Compiler Construction Lecture 2: Lexical Analysis I (Introduction)

Thomas Noll

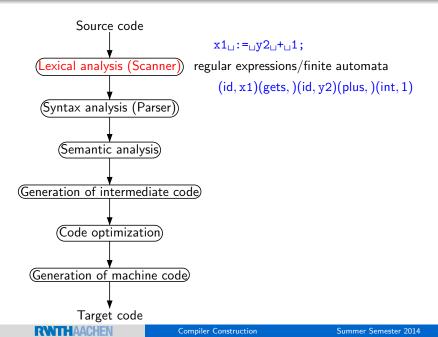
Lehrstuhl für Informatik 2 (Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Summer Semester 2014

Conceptual Structure of a Compiler



Outline

Problem Statement

- 2 Specification of Symbol Classes
- 3 The Simple Matching Problem
- 4 Complexity Analysis of Simple Matching

From Merriam-Webster's Online Dictionary

Lexical: of or relating to words or the vocabulary of a language as distinguished from its grammar and construction

From Merriam-Webster's Online Dictionary

Lexical: of or relating to words or the vocabulary of a language as distinguished from its grammar and construction

- Starting point: source program *P* as a character sequence
 - Ω (finite) character set (e.g., ASCII, ISO Latin-1, Unicode, ...)
 - $a, b, c, \ldots \in \Omega$ characters (= lexical atoms)
 - $P \in \Omega^*$ source program

(of course, not every $w \in \Omega^*$ is a valid program)

From Merriam-Webster's Online Dictionary

Lexical: of or relating to words or the vocabulary of a language as distinguished from its grammar and construction

- Starting point: source program *P* as a character sequence
 - Ω (finite) character set (e.g., ASCII, ISO Latin-1, Unicode, ...)
 - $a, b, c, \ldots \in \Omega$ characters (= lexical atoms)
 - $P \in \Omega^*$ source program

(of course, not every $w \in \Omega^*$ is a valid program)

- *P* exhibits lexical structures:
 - natural language for keywords, identifiers, ...
 - mathematical notation for numbers, formulae, ... (e.g., x² → x**2)
 - spaces, linebreaks, indentation
 - comments and compiler directives (pragmas)
- Translation of *P* follows its hierarchical structure (later)

Observations

Syntactic atoms (called symbols) are represented as sequences of input characters, called lexemes

First goal of lexical analysis

Decomposition of program text into a sequence of lexemes

Observations

Syntactic atoms (called symbols) are represented as sequences of input characters, called lexemes

First goal of lexical analysis

Decomposition of program text into a sequence of lexemes

- Oifferences between similar lexemes are (mostly) irrelevant (e.g., identifiers do not need to be distinguished)
 - lexemes grouped into symbol classes (e.g., identifiers, numbers, ...)
 - symbol classes abstractly represented by tokens
 - symbols identified by additional attributes

 (e.g., identifier names, numerical values, ...; required for semantic analysis and code generation)
 - \implies symbol = (token, attribute)

Second goal of lexical analysis

Transformation of a sequence of lexemes into a sequence of symbols

RWTHAACHEN

Compiler Construction

Lexical Analysis

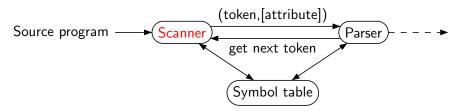
Definition 2.1

The goal of lexical analysis is to decompose a source program into a sequence of lexemes and their transformation into a sequence of symbols.

Definition 2.1

The goal of lexical analysis is to decompose a source program into a sequence of lexemes and their transformation into a sequence of symbols.

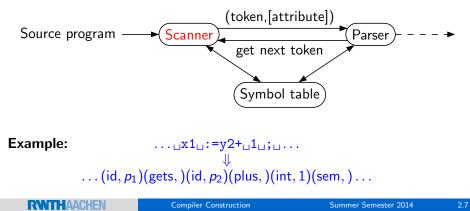
The corresponding program is called a scanner (or lexer):



Definition 2.1

The goal of lexical analysis is to decompose a source program into a sequence of lexemes and their transformation into a sequence of symbols.

The corresponding program is called a scanner (or lexer):



Identifiers:

- for naming variables, constants, types, procedures, classes, ...
- usually a sequence of letters and digits (and possibly special symbols), starting with a letter
- keywords usually forbidden; length possibly restricted

. . .

Identifiers:

- for naming variables, constants, types, procedures, classes, ...
- usually a sequence of letters and digits (and possibly special symbols), starting with a letter
- keywords usually forbidden; length possibly restricted

Keywords:

- identifiers with a predefined meaning
 - for representing control structures (while), operators (and),

RWTHAACHEN

. . .

Identifiers:

- for naming variables, constants, types, procedures, classes, ...
- usually a sequence of letters and digits (and possibly special symbols), starting with a letter
- keywords usually forbidden; length possibly restricted

Keywords:

- s: identifiers with a predefined meaning
 - for representing control structures (while), operators (and),

Numerals: certain sequences of digits, +, -, ., letters (for exponent and hexadecimal representation)

Identifiers:

- for naming variables, constants, types, procedures, classes, ...
- usually a sequence of letters and digits (and possibly special symbols), starting with a letter
- keywords usually forbidden; length possibly restricted

Keywords:

- rds: identifiers with a predefined meaning
 - for representing control structures (while), operators (and),
 ...

Numerals: certain sequences of digits, +, -, ., letters (for exponent and hexadecimal representation)

Special symbols:

- one special character, e.g., +, *, <, (, ;, ...
- ... or two or more special characters, e.g., :=, **, <=, ...
- each makes up a symbol class (plus, gets, ...)
- ... or several combined into one class (arithOp)

Identifiers:

- for naming variables, constants, types, procedures, classes, ...
- usually a sequence of letters and digits (and possibly special symbols), starting with a letter
- keywords usually forbidden; length possibly restricted

Keywords:

- ds: identifiers with a predefined meaning
 - for representing control structures (while), operators (and), ...

Numerals: certain sequences of digits, +, -, ., letters (for exponent and hexadecimal representation)

- Special symbols: one special character, e.g., +, *, <, (, ;, ...
 - ... or two or more special characters, e.g., :=, **, <=, ...
 - each makes up a symbol class (plus, gets, ...)
 - ... or several combined into one class (arithOp)

White spaces:

- blanks, tabs, linebreaks, …
 - generally for separating symbols (exception: FORTRAN)
 - usually not represented by token (but just removed)

Specification and Implementation of Scanners

Representation of symbols: symbol = (token, attribute)

Token: (binary) denotation of symbol class (id, gets, plus, ...)

Attribute: additional information required in later compilation phases

- reference to symbol table,
- value of numeral,
- concrete arithmetic/relational/Boolean operator, ...
- usually unused for singleton symbol classes

Specification and Implementation of Scanners

Representation of symbols: symbol = (token, attribute)

Token: (binary) denotation of symbol class (id, gets, plus, ...)

Attribute: additional information required in later compilation phases

- reference to symbol table,
- value of numeral,
- concrete arithmetic/relational/Boolean operator, ...
- usually unused for singleton symbol classes

Observation: symbol classes are regular sets

- \implies specification by regular expressions
 - recognition by finite automata
 - enables automatic generation of scanners ([f]lex)

Problem Statement

2 Specification of Symbol Classes

- 3 The Simple Matching Problem
- 4 Complexity Analysis of Simple Matching

Definition 2.2 (Syntax of regular expressions)

Given some alphabet Ω , the set of regular expressions over Ω , RE_{Ω} , is the least set with

- $\emptyset \in RE_{\Omega}$,
- $\Omega \subseteq RE_{\Omega}$, and
- whenever $\alpha, \beta \in RE_{\Omega}$, also $\alpha \mid \beta, \alpha \cdot \beta, \alpha^* \in RE_{\Omega}$.

Definition 2.2 (Syntax of regular expressions)

Given some alphabet Ω , the set of regular expressions over Ω , RE_{Ω} , is the least set with

- $\emptyset \in RE_{\Omega}$,
- $\Omega \subseteq RE_{\Omega}$, and
- whenever $\alpha, \beta \in RE_{\Omega}$, also $\alpha \mid \beta, \alpha \cdot \beta, \alpha^* \in RE_{\Omega}$.

Remarks:

- abbreviations: $\alpha^+ := \alpha \cdot \alpha^*$, $\varepsilon := \emptyset^*$
- $\alpha \cdot \beta$ often written as $\alpha \beta$
- Binding priority: $* > \cdot > |$ (i.e., $a \mid b \cdot c^* := a \mid (b \cdot (c^*)))$

Regular Expressions II

Regular expressions specify regular languages:

Definition 2.3 (Semantics of regular expressions)

The semantics of a regular expression is defined by the mapping

$$\begin{split} \llbracket . \rrbracket : RE_{\Omega} \to 2^{\Omega^*} \text{ where} \\ \llbracket \emptyset \rrbracket &:= \emptyset \\ \llbracket a \rrbracket &:= \{a\} \\ \llbracket \alpha \mid \beta \rrbracket &:= \llbracket \alpha \rrbracket \cup \llbracket \beta \rrbracket \\ \llbracket \alpha \cdot \beta \rrbracket &:= \llbracket \alpha \rrbracket \cup \llbracket \beta \rrbracket \\ \llbracket \alpha^* \rrbracket &:= \llbracket \alpha \rrbracket^* \end{split}$$

Regular Expressions II

Regular expressions specify regular languages:

Definition 2.3 (Semantics of regular expressions)

The semantics of a regular expression is defined by the mapping

$$\begin{split} \llbracket \cdot \rrbracket : RE_{\Omega} \to 2^{\Omega^*} \text{ where } \\ \llbracket \emptyset \rrbracket &:= \emptyset \\ \llbracket a \rrbracket := \{a\} \\ \llbracket \alpha \mid \beta \rrbracket &:= \llbracket \alpha \rrbracket \cup \llbracket \beta \rrbracket \\ \llbracket \alpha \cdot \beta \rrbracket &:= \llbracket \alpha \rrbracket \cdot \llbracket \beta \rrbracket \\ \llbracket \alpha^* \rrbracket &:= \llbracket \alpha \rrbracket^* \end{split}$$

Remarks: for formal languages $L, M \subseteq \Omega^*$, we have

- $L \cdot M := \{vw \mid v \in L, w \in M\}$
- $L^* := \bigcup_{n=0}^{\infty} L^n$ where $L^0 := \{\varepsilon\}$ and $L^{n+1} := L \cdot L^n$ (thus $L^* = \{w_1 w_2 \dots w_n \mid n \in \mathbb{N}, \forall 1 \le i \le n : w_i \in L\}$ and $\varepsilon \in L^*$)

$$\bullet \ \llbracket \emptyset^* \rrbracket = \llbracket \emptyset \rrbracket^* = \{\varepsilon\}$$

A keyword: begin

- A keyword: begin
- Identifiers:

```
(a | \dots | z | A | \dots | Z)(a | \dots | z | A | \dots | Z | 0 | \dots | 9 | $ | _ | \dots)^*
```


- A keyword: begin
- Identifiers:

 $(a | ... | z | A | ... | Z)(a | ... | z | A | ... | Z | 0 | ... | 9 | $ | _ | ...)^*$

(Unsigned) Integer numbers: $(0 \mid \ldots \mid 9)^+$

- A keyword: begin
- Identifiers:

 $(a | ... | z | A | ... | Z)(a | ... | z | A | ... | Z | 0 | ... | 9 | $ | _ | ...)^*$

- (Unsigned) Integer numbers: $(0 | \dots | 9)^+$
- Unsigned) Fixed-point numbers:

 $((0 | \dots | 9)^+ . (0 | \dots | 9)^*) | ((0 | \dots | 9)^* . (0 | \dots | 9)^+)$

Problem Statement

- 2 Specification of Symbol Classes
- The Simple Matching Problem
 - 4 Complexity Analysis of Simple Matching

The Simple Matching Problem I

Problem 2.5 (Simple matching problem)

Given $\alpha \in \mathsf{RE}_{\Omega}$ and $w \in \Omega^*$, decide whether $w \in \llbracket \alpha \rrbracket$ or not.

The Simple Matching Problem I

Problem 2.5 (Simple matching problem)

Given $\alpha \in \mathsf{RE}_{\Omega}$ and $w \in \Omega^*$, decide whether $w \in \llbracket \alpha \rrbracket$ or not.

This problem can be solved using the following concept:

Definition 2.6 (Finite automaton)

A nondeterministic finite automaton (NFA) is of the form $\mathfrak{A} = \langle Q, \Omega, \delta, q_0, F \rangle$ where

- Q is a finite set of states
- Ω denotes the input alphabet
- $\delta: Q \times \Omega_{\varepsilon} \to 2^{Q}$ is the transition function where $\Omega_{\varepsilon} := \Omega \cup \{\varepsilon\}$ (notation: $q \xrightarrow{x} q'$ for $q' \in \delta(q, x)$)
- $q_0 \in Q$ is the initial state
- $F \subseteq Q$ is the set of final states

The set of all NFA over Ω is denoted by NFA_{Ω} . If $\delta(q,\varepsilon) = \emptyset$ and $|\delta(q,a)| = 1$ for every $q \in Q$ and $a \in \Omega$ (i.e., $\delta : Q \times \Omega \to Q$), then \mathfrak{A} is called deterministic (DFA). Notation: DFA_{Ω}

RWITHAACHEN

The Simple Matching Problem II

Definition 2.7 (Acceptance condition)

Let $\mathfrak{A} = \langle Q, \Omega, \delta, q_0, F \rangle \in NFA_{\Omega}$ and $w = a_1 \dots a_n \in \Omega^*$.

• A w-labeled \mathfrak{A} -run from q_1 to q_2 is a sequence of transitions

$$q_1 \stackrel{\varepsilon}{\longrightarrow}^* \stackrel{a_1}{\longrightarrow} \stackrel{\varepsilon}{\longrightarrow}^* \stackrel{a_2}{\longrightarrow} \stackrel{\varepsilon}{\longrightarrow}^* \dots \stackrel{\varepsilon}{\longrightarrow}^* \stackrel{a_n}{\longrightarrow} \stackrel{\varepsilon}{\longrightarrow}^* q_2$$

- \mathfrak{A} accepts *w* if there is a *w*-labeled \mathfrak{A} -run from q_0 to some $q \in F$
- The language recognized by \mathfrak{A} is

 $L(\mathfrak{A}) := \{ w \in \Omega^* \mid \mathfrak{A} \text{ accepts } w \}$

 A language L ⊆ Ω* is called NFA-recognizable if there exists a NFA 𝔄 such that L(𝔅) = L

The Simple Matching Problem II

Definition 2.7 (Acceptance condition)

Let $\mathfrak{A} = \langle Q, \Omega, \delta, q_0, F \rangle \in NFA_{\Omega}$ and $w = a_1 \dots a_n \in \Omega^*$.

• A w-labeled \mathfrak{A} -run from q_1 to q_2 is a sequence of transitions

$$q_1 \stackrel{\varepsilon}{\longrightarrow}^* \stackrel{a_1}{\longrightarrow} \stackrel{\varepsilon}{\longrightarrow}^* \stackrel{a_2}{\longrightarrow} \stackrel{\varepsilon}{\longrightarrow}^* \dots \stackrel{\varepsilon}{\longrightarrow}^* \stackrel{a_n}{\longrightarrow} \stackrel{\varepsilon}{\longrightarrow}^* q_2$$

- \mathfrak{A} accepts *w* if there is a *w*-labeled \mathfrak{A} -run from q_0 to some $q \in F$
- The language recognized by \mathfrak{A} is

 $L(\mathfrak{A}) := \{ w \in \Omega^* \mid \mathfrak{A} \text{ accepts } w \}$

 A language L ⊆ Ω* is called NFA-recognizable if there exists a NFA 𝔄 such that L(𝔅) = L

Example 2.8 NFA for $a^*b \mid a^*$ (on the board) Compiler Construction Summer Semester 2014 2.16

The Simple Matching Problem III

Remarks:

• NFA as specified in Definition 2.6 are sometimes called NFA with ε -transitions (ε -NFA).

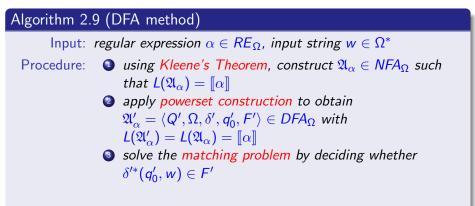
Remarks:

- NFA as specified in Definition 2.6 are sometimes called NFA with ε -transitions (ε -NFA).
- For $\mathfrak{A} \in DFA_{\Omega}$, the acceptance condition yields $\delta^* : Q \times \Omega^* \to Q$ with $\delta^*(q, \varepsilon) = q$ and $\delta^*(q, aw) = \delta^*(\delta(q, a), w)$, and $L(\mathfrak{A}) = \{w \in \Omega^* \mid \delta^*(q_0, w) \in F\}.$

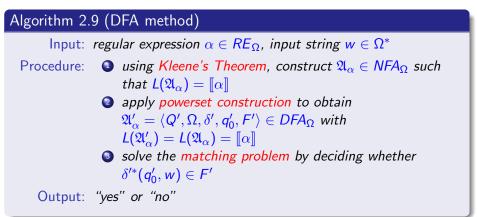
Known from Formal Systems, Automata and Processes:

Algorithm 2.9 (DFA method) Input: regular expression $\alpha \in RE_{\Omega}$, input string $w \in \Omega^*$

Known from Formal Systems, Automata and Processes:



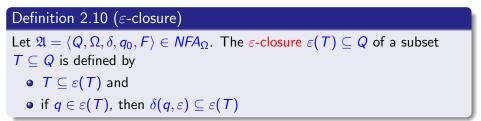
Known from Formal Systems, Automata and Processes:



The powerset construction involves the following concept:

```
Definition 2.10 (\varepsilon-closure)
Let \mathfrak{A} = \langle Q, \Omega, \delta, q_0, F \rangle \in NFA_{\Omega}. The \varepsilon-closure \varepsilon(T) \subseteq Q of a subset
T \subseteq Q is defined by
• T \subseteq \varepsilon(T) and
• if q \in \varepsilon(T), then \delta(q, \varepsilon) \subseteq \varepsilon(T)
```


The powerset construction involves the following concept:



Example 2.11

- Kleene's Theorem (on the board)
- Powerset construction (on the board)

Problem Statement

- 2 Specification of Symbol Classes
- 3 The Simple Matching Problem

4 Complexity Analysis of Simple Matching

Complexity of DFA Method

in construction phase:

- Kleene method: time and space O(|α|) (where |α| := length of α)
- Powerset construction: time and space O(2^{|𝔄α|}) = O(2^{|α|}) (where |𝔄_α| := # of states of 𝔄_α)

Complexity of DFA Method

in construction phase:

- Kleene method: time and space O(|α|) (where |α| := length of α)
- Powerset construction: time and space O(2^{|𝔄_α|}) = O(2^{|α|}) (where |𝔄_α| := # of states of 𝔄_α)
- 2 at runtime:
 - Word problem: time O(|w|) (where |w| := length of w), space O(1) (but O(2^{|α|}) for storing DFA)

Complexity of DFA Method

in construction phase:

- Kleene method: time and space O(|α|) (where |α| := length of α)
- Powerset construction: time and space O(2^{|𝔄α|}) = O(2^{|α|}) (where |𝔄_α| := # of states of 𝔄_α)
- 2 at runtime:
 - Word problem: time O(|w|) (where |w| := length of w), space O(1) (but O(2^{|α|}) for storing DFA)
- nice runtime behavior but memory requirements very high (and exponential time in construction phase)

Idea: reduce memory requirements by applying powerset construction at runtime, i.e., only "to the run of w through \mathfrak{A}_{α} "

Idea: reduce memory requirements by applying powerset construction at runtime, i.e., only "to the run of w through \mathfrak{A}_{α} "

Algorithm 2.12 (NFA method)

Input: automaton $\mathfrak{A}_{\alpha} = \langle Q, \Omega, \delta, q_0, F \rangle \in NFA_{\Omega}$, input string $w \in \Omega^*$

Idea: reduce memory requirements by applying powerset construction at runtime, i.e., only "to the run of w through \mathfrak{A}_{α} "

Algorithm 2.12 (NFA method)

Input: automaton $\mathfrak{A}_{\alpha} = \langle Q, \Omega, \delta, q_0, F \rangle \in NFA_{\Omega}$, input string $w \in \Omega^*$ Variables: $T \subseteq Q$, $a \in \Omega$ Procedure: $T := \varepsilon(\{q_0\})$; while $w \neq \varepsilon$ do a := head(w); $T := \varepsilon \left(\bigcup_{q \in T} \delta(q, a)\right)$; w := tail(w)od

Idea: reduce memory requirements by applying powerset construction at runtime, i.e., only "to the run of w through \mathfrak{A}_{α} "

Algorithm 2.12 (NFA method)

Input: automaton $\mathfrak{A}_{\alpha} = \langle Q, \Omega, \delta, q_0, F \rangle \in NFA_{\Omega}$, input string $w \in \Omega^*$ Variables: $T \subseteq Q$. $a \in \Omega$ Procedure: $T := \varepsilon(\{q_0\});$ while $w \neq \varepsilon$ do $a := \mathbf{head}(w);$ $T := \varepsilon \left(\bigcup_{q \in T} \delta(q, a) \right);$ w := tail(w)od Output: if $T \cap F \neq \emptyset$ then "yes" else "no"

Complexity Analysis

For NFA method at runtime:

- Space: $\mathcal{O}(|\alpha|)$ (for storing NFA and T)
- Time: $\mathcal{O}(|\alpha| \cdot |w|)$

(in the loop's body, |T| states need to be considered)

 \Rightarrow trades exponential space for increase in time

Complexity Analysis

For NFA method at runtime:

- Space: $\mathcal{O}(|\alpha|)$ (for storing NFA and T)
- Time: $\mathcal{O}(|\alpha| \cdot |w|)$

(in the loop's body, |T| states need to be considered)

 \Rightarrow trades exponential space for increase in time

Comparison:

Method	Space	Time (for " $\mathbf{w} \in \llbracket \alpha \rrbracket$?")
DFA	$\mathcal{O}(2^{ \alpha })$	$\mathcal{O}(w)$
NFA	$\mathcal{O}(\alpha)$	$\mathcal{O}(\alpha \cdot w)$

Complexity Analysis

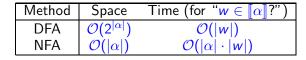
For NFA method at runtime:

- Space: $\mathcal{O}(|\alpha|)$ (for storing NFA and T)
- Time: $\mathcal{O}(|\alpha| \cdot |w|)$

(in the loop's body, |T| states need to be considered)

 \Rightarrow trades exponential space for increase in time

Comparison:



In practice:

- Exponential blowup of DFA method usually does not occur in "real" applications (⇒ used in [f]lex)
- Improvement of NFA method: caching of transitions $\delta'(T, a)$
 - \implies combination of both methods