathfrak{A} to follow the first-match principle
 - extend the resulting DFA to a backtracking DFA which implements the longest-match principle

Implementation of FLM Analysis

Algorithm 3.10 (FLM analysis – overview)

```
Input: expressions \alpha_1, \ldots, \alpha_n \in RE_{\Omega}, tokens \{T_1, \ldots, T_n\},
          input word w \in \Omega^+
```

- Procedure: for every $i \in [n]$, construct $\mathfrak{A}_i \in DFA_{\mathbb{Q}}$ such that $L(\mathfrak{A}_i) = \llbracket \alpha_i \rrbracket$ (see DFA method; Algorithm 2.9)
 - 2 construct the product automaton $\mathfrak{A} \in DFA_{\Omega}$ such that $L(\mathfrak{A}) = \bigcup_{i=1}^n \llbracket \alpha_i \rrbracket$
 - \odot partition the set of final states of \mathfrak{A} to follow the first-match principle
 - extend the resulting DFA to a backtracking DFA which implements the longest-match principle
 - let the backtracking DFA run on w

Implementation of FLM Analysis

Algorithm 3.10 (FLM analysis – overview)

```
Input: expressions \alpha_1, \ldots, \alpha_n \in RE_{\Omega}, tokens \{T_1, \ldots, T_n\}, input word w \in \Omega^+
```

- Procedure:
 for every $i \in [n]$, construct $\mathfrak{A}_i \in DFA_{\Omega}$ such that $L(\mathfrak{A}_i) = [\![\alpha_i]\!]$ (see DFA method; Algorithm 2.9)
 - **2** construct the product automaton $\mathfrak{A} \in DFA_{\Omega}$ such that $L(\mathfrak{A}) = \bigcup_{i=1}^{n} \llbracket \alpha_i \rrbracket$
 - **3** partition the set of final states of $\mathfrak A$ to follow the first-match principle
 - extend the resulting DFA to a backtracking DFA which implements the longest-match principle
 - let the backtracking DFA run on w

Output: FLM analysis of w (if existing)

(2) The Product Automaton

Definition 3.11 (Product automaton)

Let $\mathfrak{A}_i = \langle Q_i, \Omega, \delta_i, q_0^{(i)}, F_i \rangle \in DFA_{\Omega}$ for every $i \in [n]$. The product automaton $\mathfrak{A} = \langle Q, \Omega, \delta, q_0, F \rangle \in DFA_{\Omega}$ is defined by

- $Q := Q_1 \times \ldots \times Q_n$
- \bullet $q_0 := (q_0^{(1)}, \dots, q_0^{(n)})$
- $\delta((q^{(1)},\ldots,q^{(n)}),a) := (\delta_1(q^{(1)},a),\ldots,\delta_n(q^{(n)},a))$
- $(q^{(1)}, \ldots, q^{(n)}) \in F$ iff there ex. $i \in [n]$ such that $q^{(i)} \in F_i$

(2) The Product Automaton

Definition 3.11 (Product automaton)

Let $\mathfrak{A}_i = \langle Q_i, \Omega, \delta_i, q_0^{(i)}, F_i \rangle \in DFA_{\Omega}$ for every $i \in [n]$. The product automaton $\mathfrak{A} = \langle Q, \Omega, \delta, q_0, F \rangle \in DFA_{\Omega}$ is defined by

- $Q := Q_1 \times \ldots \times Q_n$
- \bullet $q_0 := (q_0^{(1)}, \dots, q_0^{(n)})$
- $\delta((q^{(1)},\ldots,q^{(n)}),a) := (\delta_1(q^{(1)},a),\ldots,\delta_n(q^{(n)},a))$
- $(q^{(1)}, \ldots, q^{(n)}) \in F$ iff there ex. $i \in [n]$ such that $q^{(i)} \in F_i$

<u>Le</u>mma 3.12

The above construction yields $L(\mathfrak{A}) = \bigcup_{i=1}^n L(\mathfrak{A}_i) \ (= \bigcup_{i=1}^n \llbracket \alpha_i \rrbracket).$

(2) The Product Automaton

Definition 3.11 (Product automaton)

Let $\mathfrak{A}_i = \langle Q_i, \Omega, \delta_i, q_0^{(i)}, F_i \rangle \in DFA_{\Omega}$ for every $i \in [n]$. The product automaton $\mathfrak{A} = \langle Q, \Omega, \delta, q_0, F \rangle \in DFA_{\Omega}$ is defined by

- $Q := Q_1 \times \ldots \times Q_n$
- \bullet $q_0 := (q_0^{(1)}, \dots, q_0^{(n)})$
- $\delta((q^{(1)},\ldots,q^{(n)}),a) := (\delta_1(q^{(1)},a),\ldots,\delta_n(q^{(n)},a))$
- ullet $(q^{(1)},\ldots,q^{(n)})\in F$ iff there ex. $i\in [n]$ such that $q^{(i)}\in F_i$

Lemma 3.12

The above construction yields $L(\mathfrak{A}) = \bigcup_{i=1}^n L(\mathfrak{A}_i) \ (= \bigcup_{i=1}^n \llbracket \alpha_i \rrbracket)$.

Remark: similar construction for intersection $(F := F_1 \times ... \times F_n)$

(3) Partitioning the Final States

Definition 3.13 (Partitioning of final states)

Let $\mathfrak{A}=\langle Q,\Omega,\delta,q_0,F\rangle\in DFA_\Omega$ be the product automaton as constructed before. Its set of final states is partitioned into $F=\biguplus_{i=1}^nF^{(i)}$ by the requirement

$$(q^{(1)},\ldots,q^{(n)})\in F^{(i)}\iff q^{(i)}\in F_i \text{ and } \forall j\in [i-1]:q^{(j)}\notin F_j$$

(or: $F^{(i)}:=(Q_1\setminus F_1)\times\ldots\times(Q_{i-1}\setminus F_{i-1})\times F_i\times Q_{i+1}\times\ldots\times Q_n$)

(3) Partitioning the Final States

Definition 3.13 (Partitioning of final states)

Let $\mathfrak{A}=\langle Q,\Omega,\delta,q_0,F\rangle\in DFA_\Omega$ be the product automaton as constructed before. Its set of final states is partitioned into $F=\biguplus_{i=1}^nF^{(i)}$ by the requirement

$$(q^{(1)},\ldots,q^{(n)})\in F^{(i)}\iff q^{(i)}\in F_i \text{ and } \forall j\in [i-1]:q^{(j)}\notin F_j$$

(or: $F^{(i)}:=(Q_1\setminus F_1)\times\ldots\times(Q_{i-1}\setminus F_{i-1})\times F_i\times Q_{i+1}\times\ldots\times Q_n$)

Corollary 3.14

The above construction yields ($w \in \Omega^+$, $i \in [n]$):

$$\delta^*(q_0, w) \in F^{(i)}$$
 iff $w \in \llbracket \alpha_i \rrbracket$ and $w \notin \bigcup_{i=1}^{i-1} \llbracket \alpha_i \rrbracket$.

(3) Partitioning the Final States

Definition 3.13 (Partitioning of final states)

Let $\mathfrak{A}=\langle Q,\Omega,\delta,q_0,F\rangle\in DFA_\Omega$ be the product automaton as constructed before. Its set of final states is partitioned into $F=\biguplus_{i=1}^nF^{(i)}$ by the requirement

$$(q^{(1)},\ldots,q^{(n)})\in F^{(i)}\iff q^{(i)}\in F_i \text{ and } \forall j\in [i-1]:q^{(j)}\notin F_j$$

(or: $F^{(i)}:=(Q_1\setminus F_1)\times\ldots\times(Q_{i-1}\setminus F_{i-1})\times F_i\times Q_{i+1}\times\ldots\times Q_n$)

Corollary 3.14

The above construction yields ($w \in \Omega^+$, $i \in [n]$):

$$\delta^*(q_0, w) \in F^{(i)}$$
 iff $w \in \llbracket \alpha_i \rrbracket$ and $w \notin \bigcup_{i=1}^{i-1} \llbracket \alpha_i \rrbracket$.

Definition 3.15 (Productive states)

Given $\mathfrak A$ as above, $q \in Q$ is called productive if there exists $w \in \Omega^*$ such that $\delta^*(q,w) \in F$. Notation: productive states $P \subseteq Q$ (thus $F \subseteq P$).

Goal: extend \mathfrak{A} to the backtracking DFA \mathfrak{B} with output by equipping the input tape with two pointers: a backtracking head for marking the last encountered match, and a lookahead for determining the longest match.

Goal: extend $\mathfrak A$ to the backtracking DFA $\mathfrak B$ with output by equipping the input tape with two pointers: a backtracking head for marking the last encountered match, and a lookahead for determining the longest match.

A configuration of \mathfrak{B} has three components (remember: $\Sigma := \{T_1, \dots, T_n\}$ denotes the set of tokens):

- **1** a mode $m \in \{N\} \uplus \Sigma$:
 - m = N ("normal"): look for initial match (no final state reached yet)
 - $m = T \in \Sigma$: token T has been recognized, looking for possible longer match

Goal: extend $\mathfrak A$ to the backtracking DFA $\mathfrak B$ with output by equipping the input tape with two pointers: a backtracking head for marking the last encountered match, and a lookahead for determining the longest match.

A configuration of \mathfrak{B} has three components (remember: $\Sigma := \{T_1, \dots, T_n\}$ denotes the set of tokens):

- **1** a mode $m \in \{N\} \uplus \Sigma$:
 - m = N ("normal"): look for initial match (no final state reached yet)
 - $m = T \in \Sigma$: token T has been recognized, looking for possible longer match
- **2** an input tape $vqw \in \Omega^* \cdot Q \cdot \Omega^*$:
 - v: lookahead part of input $(v \neq \varepsilon \implies m \in \Sigma)$
 - q: current state of ^𝔄
 - w: remaining input

Goal: extend $\mathfrak A$ to the backtracking DFA $\mathfrak B$ with output by equipping the input tape with two pointers: a backtracking head for marking the last encountered match, and a lookahead for determining the longest match.

A configuration of \mathfrak{B} has three components (remember: $\Sigma := \{T_1, \dots, T_n\}$ denotes the set of tokens):

- **1** a mode $m \in \{N\} \uplus \Sigma$:
 - m = N ("normal"): look for initial match (no final state reached yet)
 - $m = T \in \Sigma$: token T has been recognized, looking for possible longer match
- **2** an input tape $vqw \in \Omega^* \cdot Q \cdot \Omega^*$:
 - v: lookahead part of input $(v \neq \varepsilon \implies m \in \Sigma)$
 - q: current state of \mathfrak{A}
 - w: remaining input
- **3** an output tape $W \in \Sigma^* \cdot \{\varepsilon, \text{lexerr}\}$:
 - Σ^* : sequence of tokens recognized so far
 - lexerr: a lexical error has occurred (i.e., a non-productive state was entered or the suffix of the input is not a valid lexeme)

Definition 3.16 (Backtracking DFA)

• The set of configurations of \mathfrak{B} is given by

$$(\{N\} \uplus \Sigma) \times \Omega^* \cdot Q \cdot \Omega^* \times \Sigma^* \cdot \{\varepsilon, \text{lexerr}\}$$

• The initial configuration for an input word $w \in \Omega^+$ is $(N, q_0 w, \varepsilon)$.

Definition 3.16 (Backtracking DFA)

The set of configurations of B is given by

$$(\{N\} \uplus \Sigma) \times \Omega^* \cdot Q \cdot \Omega^* \times \Sigma^* \cdot \{\varepsilon, lexerr\}$$

- The initial configuration for an input word $w \in \Omega^+$ is $(N, q_0 w, \varepsilon)$.
- The transitions of \mathfrak{B} are defined as follows (where $q' := \delta(q, a)$):
 - normal mode: look for initial match

$$(N, qaw, W) \vdash \begin{cases} (T_i, q'w, W) & \text{if } q' \in F^{(i)} \\ (N, q'w, W) & \text{if } q' \in P \setminus F \\ \textbf{output: } W \cdot \text{lexerr} & \text{if } q' \notin P \end{cases}$$

Definition 3.16 (Backtracking DFA)

The set of configurations of B is given by

$$(\{N\} \uplus \Sigma) \times \Omega^* \cdot Q \cdot \Omega^* \times \Sigma^* \cdot \{\varepsilon, lexerr\}$$

- The initial configuration for an input word $w \in \Omega^+$ is $(N, q_0 w, \varepsilon)$.
- The transitions of \mathfrak{B} are defined as follows (where $q' := \delta(q, a)$):
 - normal mode: look for initial match

$$(N, qaw, W) \vdash \begin{cases} (T_i, q'w, W) & \text{if } q' \in F^{(i)} \\ (N, q'w, W) & \text{if } q' \in P \setminus F \\ \textbf{output: } W \cdot \text{lexerr} & \text{if } q' \notin P \end{cases}$$

backtrack mode: look for longest match

$$(T, vqaw, W) \vdash \begin{cases} (T_i, q'w, W) & \text{if } q' \in F^{(i)} \\ (T, vaq'w, W) & \text{if } q' \in P \setminus F \\ (N, q_0vaw, WT) & \text{if } q' \notin P \end{cases}$$

Definition 3.16 (Backtracking DFA)

The set of configurations of B is given by

$$(\{N\} \uplus \Sigma) \times \Omega^* \cdot Q \cdot \Omega^* \times \Sigma^* \cdot \{\varepsilon, lexerr\}$$

- The initial configuration for an input word $w \in \Omega^+$ is $(N, q_0 w, \varepsilon)$.
- The transitions of \mathfrak{B} are defined as follows (where $q' := \delta(q, a)$):
 - normal mode: look for initial match

$$(N, qaw, W) \vdash \begin{cases} (T_i, q'w, W) & \text{if } q' \in F^{(i)} \\ (N, q'w, W) & \text{if } q' \in P \setminus F \\ \textbf{output: } W \cdot \text{lexerr} & \text{if } q' \notin P \end{cases}$$

backtrack mode: look for longest match

$$(T, vqaw, W) \vdash \begin{cases} (T_i, q'w, W) & \text{if } q' \in F^{(i)} \\ (T, vaq'w, W) & \text{if } q' \in P \setminus F \\ (N, q_0 vaw, WT) & \text{if } q' \notin P \end{cases}$$

end of input

$$(T, q, W) \vdash$$
 output: WT if $q \in F$
 $(N, q, W) \vdash$ **output:** $W \cdot$ lexerr if $q \in P \setminus F$
 $(T, vaq, W) \vdash (N, q_0 va, WT)$ if $q \in P \setminus F$

Lemma 3.17

Given the backtracking DFA \mathfrak{B} as before and $w \in \Omega^+$,

$$(N, q_0 w, \varepsilon)$$
 \vdash^* $\begin{cases} W \in \Sigma^* & \text{iff } W \text{ is the FLM analysis of } w \\ W \cdot \text{lexerr} & \text{iff no FLM analysis of } w \text{ exists} \end{cases}$

Proof.

(omitted)

Lemma 3.17

Given the backtracking DFA $\mathfrak B$ as before and $w \in \Omega^+$,

$$(N, q_0 w, \varepsilon)$$
 \vdash^* $\begin{cases} W \in \Sigma^* & \text{iff } W \text{ is the FLM analysis of } w \\ W \cdot \text{lexerr} & \text{iff no FLM analysis of } w \text{ exists} \end{cases}$

Proof.

(omitted)

Example 3.18

- $\Omega = \{a, b\}$, w = aaba
- n = 3, $\Sigma = \{T_1, T_2, T_3\}$
- $\alpha_1 = a$ ("keyword"), $\alpha_2 = a^+$ ("identifier"), $\alpha_3 = b$ ("operator")

(on the board)

Remarks:

• Time complexity: $\mathcal{O}(|w|^2)$ in worst case

Example 3.19

$$\alpha_1 = a$$
, $\alpha_2 = a^*b$, $w = a^m$ requires $\mathcal{O}(m^2)$

Remarks:

• Time complexity: $\mathcal{O}(|w|^2)$ in worst case

Example 3.19

$$\alpha_1 = a$$
, $\alpha_2 = a^*b$, $w = a^m$ requires $\mathcal{O}(m^2)$

 Improvement by tabular method (similar to Knuth-Morris-Pratt Algorithm for pattern matching in strings)

Literature: Th. Reps: "Maximal-Munch" Tokenization in Linear Time, ACM TOPLAS 20(2), 1998, 259–273