
Compiler Construction
Lecture 19: Code Generation V (Machine Code)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Summer Semester 2014

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Outline

1 Generation of Machine Code

2 Register Allocation

3 Outlook

Compiler Construction Summer Semester 2014 19.2

Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntax analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code
Compiler Construction Summer Semester 2014 19.3

The Compiler Backend

Final step: translation of (optimized) abstract machine code into “real” machine
code (possibly followed by assembling phase)

Compiler Construction Summer Semester 2014 19.4

The Compiler Backend

Final step: translation of (optimized) abstract machine code into “real” machine
code (possibly followed by assembling phase)

Goal: runtime and storage efficiency

fast backend
fast and compact code
low memory requirements for data

Compiler Construction Summer Semester 2014 19.4

The Compiler Backend

Final step: translation of (optimized) abstract machine code into “real” machine
code (possibly followed by assembling phase)

Goal: runtime and storage efficiency

fast backend
fast and compact code
low memory requirements for data

Memory hierarchy: decreasing speed & costs

registers (program counter, data [universal/floating point/
address], frame pointer, index register, condition code, ...)
cache (“fast” RAM)
main memory (“slow” RAM)
background storage (disks, sticks, ...)

Compiler Construction Summer Semester 2014 19.4

The Compiler Backend

Final step: translation of (optimized) abstract machine code into “real” machine
code (possibly followed by assembling phase)

Goal: runtime and storage efficiency

fast backend
fast and compact code
low memory requirements for data

Memory hierarchy: decreasing speed & costs

registers (program counter, data [universal/floating point/
address], frame pointer, index register, condition code, ...)
cache (“fast” RAM)
main memory (“slow” RAM)
background storage (disks, sticks, ...)

Principle: use fast memory whenever possible

evaluation of expressions in registers
(instead of data/runtime stack)
code/procedure stack/heap in main memory

Compiler Construction Summer Semester 2014 19.4

The Compiler Backend

Final step: translation of (optimized) abstract machine code into “real” machine
code (possibly followed by assembling phase)

Goal: runtime and storage efficiency

fast backend
fast and compact code
low memory requirements for data

Memory hierarchy: decreasing speed & costs

registers (program counter, data [universal/floating point/
address], frame pointer, index register, condition code, ...)
cache (“fast” RAM)
main memory (“slow” RAM)
background storage (disks, sticks, ...)

Principle: use fast memory whenever possible

evaluation of expressions in registers
(instead of data/runtime stack)
code/procedure stack/heap in main memory

Instruction set: depending on

number of operands
type of operands
addressing modes

Compiler Construction Summer Semester 2014 19.4

Code Generation Phases

1 Register allocation: registers used for

values of (frequently used) variables and intermediate results
computing memory addresses (array indexing, ...)
passing parameters to procedures/functions

2 Instruction selection:

translation of abstract instructions into (sequences of) real instructions
employ special instructions for efficiency
(e.g., INC(x) rather than ADD(x,1))

3 Instruction scheduling (placement): increase level of parallelism
and/or pipelining by smart ordering of instructions

Compiler Construction Summer Semester 2014 19.5

Code Generation Phases

1 Register allocation: registers used for

values of (frequently used) variables and intermediate results
computing memory addresses (array indexing, ...)
passing parameters to procedures/functions

2 Instruction selection:

translation of abstract instructions into (sequences of) real instructions
employ special instructions for efficiency
(e.g., INC(x) rather than ADD(x,1))

3 Instruction scheduling (placement): increase level of parallelism
and/or pipelining by smart ordering of instructions

Compiler Construction Summer Semester 2014 19.5

Outline

1 Generation of Machine Code

2 Register Allocation

3 Outlook

Compiler Construction Summer Semester 2014 19.6

Register Allocation

Example 19.1

Assignment:
z := (u+v)-(w-(x+y))

Compiler Construction Summer Semester 2014 19.7

Register Allocation

Example 19.1

Assignment:
z := (u+v)-(w-(x+y))

Target machine with
r registers R0, R1, ..., Rr−1

and main memory M

Compiler Construction Summer Semester 2014 19.7

Register Allocation

Example 19.1

Assignment:
z := (u+v)-(w-(x+y))

Target machine with
r registers R0, R1, ..., Rr−1

and main memory M

Instruction types:

Ri := M[a]
M[a] := Ri

Ri := Ri op M[a]
Ri := Ri op Rj

(with address a)

Compiler Construction Summer Semester 2014 19.7

Register Allocation

Example 19.1

Assignment:
z := (u+v)-(w-(x+y))

Target machine with
r registers R0, R1, ..., Rr−1

and main memory M

Instruction types:

Ri := M[a]
M[a] := Ri

Ri := Ri op M[a]
Ri := Ri op Rj

(with address a)

Instruction sequence
for r = 2:

R0 := M[u]
R0 := R0+M[v]
R1 := M[x]
R1 := R1+M[y]

M[t] := R1
R1 := M[w]
R1 := R1-M[t]
R0 := R0-R1

M[z] := R0

Compiler Construction Summer Semester 2014 19.7

Register Allocation

Example 19.1

Assignment:
z := (u+v)-(w-(x+y))

Target machine with
r registers R0, R1, ..., Rr−1

and main memory M

Instruction types:

Ri := M[a]
M[a] := Ri

Ri := Ri op M[a]
Ri := Ri op Rj

(with address a)

Instruction sequence
for r = 2:

R0 := M[u]
R0 := R0+M[v]
R1 := M[x]
R1 := R1+M[y]

M[t] := R1
R1 := M[w]
R1 := R1-M[t]
R0 := R0-R1

M[z] := R0

Shorter sequence:

R0 := M[w]
R1 := M[x]
R1 := R1+M[y]
R0 := R0-R1
R1 := M[u]
R1 := R1+M[v]
R1 := R1-R0

M[z] := R1

Compiler Construction Summer Semester 2014 19.7

Register Allocation

Example 19.1

Assignment:
z := (u+v)-(w-(x+y))

Target machine with
r registers R0, R1, ..., Rr−1

and main memory M

Instruction types:

Ri := M[a]
M[a] := Ri

Ri := Ri op M[a]
Ri := Ri op Rj

(with address a)

Instruction sequence
for r = 2:

R0 := M[u]
R0 := R0+M[v]
R1 := M[x]
R1 := R1+M[y]

M[t] := R1
R1 := M[w]
R1 := R1-M[t]
R0 := R0-R1

M[z] := R0

Shorter sequence:

R0 := M[w]
R1 := M[x]
R1 := R1+M[y]
R0 := R0-R1
R1 := M[u]
R1 := R1+M[v]
R1 := R1-R0

M[z] := R1

Reason: first variant requires intermediate storage t for x+y

Compiler Construction Summer Semester 2014 19.7

Register Allocation

Example 19.1

Assignment:
z := (u+v)-(w-(x+y))

Target machine with
r registers R0, R1, ..., Rr−1

and main memory M

Instruction types:

Ri := M[a]
M[a] := Ri

Ri := Ri op M[a]
Ri := Ri op Rj

(with address a)

Instruction sequence
for r = 2:

R0 := M[u]
R0 := R0+M[v]
R1 := M[x]
R1 := R1+M[y]

M[t] := R1
R1 := M[w]
R1 := R1-M[t]
R0 := R0-R1

M[z] := R0

Shorter sequence:

R0 := M[w]
R1 := M[x]
R1 := R1+M[y]
R0 := R0-R1
R1 := M[u]
R1 := R1+M[v]
R1 := R1-R0

M[z] := R1

Reason: first variant requires intermediate storage t for x+y
How to compute systematically?

Compiler Construction Summer Semester 2014 19.7

Register Allocation

Example 19.1

Assignment:
z := (u+v)-(w-(x+y))

Target machine with
r registers R0, R1, ..., Rr−1

and main memory M

Instruction types:

Ri := M[a]
M[a] := Ri

Ri := Ri op M[a]
Ri := Ri op Rj

(with address a)

Instruction sequence
for r = 2:

R0 := M[u]
R0 := R0+M[v]
R1 := M[x]
R1 := R1+M[y]

M[t] := R1
R1 := M[w]
R1 := R1-M[t]
R0 := R0-R1

M[z] := R0

Shorter sequence:

R0 := M[w]
R1 := M[x]
R1 := R1+M[y]
R0 := R0-R1
R1 := M[u]
R1 := R1+M[v]
R1 := R1-R0

M[z] := R1

Reason: first variant requires intermediate storage t for x+y
How to compute systematically?
Idea: start with register-intensive subexpressions

Compiler Construction Summer Semester 2014 19.7

Register Optimization

Let e = e1 op e2.

Assumption: ei requires ri registers for evaluation

Compiler Construction Summer Semester 2014 19.8

Register Optimization

Let e = e1 op e2.

Assumption: ei requires ri registers for evaluation

Evaluation of e:
if r1 < r2 ≤ r , then e can be evaluated using r2 registers:

1 evaluate e2 (using r2 registers)
2 keep result in 1 register
3 evaluate e1 (using r1 + 1 ≤ r2 registers in total)
4 combine results

if r2 < r1 ≤ r , then e can be evaluated using r1 registers
if r1 = r2 < r , then e can be evaluated using r1 + 1 registers
if more than r registers required: use main memory as intermediate
storage

Compiler Construction Summer Semester 2014 19.8

Register Optimization

Let e = e1 op e2.

Assumption: ei requires ri registers for evaluation

Evaluation of e:
if r1 < r2 ≤ r , then e can be evaluated using r2 registers:

1 evaluate e2 (using r2 registers)
2 keep result in 1 register
3 evaluate e1 (using r1 + 1 ≤ r2 registers in total)
4 combine results

if r2 < r1 ≤ r , then e can be evaluated using r1 registers
if r1 = r2 < r , then e can be evaluated using r1 + 1 registers
if more than r registers required: use main memory as intermediate
storage

The corresponding optimization algorithm works in two phases:
1 Marking phase (computes ri values)
2 Generation phase (produces actual code)

(for details see Wilhelm/Maurer: Übersetzerbau, 2. Auflage, Springer,
1997, Sct. 12.4)

Compiler Construction Summer Semester 2014 19.8

The Marking Phase

Algorithm 19.2 (Marking phase)

Input: expression (with binary operators op and variables x)

Procedure: recursively compute

r(x) :=

{

1 if x is a “left leaf”
0 if x is a “right leaf”
1 if x is at the root

r(e1 op e2) :=

{

max{r(e1), r(e2)} if r(e1) 6= r(e2)
r(e1) + 1 if r(e1) = r(e2)

Output: number of required registers r(e)

Compiler Construction Summer Semester 2014 19.9

The Marking Phase

Algorithm 19.2 (Marking phase)

Input: expression (with binary operators op and variables x)

Procedure: recursively compute

r(x) :=

{

1 if x is a “left leaf”
0 if x is a “right leaf”
1 if x is at the root

r(e1 op e2) :=

{

max{r(e1), r(e2)} if r(e1) 6= r(e2)
r(e1) + 1 if r(e1) = r(e2)

Output: number of required registers r(e)

Example 19.3 (cf. Example 19.1)

e = (u+v)-(w-(x+y)):

u v w

x y

+

+

-

-

Compiler Construction Summer Semester 2014 19.9

The Marking Phase

Algorithm 19.2 (Marking phase)

Input: expression (with binary operators op and variables x)

Procedure: recursively compute

r(x) :=

{

1 if x is a “left leaf”
0 if x is a “right leaf”
1 if x is at the root

r(e1 op e2) :=

{

max{r(e1), r(e2)} if r(e1) 6= r(e2)
r(e1) + 1 if r(e1) = r(e2)

Output: number of required registers r(e)

Example 19.3 (cf. Example 19.1)

e = (u+v)-(w-(x+y)):

u v w

x y

+

+

-

-

1 1

1

Compiler Construction Summer Semester 2014 19.9

The Marking Phase

Algorithm 19.2 (Marking phase)

Input: expression (with binary operators op and variables x)

Procedure: recursively compute

r(x) :=

{

1 if x is a “left leaf”
0 if x is a “right leaf”
1 if x is at the root

r(e1 op e2) :=

{

max{r(e1), r(e2)} if r(e1) 6= r(e2)
r(e1) + 1 if r(e1) = r(e2)

Output: number of required registers r(e)

Example 19.3 (cf. Example 19.1)

e = (u+v)-(w-(x+y)):

u v w

x y

+

+

-

-

1 1

1

0

0

Compiler Construction Summer Semester 2014 19.9

The Marking Phase

Algorithm 19.2 (Marking phase)

Input: expression (with binary operators op and variables x)

Procedure: recursively compute

r(x) :=

{

1 if x is a “left leaf”
0 if x is a “right leaf”
1 if x is at the root

r(e1 op e2) :=

{

max{r(e1), r(e2)} if r(e1) 6= r(e2)
r(e1) + 1 if r(e1) = r(e2)

Output: number of required registers r(e)

Example 19.3 (cf. Example 19.1)

e = (u+v)-(w-(x+y)):

u v w

x y

+

+

-

-

1 1

1

0

0

1

1

Compiler Construction Summer Semester 2014 19.9

The Marking Phase

Algorithm 19.2 (Marking phase)

Input: expression (with binary operators op and variables x)

Procedure: recursively compute

r(x) :=

{

1 if x is a “left leaf”
0 if x is a “right leaf”
1 if x is at the root

r(e1 op e2) :=

{

max{r(e1), r(e2)} if r(e1) 6= r(e2)
r(e1) + 1 if r(e1) = r(e2)

Output: number of required registers r(e)

Example 19.3 (cf. Example 19.1)

e = (u+v)-(w-(x+y)):

u v w

x y

+

+

-

-

1 1

1

0

0

1

1

2

Compiler Construction Summer Semester 2014 19.9

The Marking Phase

Algorithm 19.2 (Marking phase)

Input: expression (with binary operators op and variables x)

Procedure: recursively compute

r(x) :=

{

1 if x is a “left leaf”
0 if x is a “right leaf”
1 if x is at the root

r(e1 op e2) :=

{

max{r(e1), r(e2)} if r(e1) 6= r(e2)
r(e1) + 1 if r(e1) = r(e2)

Output: number of required registers r(e)

Example 19.3 (cf. Example 19.1)

e = (u+v)-(w-(x+y)):

u v w

x y

+

+

-

-

1 1

1

0

0

1

1

2

2

Compiler Construction Summer Semester 2014 19.9

The Generation Phase I

Goal: generate optimal (= shortest) code for evaluating expression e
with register requirement r(e)

Compiler Construction Summer Semester 2014 19.10

The Generation Phase I

Goal: generate optimal (= shortest) code for evaluating expression e
with register requirement r(e)

Data structures used in Algorithm 19.4:

RS : stack of available registers
(initially: all registers; never empty)

CS : stack of available main memory cells

Compiler Construction Summer Semester 2014 19.10

The Generation Phase I

Goal: generate optimal (= shortest) code for evaluating expression e
with register requirement r(e)

Data structures used in Algorithm 19.4:

RS : stack of available registers
(initially: all registers; never empty)

CS : stack of available main memory cells

Auxiliary procedures used in Algorithm 19.4:

output: outputs the argument as code
top: returns the topmost entry of a stack S (leaving S

unchanged)
pop: removes and returns the topmost entry of a stack
push: puts an element onto a stack

exchange: exchanges the two topmost elements of a stack

Compiler Construction Summer Semester 2014 19.10

The Generation Phase II

Algorithm 19.4 (Generation phase)
Input: expression e, annotated with register requirement r(e)

Variables: RS: stack of registers;
CS: stack of memory cells;
R: register; C : memory cell;

Procedure: recursive execution of procedure code(e), defined by code(e) :=
(1) if e = x, r(x) = 1: % left leaf

output(top(RS):= M[x])

(2) if e = e1 op y, r(y) = 0: % right leaf
code(e1);
output(top(RS):=top(RS) op M[y])

(3) if e = e1 op e2, r(e1) < r(e2), r(e1) < r :
exchange(RS);
code(e2);
R := pop(RS);
code(e1);
output(top(RS):=top(RS) op R);
push(RS ,R);
exchange(RS)

(4) if e = e1 op e2, r(e1) ≥ r(e2),
r(e2) < r :

code(e1);
R := pop(RS);
code(e2);
output(R:=R op top(RS));
push(RS ,R)

(5) if e = e1 op e2, r(e1) ≥ r , r(e2) ≥ r :
code(e2);
C := pop(CS);
output(M[C]:=top(RS));
code(e1);
output(top(RS):=top(RS) op M[C]);
push(CS ,C)

Output: optimal (= shortest) code for evaluating e

Compiler Construction Summer Semester 2014 19.11

The Generation Phase III

Invariants of Algorithm 19.4:

after executing code(e), both RS and CS have their original values
after executing the machine code produced by code(e), the value of e
is stored in the topmost register of RS

Compiler Construction Summer Semester 2014 19.12

The Generation Phase III

Invariants of Algorithm 19.4:

after executing code(e), both RS and CS have their original values
after executing the machine code produced by code(e), the value of e
is stored in the topmost register of RS

Shortcoming of Algorithm 19.4: multiple evaluation of common
subexpressions (=⇒ dynamic programming [Wilhelm/Maurer])

Compiler Construction Summer Semester 2014 19.12

The Generation Phase III

Invariants of Algorithm 19.4:

after executing code(e), both RS and CS have their original values
after executing the machine code produced by code(e), the value of e
is stored in the topmost register of RS

Shortcoming of Algorithm 19.4: multiple evaluation of common
subexpressions (=⇒ dynamic programming [Wilhelm/Maurer])

Example 19.5 (cf. Example 19.3)

u v w

x y

e1: +

+

e2: -

e: -

1 1

1

0

0

1

1

2

2

(on the board)

Compiler Construction Summer Semester 2014 19.12

Register Allocation by Graph Coloring

Algorithm 19.4: register allocation for single expressions

Required: global allocation within program/procedure body

Approach: graph coloring

Compiler Construction Summer Semester 2014 19.13

Register Allocation by Graph Coloring

Algorithm 19.4: register allocation for single expressions

Required: global allocation within program/procedure body

Approach: graph coloring

Register Allocation by Graph Coloring

1 Use unbounded number of symbolic registers for storing intermediate
values

Compiler Construction Summer Semester 2014 19.13

Register Allocation by Graph Coloring

Algorithm 19.4: register allocation for single expressions

Required: global allocation within program/procedure body

Approach: graph coloring

Register Allocation by Graph Coloring

1 Use unbounded number of symbolic registers for storing intermediate
values

2 Consider life span of symbolic registers: r is live at program point p if

there is a path to p on which r is set and
there is a path from p on which r is read before being set

Compiler Construction Summer Semester 2014 19.13

Register Allocation by Graph Coloring

Algorithm 19.4: register allocation for single expressions

Required: global allocation within program/procedure body

Approach: graph coloring

Register Allocation by Graph Coloring

1 Use unbounded number of symbolic registers for storing intermediate
values

2 Consider life span of symbolic registers: r is live at program point p if

there is a path to p on which r is set and
there is a path from p on which r is read before being set

3 Life span of r = program points where r is live

Compiler Construction Summer Semester 2014 19.13

Register Allocation by Graph Coloring

Algorithm 19.4: register allocation for single expressions

Required: global allocation within program/procedure body

Approach: graph coloring

Register Allocation by Graph Coloring

1 Use unbounded number of symbolic registers for storing intermediate
values

2 Consider life span of symbolic registers: r is live at program point p if

there is a path to p on which r is set and
there is a path from p on which r is read before being set

3 Life span of r = program points where r is live

4 Two registers are in collision if one is set in the life span of the other

Compiler Construction Summer Semester 2014 19.13

Register Allocation by Graph Coloring

Algorithm 19.4: register allocation for single expressions

Required: global allocation within program/procedure body

Approach: graph coloring

Register Allocation by Graph Coloring

1 Use unbounded number of symbolic registers for storing intermediate
values

2 Consider life span of symbolic registers: r is live at program point p if

there is a path to p on which r is set and
there is a path from p on which r is read before being set

3 Life span of r = program points where r is live

4 Two registers are in collision if one is set in the life span of the other

5 Yields register collision graph (nodes = life spans, edges = collisions)

Compiler Construction Summer Semester 2014 19.13

Register Allocation by Graph Coloring

Algorithm 19.4: register allocation for single expressions

Required: global allocation within program/procedure body

Approach: graph coloring

Register Allocation by Graph Coloring

1 Use unbounded number of symbolic registers for storing intermediate
values

2 Consider life span of symbolic registers: r is live at program point p if

there is a path to p on which r is set and
there is a path from p on which r is read before being set

3 Life span of r = program points where r is live

4 Two registers are in collision if one is set in the life span of the other

5 Yields register collision graph (nodes = life spans, edges = collisions)

6 Program executable with k real registers iff collision graph k-colorable

Compiler Construction Summer Semester 2014 19.13

Outline

1 Generation of Machine Code

2 Register Allocation

3 Outlook

Compiler Construction Summer Semester 2014 19.14

Further Topics in Compiler Construction

Translation of higher-level constructs (modules, classes, ...)

Translation of non-procedural languages

object-oriented (polymorphism, dynamic dispatch)
functional (higher-order functions, type checking/inference)
logic (unification, backtracking)

Code optimization

Symbol-table handling

Error handling

Bootstrapping

Compiler Construction Summer Semester 2014 19.15

Exams & Seminar

Exams
1 Friday, 25 July, 10:00–13:00, AH 1 (BSc), AH 4 (MSc)

2 Wednesday, 3 September, 10:00–13:00, AH 4

Compiler Construction Summer Semester 2014 19.16

Exams & Seminar

Exams
1 Friday, 25 July, 10:00–13:00, AH 1 (BSc), AH 4 (MSc)

2 Wednesday, 3 September, 10:00–13:00, AH 4

Winter Semester 2014/15: Trends in Computer-Aided Verification

Axiomatic Verification [C. Jansen]

Graph-Based Abstraction [T. Noll]

Inductive Incremental Verification [T. Lange]

Verification of Probabilistic Systems [K. van der Pol]

Companion seminar: Probabilistic Programs
[J.-P. Katoen, N. Jansen, B. Kaminski, F. Olmedo]

Compiler Construction Summer Semester 2014 19.16

Lectures

Winter Semester 2014/15: Static Program Analysis

Dataflow analysis

Abstract interpretation

Interprocedural analysis

Pointer analysis

Compiler Construction Summer Semester 2014 19.17

Lectures

Winter Semester 2014/15: Static Program Analysis

Dataflow analysis

Abstract interpretation

Interprocedural analysis

Pointer analysis

Summer Semester 2015: Semantics and Verification of Software

Operational semantics

Denotational semantics

Axiomatic semantics

Semantic equivalence

Compiler correctness

Compiler Construction Summer Semester 2014 19.17

	Generation of Machine Code
	Register Allocation
	Outlook

