
Compiler Construction

Lecture 1: Introduction

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Summer Semester 2014

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Outline

1 Preliminaries

2 Introduction

Compiler Construction Summer Semester 2014 1.2

People

Lectures:

Thomas Noll (noll@cs.rwth-aachen.de)

Exercise classes:

Friedrich Gretz (fgretz@cs.rwth-aachen.de)
Souymodip Chakraborty (chakraborty@cs.rwth-aachen.de)

Student assistant:

Philipp Berger
Samiro Discher

Compiler Construction Summer Semester 2014 1.3

noll@cs.rwth-aachen.de
fgretz@cs.rwth-aachen.de
chakraborty@cs.rwth-aachen.de

Target Audience

BSc Informatik:

Wahlpflicht Theoretische Informatik

MSc Informatik:

Theoretische Informatik

MSc Software Systems Engineering:

Theoretical Foundations of SSE (was: Theoretical CS)

Compiler Construction Summer Semester 2014 1.4

Expectations

What you can expect:

how to implement (imperative) programming languages
application of theoretical concepts
compiler = example of a complex software architecture
gaining experience with tool support

What we expect: basic knowledge in

imperative programming languages
algorithms and data structures
formal languages and automata theory

Compiler Construction Summer Semester 2014 1.5

Organization

Schedule:

Lecture Mon 14:15–15:45 AH 6 (starting 14 April)
Lecture Wed 10:15–11:45 AH 6 (starting 9 April)
Exercise class Fri 08:15–09:45 AH 2 (starting 16 April)
Special: 16 April (exercise), 2/4 June (itestra)
see overview at http://moves.rwth-aachen.de/teaching/ss-14/cc14/

1st assignment sheet next week, presented 25 April

Work on assignments in groups of 2-3 people

Written exams (2 h, 6 Credits) on 25 July/3 September

Admission requires at least 50% of the points in the exercises

Written material in English, lecture and exercise classes in German,
rest up to you

Compiler Construction Summer Semester 2014 1.6

http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Outline

1 Preliminaries

2 Introduction

Compiler Construction Summer Semester 2014 1.7

What Is It All About?

Compiler = Program: Source code → Target code

Source code: in high-level programming language, tailored to problem

imperative vs. declarative (functional, logic) vs.
object-oriented
sequential vs. concurrent

Target code: low-level code, tailored to machine

platform-independent byte code (for virtual machine
such as JVM)
platform-dependent assembly/machine code
(RISC/CISC/parallel/...)

Compiler Construction Summer Semester 2014 1.8

Usage of Compiler Technology I

Programming language interpreters

Ad-hoc implementation of small programs in scripting languages
(perl, bash, ...)

Programs usually interpreted, i.e., executed stepwise

Moreover: many non-scripting languages also involve interpreters
(e.g., JVM as byte code interpreter)

Compiler Construction Summer Semester 2014 1.9

Usage of Compiler Technology II

Web browsers

Receive HTML (XML) pages from web server

Analyse (parse) data and translate it to graphical representation

Compiler Construction Summer Semester 2014 1.10

Usage of Compiler Technology III

Text processors

LATEX = “programming language” for texts of various kinds

Translated to DVI, PDF, ...

Compiler Construction Summer Semester 2014 1.11

Properties of a Good Compiler I

Efficiency of generated code

Goal: target code as fast and/or memory efficient as possible
program analysis and optimization
cf. course on Static Program Analysis (WS 2012/13, 2014/15)

Efficiency of compiler

Goal: translation process as fast and/or memory efficient as possible
(for inputs of arbitrary size)

fast (linear-time) algorithms
sophisticated data structures

Compiler Construction Summer Semester 2014 1.12

Properties of a Good Compiler II

Correctness

Goals: conformance to source and target language specifications;
“equivalence” of source and target code

compiler validation and verification
proof-carrying code, ...
cf. course on Semantics and Verification of Software (SS 2013, 2015)

Remark: mutual tradeoffs!

Compiler Construction Summer Semester 2014 1.13

Aspects of a Programming Language

Syntax: “How does a program look like?”

hierarchical composition of programs from structural components

Semantics: “What does this program mean?”

“Static semantics”: properties which are not (easily) definable in syntax
(declaredness of identifiers, type correctness, ...)

“Dynamic semantics”: execution evokes state transformations of an
(abstract) machine

Pragmatics

length and understandability of programs

learnability of programming language

appropriateness for specific applications

...

Compiler Construction Summer Semester 2014 1.14

Motivation for Rigorous Formal Treatment

Example

1 From NASA’s Mercury Project: FORTRAN DO loop

DO 5 K = 1,3: DO loop with index variable K
DO 5 K = 1.3: assignment to (real) variable DO5K

2 How often is the following loop traversed?

for i := 2 to 1 do ...

FORTRAN IV: once
PASCAL: never

3 What if p = nil in the following program?

while p <> nil and p^.key < val do ...

Pascal: strict Boolean operations
Modula: non-strict Boolean operations X

Compiler Construction Summer Semester 2014 1.15

Historical Development

Code generation: since 1940s

ad-hoc techniques
concentration on back-end
first FORTRAN compiler in 1960

Formal syntax: since 1960s

LL/LR parsing
shift towards front-end
semantics defined by compiler/interpreter

Formal semantics: since 1970s

operational
denotational
axiomatic
cf. course on Semantics and Verification of Software

Automatic compiler generation: since 1980s

[f]lex, yacc, ANTLR, action semantics, ...
cf. http://catalog.compilertools.net/

Compiler Construction Summer Semester 2014 1.16

http://catalog.compilertools.net/

Compiler Phases

Lexical analysis (Scanner):

recognition of symbols, delimiters, and comments
by regular expressions and finite automata

Syntax analysis (Parser):

determination of hierarchical program structure
by context-free grammars and pushdown automata

Semantic analysis:

checking context dependencies, data types, ...
by attribute grammars

Generation of intermediate code:

translation into (target-independent) intermediate code
by tree translations

Code optimization: to improve runtime and/or memory behavior
Generation of target code: tailored to target system
Additionally: optimization of target code, symbol table, error handling

Compiler Construction Summer Semester 2014 1.17

Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntax analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code

regular expressions/finite automata

context-free grammars/pushdown automata

attribute grammars

tree translations

x1 := y2 + 1;

(id, x1)(gets,)(id, y2)(plus,)(int, 1)

Assgn

Var Exp

Sum

Var Const

Assgn

Var Exp

Sum

Var Const

Assgn

Var Exp

Sum

Var Const

ok

int int

int

int int

Assgn

Var Exp

Sum

Var Const

ok

int int

int

int int

LOAD y2; LIT 1; ADD; STO x1

...

... [omitted: symbol table, error handling]

Compiler Construction Summer Semester 2014 1.18

Classification of Compiler Phases

Analysis vs. synthesis

Analysis: lexical/syntax/semantic analysis
(determination of syntactic structure, error handling)

Synthesis: generation of (intermediate/machine) code + optimization

Front-end vs. back-end

Front-end: machine-independent parts
(analysis + intermediate code + machine-independent
optimizations)

Back-end: machine-dependent parts
(generation + optimization of machine code)

Historical: n-pass compiler

n = number of runs through source program

nowadays mainly one-pass

Compiler Construction Summer Semester 2014 1.19

Literature

(CS Library: “Handapparat Softwaremodellierung und Verifikation”)

General

A.V. Aho, M.S. Lam, R. Sethi, J.D. Ullman: Compilers – Principles, Techniques,

and Tools; 2nd ed., Addison-Wesley, 2007
A.W. Appel, J. Palsberg: Modern Compiler Implementation in Java, Cambridge
University Press, 2002
D. Grune, H.E. Bal, C.J.H. Jacobs, K.G. Langendoen: Modern Compiler Design,
Wiley & Sons, 2000
R. Wilhelm, D. Maurer: Übersetzerbau, 2. Auflage, Springer, 1997

Special

O. Mayer: Syntaxanalyse, BI-Wissenschafts-Verlag, 1978
D. Brown, R. Levine T. Mason: lex & yacc, O’Reilly, 1995
T. Parr: The Definite ANTLR Reference, Pragmatic Bookshelf, 2007

Historical

W. Waite, G. Goos: Compiler Construction, 2nd edition, Springer, 1985
N. Wirth: Grundlagen und Techniken des Compilerbaus, Addison-Wesley, 1996

Compiler Construction Summer Semester 2014 1.20

	Preliminaries
	Introduction

