Compiler Construction

Lecture 1: Introduction

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Summer Semester 2014

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ss-14/cc14/

© Preliminaries

m Compiler Construction Summer Semester 2014 1.2

@ Lectures:
@ Thomas Noll (noll@cs.rwth-aachen.de)
@ Exercise classes:

o Friedrich Gretz (fgretz@cs.rwth-aachen.de)
@ Souymodip Chakraborty (chakraborty@cs.rwth-aachen.de)

@ Student assistant:

@ Philipp Berger
@ Samiro Discher

m Compiler Construction Summer Semester 2014 1.3

noll@cs.rwth-aachen.de
fgretz@cs.rwth-aachen.de
chakraborty@cs.rwth-aachen.de

Target Audience

@ BSc Informatik:
o Wahlpflicht Theoretische Informatik
@ MSc Informatik:
@ Theoretische Informatik
@ MSc Software Systems Engineering:
o Theoretical Foundations of SSE (was: Theoretical CS)

m Compiler Construction Summer Semester 2014 1.4

Expectations

@ What you can expect:
@ how to implement (imperative) programming languages
@ application of theoretical concepts
@ compiler = example of a complex software architecture
@ gaining experience with tool support
@ What we expect: basic knowledge in
@ imperative programming languages
@ algorithms and data structures
o formal languages and automata theory

mH Compiler Construction Summer Semester 2014 L

@ Schedule:

Lecture Mon 14:15-15:45 AH 6 (starting 14 April)

Lecture Wed 10:15-11:45 AH 6 (starting 9 April)

Exercise class Fri 08:15-09:45 AH 2 (starting 16 April)

Special: 16 April (exercise), 2/4 June (itestra)

see overview at http://moves.rwth-aachen.de/teaching/ss-14/cc14/

<

¢ € ¢ ¢

1st assignment sheet next week, presented 25 April
Work on assignments in groups of 2-3 people
Written exams (2 h, 6 Credits) on 25 July/3 September

Admission requires at least 50% of the points in the exercises

Written material in English, lecture and exercise classes in German,
rest up to you

mH Compiler Construction Summer Semester 2014 1.6

http://moves.rwth-aachen.de/teaching/ss-14/cc14/

© Introduction

m Compiler Construction Summer Semester 2014 1.7

What Is It All About?

= Program: Source code — Target code

Source code: in high-level programming language, tailored to problem
@ imperative vs. declarative (functional, logic) vs.
object-oriented
@ sequential vs. concurrent
Target code: low-level code, tailored to machine
@ platform-independent byte code (for virtual machine
such as JVM)
@ platform-dependent assembly/machine code

(RISC/CISC/parallel/...)

mH Compiler Construction Summer Semester 2014 1.8

Usage of Compiler Technology |
Programming language interpreters

@ Ad-hoc implementation of small programs in scripting languages
(perl, bash, ...)

@ Programs usually interpreted, i.e., executed stepwise

@ Moreover: many non-scripting languages also involve interpreters
(e.g., JVM as byte code interpreter)

[0 =——Macintosh HD=..TIFFCompress ———=FHI B

R)
W TP Comprass 0. E. Brown Sat Goz0Es

® Compresses @ black-ond-whitd TIFF inage.

& File iz edited in place.
.

Usage: TIFFCompress fi lename

gy

e {B} filenome" > DeviStdErr

Exizts "(filenama)'™" And Mot "Exizts —w (7 lenane)" "
Echo *# {m}: file a"{filename}s” is not weitable” > DeviStderr
Exit 1

st tempfi rpFo

tiffep — 4filename "
Duplicate ftempfile}" * -y aveids dialog
ssater e 05 4
Satfi e 03 % =
T 7

mH Compiler Construction Summer Semester 2014 1.9

Usage of Compiler Technology Il

Web browsers

@ Receive HTML (XML) pages from web server

@ Analyse (parse) data and translate it to graphical representation

1 <!DOCTYPE html PUBLIC "—//W3C//DTD HTML
2 <html:

3 <head:>

4 {title:Example< ftitle:

g <link href="screen.css" rel="sty
& <fhead>

7 <body>

g <hi>

] <a href="/"rHeader<fa:

10 <fhi>

11 cul id="nav":

1z <1ix

13 0ne< fa>
14 <f1iz

15 <1ix

15 Two< fa>
iv <f1iz

mH Compiler Construction Summer Semester 2014 1.10

Usage of Compiler Technology IlI

Text processors

@ IATEX = “programming language” for texts of various kinds
@ Translated to DVI, PDF, ...

\documentclass [12pt]{article}
%hoptions include 12pt or 11pt or 10pt
%classes include article, report, book, letter, thesis
\title{This is the title}
\author{Author One \\ Author Twol}
\date{\today?

\begin{document}

\maketitle

This is the content of this document.
This is the 2nd paragraph.

Here is an inline formula:
$v=\frac{4 \pi r-3}{3}$

And appearing immediately below

is a displayed formula:

$3v=\frac{4 \pi r~3}{3}§%
\end{document}

mH Compiler Construction Summer Semester 2014 1.11

Properties of a Good Compiler |

Efficiency of generated code

Goal: target code as fast and/or memory efficient as possible
@ program analysis and optimization
@ cf. course on Static Program Analysis (WS 2012/13, 2014/15)

Efficiency of compiler

Goal: translation process as fast and/or memory efficient as possible
(for inputs of arbitrary size)

o fast (linear-time) algorithms

@ sophisticated data structures

mH Compiler Construction Summer Semester 2014 1.12

Properties of a Good Compiler |1

Goals: conformance to source and target language specifications;
“equivalence” of source and target code

@ compiler validation and verification

@ proof-carrying code, ...

@ cf. course on Semantics and Verification of Software (SS 2013, 2015)

Remark: mutual tradeoffs!

mH Compiler Construction Summer Semester 2014 1.13

Aspects of a Programming Language

“How does a program look like?"
@ hierarchical composition of programs from structural components

“What does this program mean?”

“Static semantics”: properties which are not (easily) definable in syntax
(declaredness of identifiers, type correctness, ...)

“Dynamic semantics”: execution evokes state transformations of an
(abstract) machine

4

@ length and understandability of programs

@ learnability of programming language
@ appropriateness for specific applications
° ..

v

RWNTH Compiler Construction Summer Semester 2014 1.14

Motivation for Rigorous Formal Treatment

© From NASA's Mercury Project: FORTRAN DO loop

o DO 5 K 1,3: DO loop with index variable K
@ DO 5 K = 1.3: assignment to (real) variable DO5K

© How often is the following loop traversed?

for i := 2 to 1 do ...

FORTRAN IV: once
PASCAL: never

© What if p = nil in the following program?
while p <> nil and p~.key < val do ...

Pascal: strict Boolean operations
Modula: non-strict Boolean operations v

Rer Compiler Construction

Summer Semester 2014 1.15

Historical Development

Code generation: since 1940s

@ ad-hoc techniques

@ concentration on back-end

o first FORTRAN compiler in 1960
Formal syntax: since 1960s

@ LL/LR parsing

@ shift towards front-end

@ semantics defined by compiler/interpreter
Formal semantics: since 1970s

@ operational

@ denotational

@ axiomatic

o cf. course on Semantics and Verification of Software
Automatic compiler generation: since 1980s

@ [f]lex, yacc, ANTLR, action semantics, ...

o cf. http://catalog.compilertools.net/

mH Compiler Construction Summer Semester 2014 1.16

http://catalog.compilertools.net/

Compiler Phases

Lexical analysis (Scanner):

@ recognition of symbols, delimiters, and comments
@ by regular expressions and finite automata

Syntax analysis (Parser):

@ determination of hierarchical program structure
@ by context-free grammars and pushdown automata

Semantic analysis:

@ checking context dependencies, data types, ...
@ by attribute grammars

Generation of intermediate code:

@ translation into (target-independent) intermediate code
@ by tree translations
Code optimization: to improve runtime and/or memory behavior
Generation of target code: tailored to target system
Additionally: optimization of target code, symbol table, error handling

mH Compiler Construction Summer Semester 2014 1.17

Conceptual Structure of a Compiler

Source code
x1 '=uy2u+u1'

q_exmal analysis (Scanner) regular eae@ressmns/flmte automata
v (id, 1 ;g,gats (id, y2)(plus,)(int, 1)

Gyntax analysis (Parser)) context- fré& gcﬁﬁﬁéﬁmars/pushdown automata

int Var EXP int

Assgn
v \/ar Exp Sumlnt
tV Const int
Semantic analysis) attribute gé\'mm'" gr constin
ar Const
Assgnok

v int Va; EXplnt
(Generation of intermediate code) tree trﬁ‘ﬁ@fﬁtlons

int Var Const int

LOAD y2; LIT 1; ADD; STO x1

Y
(Code optimization)

Y
(Generation of machine code

. [omitted: symbol table, error handling]

Target code
m Compiler Construction Summer Semester 2014 1.18

Classification of Compiler Phases

Analysis: lexical /syntax/semantic analysis
(determination of syntactic structure, error handling)

Synthesis: generation of (intermediate/machine) code + optimization

Front-end: machine-independent parts
(analysis + intermediate code + machine-independent
optimizations)

Back-end: machine-dependent parts
(generation + optimization of machine code)

Historical:

@ n = number of runs through source program

@ nowadays mainly one-pass

4

RWNTH Compiler Construction Summer Semester 2014 1.19

(CS Library: “Handapparat Softwaremodellierung und Verifikation”)

General

@ A.V. Aho, M.S. Lam, R. Sethi, J.D. Ullman: Compilers — Principles, Techniques,
and Tools; 2nd ed., Addison-Wesley, 2007

@ AW. Appel, J. Palsberg: Modern Compiler Implementation in Java, Cambridge
University Press, 2002

@ D. Grune, H.E. Bal, C.J.H. Jacobs, K.G. Langendoen: Modern Compiler Design,
Wiley & Sons, 2000 .

@ R. Wilhelm, D. Maurer: Ubersetzerbau, 2. Auflage, Springer, 1997

@ O. Mayer: Syntaxanalyse, BI-Wissenschafts-Verlag, 1978
@ D. Brown, R. Levine T. Mason: lex & yacc, O'Reilly, 1995
@ T. Parr: The Definite ANTLR Reference, Pragmatic Bookshelf, 2007

@ W. Waite, G. Goos: Compiler Construction, 2nd edition, Springer, 1985
@ N. Wirth: Grundlagen und Techniken des Compilerbaus, Addison-Wesley, 1996

RWNTH Compiler Construction Summer Semester 2014 1.20

	Preliminaries
	Introduction

