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Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntax analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code
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The Compiler Backend

Final step: translation of (optimized) abstract machine code into “real” machine
code (possibly followed by assembling phase)

Compiler Construction Summer Semester 2014 19.4



The Compiler Backend

Final step: translation of (optimized) abstract machine code into “real” machine
code (possibly followed by assembling phase)

Goal: runtime and storage efficiency

fast backend
fast and compact code
low memory requirements for data

Compiler Construction Summer Semester 2014 19.4



The Compiler Backend
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The Compiler Backend

Final step: translation of (optimized) abstract machine code into “real” machine
code (possibly followed by assembling phase)

Goal: runtime and storage efficiency

fast backend
fast and compact code
low memory requirements for data

Memory hierarchy: decreasing speed & costs

registers (program counter, data [universal/floating point/
address], frame pointer, index register, condition code, ...)
cache (“fast” RAM)
main memory (“slow” RAM)
background storage (disks, sticks, ...)

Principle: use fast memory whenever possible

evaluation of expressions in registers
(instead of data/runtime stack)
code/procedure stack/heap in main memory

Instruction set: depending on

number of operands
type of operands
addressing modes
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Code Generation Phases

1 Register allocation: registers used for

values of (frequently used) variables and intermediate results
computing memory addresses (array indexing, ...)
passing parameters to procedures/functions

2 Instruction selection:

translation of abstract instructions into (sequences of) real instructions
employ special instructions for efficiency
(e.g., INC(x) rather than ADD(x,1))

3 Instruction scheduling (placement): increase level of parallelism
and/or pipelining by smart ordering of instructions
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Register Allocation

Example 19.1

Assignment:
z := (u+v)-(w-(x+y))
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Assignment:
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Register Allocation

Example 19.1

Assignment:
z := (u+v)-(w-(x+y))

Target machine with
r registers R0, R1, ..., Rr−1

and main memory M

Instruction types:

Ri := M[a]
M[a] := Ri

Ri := Ri op M[a]
Ri := Ri op Rj

(with address a)
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Register Allocation

Example 19.1

Assignment:
z := (u+v)-(w-(x+y))

Target machine with
r registers R0, R1, ..., Rr−1

and main memory M

Instruction types:

Ri := M[a]
M[a] := Ri

Ri := Ri op M[a]
Ri := Ri op Rj

(with address a)

Instruction sequence
for r = 2:

R0 := M[u]
R0 := R0+M[v]
R1 := M[x]
R1 := R1+M[y]

M[t] := R1
R1 := M[w]
R1 := R1-M[t]
R0 := R0-R1

M[z] := R0
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Example 19.1
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z := (u+v)-(w-(x+y))
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R0 := M[u]
R0 := R0+M[v]
R1 := M[x]
R1 := R1+M[y]

M[t] := R1
R1 := M[w]
R1 := R1-M[t]
R0 := R0-R1

M[z] := R0

Shorter sequence:

R0 := M[w]
R1 := M[x]
R1 := R1+M[y]
R0 := R0-R1
R1 := M[u]
R1 := R1+M[v]
R1 := R1-R0

M[z] := R1
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Register Allocation

Example 19.1

Assignment:
z := (u+v)-(w-(x+y))

Target machine with
r registers R0, R1, ..., Rr−1

and main memory M

Instruction types:

Ri := M[a]
M[a] := Ri
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R1 := R1-M[t]
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R0 := M[w]
R1 := M[x]
R1 := R1+M[y]
R0 := R0-R1
R1 := M[u]
R1 := R1+M[v]
R1 := R1-R0

M[z] := R1

Reason: first variant requires intermediate storage t for x+y
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Register Allocation

Example 19.1

Assignment:
z := (u+v)-(w-(x+y))

Target machine with
r registers R0, R1, ..., Rr−1

and main memory M

Instruction types:

Ri := M[a]
M[a] := Ri

Ri := Ri op M[a]
Ri := Ri op Rj

(with address a)

Instruction sequence
for r = 2:

R0 := M[u]
R0 := R0+M[v]
R1 := M[x]
R1 := R1+M[y]

M[t] := R1
R1 := M[w]
R1 := R1-M[t]
R0 := R0-R1

M[z] := R0

Shorter sequence:

R0 := M[w]
R1 := M[x]
R1 := R1+M[y]
R0 := R0-R1
R1 := M[u]
R1 := R1+M[v]
R1 := R1-R0

M[z] := R1

Reason: first variant requires intermediate storage t for x+y
How to compute systematically?
Idea: start with register-intensive subexpressions
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Register Optimization

Let e = e1 op e2.

Assumption: ei requires ri registers for evaluation
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Register Optimization

Let e = e1 op e2.

Assumption: ei requires ri registers for evaluation

Evaluation of e:
if r1 < r2 ≤ r , then e can be evaluated using r2 registers:

1 evaluate e2 (using r2 registers)
2 keep result in 1 register
3 evaluate e1 (using r1 + 1 ≤ r2 registers in total)
4 combine results

if r2 < r1 ≤ r , then e can be evaluated using r1 registers
if r1 = r2 < r , then e can be evaluated using r1 + 1 registers
if more than r registers required: use main memory as intermediate
storage
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Register Optimization

Let e = e1 op e2.

Assumption: ei requires ri registers for evaluation

Evaluation of e:
if r1 < r2 ≤ r , then e can be evaluated using r2 registers:

1 evaluate e2 (using r2 registers)
2 keep result in 1 register
3 evaluate e1 (using r1 + 1 ≤ r2 registers in total)
4 combine results

if r2 < r1 ≤ r , then e can be evaluated using r1 registers
if r1 = r2 < r , then e can be evaluated using r1 + 1 registers
if more than r registers required: use main memory as intermediate
storage

The corresponding optimization algorithm works in two phases:
1 Marking phase (computes ri values)
2 Generation phase (produces actual code)

(for details see Wilhelm/Maurer: Übersetzerbau, 2. Auflage, Springer,
1997, Sct. 12.4)
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The Marking Phase

Algorithm 19.2 (Marking phase)

Input: expression (with binary operators op and variables x)

Procedure: recursively compute

r(x) :=

{

1 if x is a “left leaf”
0 if x is a “right leaf”
1 if x is at the root

r(e1 op e2) :=

{

max{r(e1), r(e2)} if r(e1) 6= r(e2)
r(e1) + 1 if r(e1) = r(e2)

Output: number of required registers r(e)
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The Generation Phase I

Goal: generate optimal (= shortest) code for evaluating expression e
with register requirement r(e)
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The Generation Phase I

Goal: generate optimal (= shortest) code for evaluating expression e
with register requirement r(e)

Data structures used in Algorithm 19.4:

RS : stack of available registers
(initially: all registers; never empty)

CS : stack of available main memory cells
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The Generation Phase I

Goal: generate optimal (= shortest) code for evaluating expression e
with register requirement r(e)

Data structures used in Algorithm 19.4:

RS : stack of available registers
(initially: all registers; never empty)

CS : stack of available main memory cells

Auxiliary procedures used in Algorithm 19.4:

output: outputs the argument as code
top: returns the topmost entry of a stack S (leaving S

unchanged)
pop: removes and returns the topmost entry of a stack
push: puts an element onto a stack

exchange: exchanges the two topmost elements of a stack
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The Generation Phase II

Algorithm 19.4 (Generation phase)
Input: expression e, annotated with register requirement r(e)

Variables: RS: stack of registers;
CS: stack of memory cells;
R: register; C : memory cell;

Procedure: recursive execution of procedure code(e), defined by code(e) :=
(1) if e = x, r(x) = 1: % left leaf

output(top(RS):= M[x])

(2) if e = e1 op y, r(y) = 0: % right leaf
code(e1);
output(top(RS):=top(RS) op M[y])

(3) if e = e1 op e2, r(e1) < r(e2), r(e1) < r :
exchange(RS);
code(e2);
R := pop(RS);
code(e1);
output(top(RS):=top(RS) op R);
push(RS ,R);
exchange(RS)

(4) if e = e1 op e2, r(e1) ≥ r(e2),
r(e2) < r :

code(e1);
R := pop(RS);
code(e2);
output(R:=R op top(RS));
push(RS ,R)

(5) if e = e1 op e2, r(e1) ≥ r , r(e2) ≥ r :
code(e2);
C := pop(CS);
output(M[C]:=top(RS));
code(e1);
output(top(RS):=top(RS) op M[C]);
push(CS ,C)

Output: optimal (= shortest) code for evaluating e
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The Generation Phase III

Invariants of Algorithm 19.4:

after executing code(e), both RS and CS have their original values
after executing the machine code produced by code(e), the value of e
is stored in the topmost register of RS
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Shortcoming of Algorithm 19.4: multiple evaluation of common
subexpressions ( =⇒ dynamic programming [Wilhelm/Maurer])
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The Generation Phase III

Invariants of Algorithm 19.4:

after executing code(e), both RS and CS have their original values
after executing the machine code produced by code(e), the value of e
is stored in the topmost register of RS

Shortcoming of Algorithm 19.4: multiple evaluation of common
subexpressions ( =⇒ dynamic programming [Wilhelm/Maurer])

Example 19.5 (cf. Example 19.3)

u v w

x y

e1: +

+

e2: -

e: -

1 1

1

0

0

1

1

2

2

(on the board)
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Register Allocation by Graph Coloring

Algorithm 19.4: register allocation for single expressions

Required: global allocation within program/procedure body

Approach: graph coloring
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1 Use unbounded number of symbolic registers for storing intermediate
values
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Register Allocation by Graph Coloring

Algorithm 19.4: register allocation for single expressions

Required: global allocation within program/procedure body

Approach: graph coloring

Register Allocation by Graph Coloring

1 Use unbounded number of symbolic registers for storing intermediate
values

2 Consider life span of symbolic registers: r is live at program point p if

there is a path to p on which r is set and
there is a path from p on which r is read before being set

3 Life span of r = program points where r is live

4 Two registers are in collision if one is set in the life span of the other

5 Yields register collision graph (nodes = life spans, edges = collisions)

6 Program executable with k real registers iff collision graph k-colorable
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Further Topics in Compiler Construction

Translation of higher-level constructs (modules, classes, ...)

Translation of non-procedural languages

object-oriented (polymorphism, dynamic dispatch)
functional (higher-order functions, type checking/inference)
logic (unification, backtracking)

Code optimization

Symbol-table handling

Error handling

Bootstrapping
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Exams & Seminar

Exams
1 Friday, 25 July, 10:00–13:00, AH 1 (BSc), AH 4 (MSc)

2 Wednesday, 3 September, 10:00–13:00, AH 4
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Exams & Seminar

Exams
1 Friday, 25 July, 10:00–13:00, AH 1 (BSc), AH 4 (MSc)

2 Wednesday, 3 September, 10:00–13:00, AH 4

Winter Semester 2014/15: Trends in Computer-Aided Verification

Axiomatic Verification [C. Jansen]

Graph-Based Abstraction [T. Noll]

Inductive Incremental Verification [T. Lange]

Verification of Probabilistic Systems [K. van der Pol]

Companion seminar: Probabilistic Programs
[J.-P. Katoen, N. Jansen, B. Kaminski, F. Olmedo]

Compiler Construction Summer Semester 2014 19.16



Lectures

Winter Semester 2014/15: Static Program Analysis

Dataflow analysis

Abstract interpretation

Interprocedural analysis

Pointer analysis
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Lectures

Winter Semester 2014/15: Static Program Analysis

Dataflow analysis

Abstract interpretation

Interprocedural analysis

Pointer analysis

Summer Semester 2015: Semantics and Verification of Software

Operational semantics

Denotational semantics

Axiomatic semantics

Semantic equivalence

Compiler correctness
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