Compiler Construction

Lecture 2: Lexical Analysis | (Introduction)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Summer Semester 2014

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Exercise Class

Shift Fri 08:15-09:45 (AH 2) — Fri 10:00-11:30 (AH 5)7

m Compiler Construction Summer Semester 2014 22

Conceptual Structure of a Compiler

Source code

x1,=uy2u+ul;

q_exical analysis (Scanner) regular expressions/finite automata
(id, x1)(gets,)(id, y2)(plus,)(int, 1)

4
Syntax analysis (Parser))

Y

(Semantic analysis)

L
(Generation of intermediate code

Y
(Code optimization)

Y
(Generation of machine code

Target code
mH Compiler Construction Summer Semester 2014 23

@© Problem Statement

m Compiler Construction Summer Semester 2014 2.4

Lexical Structures

From Merriam-Webster's Online Dictionary

Lexical: of or relating to words or the vocabulary of a language as
distinguished from its grammar and construction

@ Starting point: source program P as a character sequence
o Q (finite) character set (e.g., ASCII, ISO Latin-1, Unicode, ...)
e a,b,c,... € Q characters (= lexical atoms)
o P € Q" source program
(of course, not every w € Q* is a valid program)
@ P exhibits lexical structures:
o natural language for keywords, identifiers, ...
@ mathematical notation for numbers, formulae, ...
(e.g., X% ~ x*%2)
@ spaces, linebreaks, indentation
@ comments and compiler directives (pragmas)

@ Translation of P follows its hierarchical structure (later)

mH Compiler Construction Summer Semester 2014 25

© Syntactic atoms (called symbols) are represented as sequences of
input characters, called lexemes

First goal of lexical analysis

Decomposition of program text into a sequence of lexemes

@ Differences between similar lexemes are (mostly) irrelevant
(e.g., identifiers do not need to be distinguished)
@ lexemes grouped into symbol classes
(e.g., identifiers, numbers, ...)
@ symbol classes abstractly represented by tokens
@ symbols identified by additional attributes
(e.g., identifier names, numerical values, ...; required for semantic
analysis and code generation)
= symbol = (token, attribute)

Second goal of lexical analysis

Transformation of a sequence of lexemes into a sequence of symbols

mH Compiler Construction Summer Semester 2014 2.6

Lexical Analysis

Definition 2.1
The goal of lexical analysis is to decompose a source program into a
sequence of lexemes and their transformation into a sequence of symbols.

The corresponding program is called a scanner (or lexer):

(token,[attribute])
Source program —><Scanner e

(Parser)— e

get next token

Symbol table

Example: e _,Xl_, : =y2+|_|1|_|;|_| N
N
... (id, p1)(gets,)(id, p2)(plus,)(int, 1)(sem,) . ..

Summer Semester 2014 2.7

mH Compiler Construction

Important Symbol Classes

Identifiers: @ for naming variables, constants, types, procedures, classes, ...
@ usually a sequence of letters and digits (and possibly special
symbols), starting with a letter
@ keywords usually forbidden; length possibly restricted

Keywords: @ identifiers with a predefined meaning
@ for representing control structures (while), operators (and),

Numerals: certain sequences of digits, +, -, ., letters (for exponent and
hexadecimal representation)

Special symbols: @ one special character, e.g., +, *, <, (, ;, ...
@ ... or two or more special characters, e.g., :=, **, <=

each makes up a symbol class (plus, gets, ...)
. or several combined into one class (arithOp)

©

White spaces: blanks, tabs, linebreaks, ...
generally for separating symbols (exception: FORTRAN)

usually not represented by token (but just removed)

mH Compiler Construction Summer Semester 2014 2.8

Specification and Implementation of Scanners

Representation of symbols: symbol = (token, attribute)
Token: (binary) denotation of symbol class (id, gets, plus, ...)
Attribute: additional information required in later compilation phases

@ reference to symbol table,

@ value of numeral,

@ concrete arithmetic/relational /Boolean operator, ...
@ usually unused for singleton symbol classes

Observation: symbol classes are regular sets

—> @ specification by regular expressions
@ recognition by finite automata

@ enables automatic generation of scanners ([£]1lex)

mH Compiler Construction Summer Semester 2014

© Specification of Symbol Classes

m Compiler Construction Summer Semester 2014 2.10

Regular Expressions |

Definition 2.2 (Syntax of regular expressions)

Given some alphabet €2, the set of regular expressions over 2, REq, is the
least set with

o (e REq,
o O C REq, and
@ whenever o, 5 € REq, also a | B, - B,a* € REq.

Remarks:
@ abbreviations: at = a - a*, ¢ := (*
@ « - 3 often written as a3
@ Binding priority: * >->| (ie,a|b-c*:=a|(b-(c*)))

mH Compiler Construction Summer Semester 2014 211

Regular Expressions ||

Regular expressions specify regular languages:

Definition 2.3 (Semantics of regular expressions)
The semantics of a regular expression is defined by the mapping
[]: REq — 2% where
[0] :=0
[a] == {a}
[B] =[] U [A]
[oc- 8] := [a] - [A]
[or] = [ed”

Remarks: for formal languages L, M C Q*, we have
o L- M:={w|velweM}
o L* =)0, L" where L% :={e} and L™ =L L"
(thus L* ={wiws...w, | neN,VI<i<n:w€l}andeel*)
o [0°] = [0]" = 0~ = {e}

mH Compiler Construction Summer Semester 2014 212

Regular Expressions |1l

Example 2.4

O A keyword: begin

Q Identifiers:
(al...|z|A]...12Z)(al|...|z|A|...]Z]|O|...]9]|$]|-|..)
© (Unsigned) Integer numbers: (0| ... |9)"

@ (Unsigned) Fixed-point numbers:
(@] ...19)F.0]...19%) [((O]...]9)*(0]...]9)")

mH Compiler Construction Summer Semester 2014 213

© The Simple Matching Problem

m Compiler Construction Summer Semester 2014 2.14

The Simple Matching Problem |

Problem 2.5 (Simple matching problem)

Given o € REq and w € Q*, decide whether w € [a] or not.

This problem can be solved using the following concept:

Definition 2.6 (Finite automaton)

A nondeterministic finite automaton (NFA) is of the form
A =(Q,Q,9,qo, F) where
@ @ is a finite set of states
o () denotes the input alphabet
@ §: @ x Q. — 29 is the transition function where Q. := QU {¢}
(notation: g — ¢’ for ' € §(q, x))
@ g € Q is the initial state
@ F C @ is the set of final states
The set of all NFA over € is denoted by NFAq.
If 6(q,) =0 and |6(g,a)| =1 for every g € Q and a € Q (i.e.,
0:Q xQ— Q), then A is called deterministic (DFA). Notation: DFAq

RWNTH Compiler Construction Summer Semester 2014 2.15

The Simple Matching Problem Il
Definition 2.7 (Acceptance condition)

Let A = (Q,Q,4,q0,F) € NFAg and w = a; ... a, € Q*.
o A w-labeled 2A-run from g1 to go is a sequence of transitions
e * a e * a g = e * ap g =
g— — — = — ...— D — @
@ 2 accepts w if there is a w-labeled 2(-run from qg to some g € F
@ The language recognized by 2/ is
L(A) :={w € Q" | A accepts w}

@ A language L C Q" is called NFA-recognizable if there exists a NFA I
such that L(2() = L

4

Example 2.8
NFA for a*b | a* (on the board)

RWNTH Compiler Construction Summer Semester 2014 2.16

The Simple Matching Problem IlI

Remarks:
@ NFA as specified in Definition 2.6 are sometimes called NFA with
e-transitions (e-NFA).
@ For 2l € DFAq, the acceptance condition yields §* : Q@ x Q* — @
with 6*(g,¢) = g and 6*(q, aw) = 6*(4(q, a), w), and
L) = {w € Q" | 6*(qo,w) € F}.

m Compiler Construction Summer Semester 2014 217

The DFA Method |

Known from Formal Systems, Automata and Processes:

Algorithm 2.9 (DFA method)
Input: regular expression o« € REq, input string w € Q*
Procedure: @ using Kleene's Theorem, construct 2, € NFAq such

that L(A,) = [

@ apply powerset construction to obtain
A, =(Q,Q,0,qp, F') € DFAq with
L(A,) = L(2Aa) = [o]

© solve the matching problem by deciding whether
™ (qp,w) € F/

Output: ‘“yes” or “no”

mH Compiler Construction Summer Semester 2014 2.18

The DFA Method |1

The powerset construction involves the following concept:

Definition 2.10 (e-closure)

Let A = (Q,Q,0,qo, F) € NFAq. The e-closure ¢(T) C Q of a subset
T C Q is defined by

@ T C¢g(T) and
@ if g€ (T), then §(q,e) C (T)

O Kleene's Theorem (on the board)

@ Powerset construction (on the board)

mH Compiler Construction

Summer Semester 2014 2.19

@ Complexity Analysis of Simple Matching

m Compiler Construction Summer Semester 2014 2.20

Complexity of DFA Method

© in construction phase:
o Kleene method: time and space O(|a|)
(where || := length of &)
o Powerset construction: time and space O(2/%=1) = O(2l)
(where |20, | :== # of states of 2l,,)
Q@ at runtime:
o Word problem: time O(|w|) (where |w| := length of w),
space O(1) (but O(2!°1) for storing DFA)
= nice runtime behavior but memory requirements very high
(and exponential time in construction phase)

mH Compiler Construction Summer Semester 2014 221

The NFA Method

Idea: reduce memory requirements by applying powerset construction at
runtime, i.e., only “to the run of w through 21"

Algorithm 2.12 (NFA method)
Input: automaton 2, = (Q,Q,6, qo, F) € NFAq,
input string w € Q*
Variables: T C Q, a€ Q

Procedure: T :=¢e({qo});
while w # ¢ do

a := head(w);
Ti=¢ (Uger (a,2))
w = tail(w)

od

Output: if TN F # 0 then “yes” else “no”

mH Compiler Construction Summer Semester 2014 2.22

Complexity Analysis

For NFA method at runtime:
@ Space: O(|a|) (for storing NFA and T)
e Time: O(lal - |w|)
(in the loop’s body, | T| states need to be considered)

— trades exponential space for increase in time

Comparison: Method | Space Time (for “w € [a]?")
DFA | 02 O(|w])
NFA | O(|a]) O(lal - |w|)

In practice:

@ Exponential blowup of DFA method usually does not occur in “real”
applications (= used in [f]lex)

o Improvement of NFA method: caching of transitions ¢§'(T, a)
—> combination of both methods

mH Compiler Construction Summer Semester 2014 2.23

	Problem Statement
	Specification of Symbol Classes
	The Simple Matching Problem
	Complexity Analysis of Simple Matching

