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Exercise Class

Shift Fri 08:15–09:45 (AH 2) −→ Fri 10:00–11:30 (AH 5)?
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Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntax analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code

regular expressions/finite automata

x1 := y2 + 1;

(id, x1)(gets, )(id, y2)(plus, )(int, 1)
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Outline

1 Problem Statement

2 Specification of Symbol Classes

3 The Simple Matching Problem

4 Complexity Analysis of Simple Matching
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Lexical Structures

From Merriam-Webster’s Online Dictionary

Lexical: of or relating to words or the vocabulary of a language as
distinguished from its grammar and construction
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Lexical Structures

From Merriam-Webster’s Online Dictionary

Lexical: of or relating to words or the vocabulary of a language as
distinguished from its grammar and construction

Starting point: source program P as a character sequence

Ω (finite) character set (e.g., ASCII, ISO Latin-1, Unicode, ...)
a, b, c , . . . ∈ Ω characters (= lexical atoms)
P ∈ Ω∗ source program
(of course, not every w ∈ Ω∗ is a valid program)
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Lexical Structures

From Merriam-Webster’s Online Dictionary

Lexical: of or relating to words or the vocabulary of a language as
distinguished from its grammar and construction

Starting point: source program P as a character sequence

Ω (finite) character set (e.g., ASCII, ISO Latin-1, Unicode, ...)
a, b, c , . . . ∈ Ω characters (= lexical atoms)
P ∈ Ω∗ source program
(of course, not every w ∈ Ω∗ is a valid program)

P exhibits lexical structures:

natural language for keywords, identifiers, ...
mathematical notation for numbers, formulae, ...
(e.g., x2  x**2)
spaces, linebreaks, indentation
comments and compiler directives (pragmas)

Translation of P follows its hierarchical structure (later)
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Observations

1 Syntactic atoms (called symbols) are represented as sequences of
input characters, called lexemes

First goal of lexical analysis

Decomposition of program text into a sequence of lexemes
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Observations

1 Syntactic atoms (called symbols) are represented as sequences of
input characters, called lexemes

First goal of lexical analysis

Decomposition of program text into a sequence of lexemes

2 Differences between similar lexemes are (mostly) irrelevant
(e.g., identifiers do not need to be distinguished)

lexemes grouped into symbol classes
(e.g., identifiers, numbers, ...)
symbol classes abstractly represented by tokens
symbols identified by additional attributes
(e.g., identifier names, numerical values, ...; required for semantic
analysis and code generation)

=⇒ symbol = (token, attribute)

Second goal of lexical analysis

Transformation of a sequence of lexemes into a sequence of symbols
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Lexical Analysis

Definition 2.1

The goal of lexical analysis is to decompose a source program into a
sequence of lexemes and their transformation into a sequence of symbols.
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Lexical Analysis

Definition 2.1

The goal of lexical analysis is to decompose a source program into a
sequence of lexemes and their transformation into a sequence of symbols.

The corresponding program is called a scanner (or lexer):

Source program Scanner Parser

Symbol table

(token,[attribute])

get next token
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Lexical Analysis

Definition 2.1

The goal of lexical analysis is to decompose a source program into a
sequence of lexemes and their transformation into a sequence of symbols.

The corresponding program is called a scanner (or lexer):

Source program Scanner Parser

Symbol table

(token,[attribute])

get next token

Example: . . .  x1 :=y2+ 1 ; . . .
⇓

. . . (id, p1)(gets, )(id, p2)(plus, )(int, 1)(sem, ) . . .
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Important Symbol Classes

Identifiers: for naming variables, constants, types, procedures, classes, ...
usually a sequence of letters and digits (and possibly special
symbols), starting with a letter
keywords usually forbidden; length possibly restricted

Compiler Construction Summer Semester 2014 2.8



Important Symbol Classes

Identifiers: for naming variables, constants, types, procedures, classes, ...
usually a sequence of letters and digits (and possibly special
symbols), starting with a letter
keywords usually forbidden; length possibly restricted

Keywords: identifiers with a predefined meaning
for representing control structures (while), operators (and),
...
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Important Symbol Classes

Identifiers: for naming variables, constants, types, procedures, classes, ...
usually a sequence of letters and digits (and possibly special
symbols), starting with a letter
keywords usually forbidden; length possibly restricted

Keywords: identifiers with a predefined meaning
for representing control structures (while), operators (and),
...

Numerals: certain sequences of digits, +, -, ., letters (for exponent and
hexadecimal representation)
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Important Symbol Classes

Identifiers: for naming variables, constants, types, procedures, classes, ...
usually a sequence of letters and digits (and possibly special
symbols), starting with a letter
keywords usually forbidden; length possibly restricted

Keywords: identifiers with a predefined meaning
for representing control structures (while), operators (and),
...

Numerals: certain sequences of digits, +, -, ., letters (for exponent and
hexadecimal representation)

Special symbols: one special character, e.g., +, *, <, (, ;, ...
... or two or more special characters, e.g., :=, **, <=, ...
each makes up a symbol class (plus, gets, ...)
... or several combined into one class (arithOp)
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Important Symbol Classes

Identifiers: for naming variables, constants, types, procedures, classes, ...
usually a sequence of letters and digits (and possibly special
symbols), starting with a letter
keywords usually forbidden; length possibly restricted

Keywords: identifiers with a predefined meaning
for representing control structures (while), operators (and),
...

Numerals: certain sequences of digits, +, -, ., letters (for exponent and
hexadecimal representation)

Special symbols: one special character, e.g., +, *, <, (, ;, ...
... or two or more special characters, e.g., :=, **, <=, ...
each makes up a symbol class (plus, gets, ...)
... or several combined into one class (arithOp)

White spaces: blanks, tabs, linebreaks, ...
generally for separating symbols (exception: FORTRAN)
usually not represented by token (but just removed)
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Specification and Implementation of Scanners

Representation of symbols: symbol = (token, attribute)

Token: (binary) denotation of symbol class (id, gets, plus, ...)

Attribute: additional information required in later compilation phases

reference to symbol table,
value of numeral,
concrete arithmetic/relational/Boolean operator, ...
usually unused for singleton symbol classes
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Specification and Implementation of Scanners

Representation of symbols: symbol = (token, attribute)

Token: (binary) denotation of symbol class (id, gets, plus, ...)

Attribute: additional information required in later compilation phases

reference to symbol table,
value of numeral,
concrete arithmetic/relational/Boolean operator, ...
usually unused for singleton symbol classes

Observation: symbol classes are regular sets

=⇒ specification by regular expressions

recognition by finite automata

enables automatic generation of scanners ([f]lex)
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Outline

1 Problem Statement

2 Specification of Symbol Classes

3 The Simple Matching Problem

4 Complexity Analysis of Simple Matching

Compiler Construction Summer Semester 2014 2.10



Regular Expressions I

Definition 2.2 (Syntax of regular expressions)

Given some alphabet Ω, the set of regular expressions over Ω, REΩ, is the
least set with

∅ ∈ REΩ,

Ω ⊆ REΩ, and

whenever α, β ∈ REΩ, also α | β, α · β, α∗ ∈ REΩ.
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Regular Expressions I

Definition 2.2 (Syntax of regular expressions)

Given some alphabet Ω, the set of regular expressions over Ω, REΩ, is the
least set with

∅ ∈ REΩ,

Ω ⊆ REΩ, and

whenever α, β ∈ REΩ, also α | β, α · β, α∗ ∈ REΩ.

Remarks:

abbreviations: α+ := α · α∗, ε := ∅∗

α · β often written as αβ

Binding priority: ∗ > · > | (i.e., a | b · c∗ := a | (b · (c∗)))
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Regular Expressions II

Regular expressions specify regular languages:

Definition 2.3 (Semantics of regular expressions)

The semantics of a regular expression is defined by the mapping

J.K : REΩ → 2Ω
∗

where

J∅K := ∅
JaK := {a}

Jα | βK := JαK ∪ JβK
Jα · βK := JαK · JβK

Jα∗K := JαK∗
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Regular Expressions II

Regular expressions specify regular languages:

Definition 2.3 (Semantics of regular expressions)

The semantics of a regular expression is defined by the mapping

J.K : REΩ → 2Ω
∗

where

J∅K := ∅
JaK := {a}

Jα | βK := JαK ∪ JβK
Jα · βK := JαK · JβK

Jα∗K := JαK∗

Remarks: for formal languages L,M ⊆ Ω∗, we have

L ·M := {vw | v ∈ L,w ∈ M}

L∗ :=
⋃∞

n=0 L
n where L0 := {ε} and Ln+1 := L · Ln

(thus L∗ = {w1w2 . . .wn | n ∈ N,∀1 ≤ i ≤ n : wi ∈ L} and ε ∈ L∗)

J∅∗K = J∅K∗ = ∅∗ = {ε}
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Regular Expressions III

Example 2.4

1 A keyword: begin
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Regular Expressions III

Example 2.4

1 A keyword: begin

2 Identifiers:

(a | . . . | z | A | . . . | Z)(a | . . . | z | A | . . . | Z | 0 | . . . | 9 | $ | | . . .)∗
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Regular Expressions III

Example 2.4

1 A keyword: begin

2 Identifiers:

(a | . . . | z | A | . . . | Z)(a | . . . | z | A | . . . | Z | 0 | . . . | 9 | $ | | . . .)∗

3 (Unsigned) Integer numbers: (0 | . . . | 9)+

Compiler Construction Summer Semester 2014 2.13



Regular Expressions III

Example 2.4

1 A keyword: begin

2 Identifiers:

(a | . . . | z | A | . . . | Z)(a | . . . | z | A | . . . | Z | 0 | . . . | 9 | $ | | . . .)∗

3 (Unsigned) Integer numbers: (0 | . . . | 9)+

4 (Unsigned) Fixed-point numbers:
(

(0 | . . . | 9)+.(0 | . . . | 9)∗
)

|
(

(0 | . . . | 9)∗.(0 | . . . | 9)+
)
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Outline

1 Problem Statement

2 Specification of Symbol Classes

3 The Simple Matching Problem

4 Complexity Analysis of Simple Matching
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The Simple Matching Problem I

Problem 2.5 (Simple matching problem)

Given α ∈ REΩ and w ∈ Ω∗, decide whether w ∈ JαK or not.
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The Simple Matching Problem I

Problem 2.5 (Simple matching problem)

Given α ∈ REΩ and w ∈ Ω∗, decide whether w ∈ JαK or not.

This problem can be solved using the following concept:

Definition 2.6 (Finite automaton)

A nondeterministic finite automaton (NFA) is of the form
A = 〈Q,Ω, δ, q0,F 〉 where

Q is a finite set of states
Ω denotes the input alphabet
δ : Q × Ωε → 2Q is the transition function where Ωε := Ω ∪ {ε}
(notation: q

x
−→ q

′ for q′
∈ δ(q, x))

q0 ∈ Q is the initial state
F ⊆ Q is the set of final states

The set of all NFA over Ω is denoted by NFAΩ.
If δ(q, ε) = ∅ and |δ(q, a)| = 1 for every q ∈ Q and a ∈ Ω (i.e.,
δ : Q × Ω → Q), then A is called deterministic (DFA). Notation: DFAΩ

Compiler Construction Summer Semester 2014 2.15



The Simple Matching Problem II

Definition 2.7 (Acceptance condition)

Let A = 〈Q,Ω, δ, q0,F 〉 ∈ NFAΩ and w = a1 . . . an ∈ Ω∗.

A w -labeled A-run from q1 to q2 is a sequence of transitions

q1
ε

−→
∗ a1−→

ε

−→
∗ a2−→

ε

−→
∗
. . .

ε

−→
∗ an−→

ε

−→
∗
q2

A accepts w if there is a w -labeled A-run from q0 to some q ∈ F

The language recognized by A is

L(A) := {w ∈ Ω∗ | A accepts w}

A language L ⊆ Ω∗ is called NFA-recognizable if there exists a NFA A

such that L(A) = L
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The Simple Matching Problem II

Definition 2.7 (Acceptance condition)

Let A = 〈Q,Ω, δ, q0,F 〉 ∈ NFAΩ and w = a1 . . . an ∈ Ω∗.

A w -labeled A-run from q1 to q2 is a sequence of transitions

q1
ε

−→
∗ a1−→

ε

−→
∗ a2−→

ε

−→
∗
. . .

ε

−→
∗ an−→

ε

−→
∗
q2

A accepts w if there is a w -labeled A-run from q0 to some q ∈ F

The language recognized by A is

L(A) := {w ∈ Ω∗ | A accepts w}

A language L ⊆ Ω∗ is called NFA-recognizable if there exists a NFA A

such that L(A) = L

Example 2.8

NFA for a∗b | a∗ (on the board)
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The Simple Matching Problem III

Remarks:

NFA as specified in Definition 2.6 are sometimes called NFA with
ε-transitions (ε-NFA).

Compiler Construction Summer Semester 2014 2.17



The Simple Matching Problem III

Remarks:

NFA as specified in Definition 2.6 are sometimes called NFA with
ε-transitions (ε-NFA).

For A ∈ DFAΩ, the acceptance condition yields δ∗ : Q × Ω∗ → Q

with δ∗(q, ε) = q and δ∗(q, aw) = δ∗(δ(q, a),w), and

L(A) = {w ∈ Ω∗ | δ∗(q0,w) ∈ F}.
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The DFA Method I

Known from Formal Systems, Automata and Processes:

Algorithm 2.9 (DFA method)

Input: regular expression α ∈ REΩ, input string w ∈ Ω∗

Compiler Construction Summer Semester 2014 2.18



The DFA Method I

Known from Formal Systems, Automata and Processes:

Algorithm 2.9 (DFA method)

Input: regular expression α ∈ REΩ, input string w ∈ Ω∗

Procedure: 1 using Kleene’s Theorem, construct Aα ∈ NFAΩ such

that L(Aα) = JαK
2 apply powerset construction to obtain

A
′
α
= 〈Q ′,Ω, δ′, q′0,F

′〉 ∈ DFAΩ with

L(A′
α
) = L(Aα) = JαK

3 solve the matching problem by deciding whether

δ′∗(q′0,w) ∈ F ′

Compiler Construction Summer Semester 2014 2.18



The DFA Method I

Known from Formal Systems, Automata and Processes:

Algorithm 2.9 (DFA method)

Input: regular expression α ∈ REΩ, input string w ∈ Ω∗

Procedure: 1 using Kleene’s Theorem, construct Aα ∈ NFAΩ such

that L(Aα) = JαK
2 apply powerset construction to obtain

A
′
α
= 〈Q ′,Ω, δ′, q′0,F

′〉 ∈ DFAΩ with

L(A′
α
) = L(Aα) = JαK

3 solve the matching problem by deciding whether

δ′∗(q′0,w) ∈ F ′

Output: “yes” or “no”
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The DFA Method II

The powerset construction involves the following concept:

Definition 2.10 (ε-closure)

Let A = 〈Q,Ω, δ, q0,F 〉 ∈ NFAΩ. The ε-closure ε(T ) ⊆ Q of a subset
T ⊆ Q is defined by

T ⊆ ε(T ) and

if q ∈ ε(T ), then δ(q, ε) ⊆ ε(T )
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The DFA Method II

The powerset construction involves the following concept:

Definition 2.10 (ε-closure)

Let A = 〈Q,Ω, δ, q0,F 〉 ∈ NFAΩ. The ε-closure ε(T ) ⊆ Q of a subset
T ⊆ Q is defined by

T ⊆ ε(T ) and

if q ∈ ε(T ), then δ(q, ε) ⊆ ε(T )

Example 2.11

1 Kleene’s Theorem (on the board)

2 Powerset construction (on the board)

Compiler Construction Summer Semester 2014 2.19



Outline

1 Problem Statement

2 Specification of Symbol Classes

3 The Simple Matching Problem

4 Complexity Analysis of Simple Matching
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Complexity of DFA Method

1 in construction phase:

Kleene method: time and space O(|α|)
(where |α| := length of α)
Powerset construction: time and space O(2|Aα|) = O(2|α|)
(where |Aα| := # of states of Aα)
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Complexity of DFA Method

1 in construction phase:

Kleene method: time and space O(|α|)
(where |α| := length of α)
Powerset construction: time and space O(2|Aα|) = O(2|α|)
(where |Aα| := # of states of Aα)

2 at runtime:

Word problem: time O(|w |) (where |w | := length of w),
space O(1) (but O(2|α|) for storing DFA)

Compiler Construction Summer Semester 2014 2.21



Complexity of DFA Method

1 in construction phase:

Kleene method: time and space O(|α|)
(where |α| := length of α)
Powerset construction: time and space O(2|Aα|) = O(2|α|)
(where |Aα| := # of states of Aα)

2 at runtime:

Word problem: time O(|w |) (where |w | := length of w),
space O(1) (but O(2|α|) for storing DFA)

=⇒ nice runtime behavior but memory requirements very high
(and exponential time in construction phase)
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The NFA Method

Idea: reduce memory requirements by applying powerset construction at
runtime, i.e., only “to the run of w through Aα”
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The NFA Method

Idea: reduce memory requirements by applying powerset construction at
runtime, i.e., only “to the run of w through Aα”

Algorithm 2.12 (NFA method)

Input: automaton Aα = 〈Q,Ω, δ, q0,F 〉 ∈ NFAΩ,

input string w ∈ Ω∗
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The NFA Method

Idea: reduce memory requirements by applying powerset construction at
runtime, i.e., only “to the run of w through Aα”

Algorithm 2.12 (NFA method)

Input: automaton Aα = 〈Q,Ω, δ, q0,F 〉 ∈ NFAΩ,

input string w ∈ Ω∗

Variables: T ⊆ Q, a ∈ Ω

Procedure: T := ε({q0});
while w 6= ε do

a := head(w);

T := ε
(

⋃

q∈T δ(q, a)
)

;

w := tail(w)
od
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The NFA Method

Idea: reduce memory requirements by applying powerset construction at
runtime, i.e., only “to the run of w through Aα”

Algorithm 2.12 (NFA method)

Input: automaton Aα = 〈Q,Ω, δ, q0,F 〉 ∈ NFAΩ,

input string w ∈ Ω∗

Variables: T ⊆ Q, a ∈ Ω

Procedure: T := ε({q0});
while w 6= ε do

a := head(w);

T := ε
(

⋃

q∈T δ(q, a)
)

;

w := tail(w)
od

Output: if T ∩ F 6= ∅ then “yes” else “no”
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Complexity Analysis

For NFA method at runtime:

Space: O(|α|) (for storing NFA and T )

Time: O(|α| · |w |)
(in the loop’s body, |T | states need to be considered)

=⇒ trades exponential space for increase in time
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Complexity Analysis

For NFA method at runtime:

Space: O(|α|) (for storing NFA and T )

Time: O(|α| · |w |)
(in the loop’s body, |T | states need to be considered)

=⇒ trades exponential space for increase in time

Comparison: Method Space Time (for “w ∈ JαK?”)

DFA O(2|α|) O(|w |)
NFA O(|α|) O(|α| · |w |)
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Complexity Analysis

For NFA method at runtime:

Space: O(|α|) (for storing NFA and T )

Time: O(|α| · |w |)
(in the loop’s body, |T | states need to be considered)

=⇒ trades exponential space for increase in time

Comparison: Method Space Time (for “w ∈ JαK?”)

DFA O(2|α|) O(|w |)
NFA O(|α|) O(|α| · |w |)

In practice:

Exponential blowup of DFA method usually does not occur in “real”
applications ( =⇒ used in [f]lex)

Improvement of NFA method: caching of transitions δ′(T , a)
=⇒ combination of both methods
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