Compiler Construction

Lecture 19: Code Generation V (Machine Code)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Summer Semester 2014

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ss-14/cc14/

@ Generation of Machine Code

m Compiler Construction Summer Semester 2014 19.2

Conceptual Structure of a Compiler

Source code

(Lexical analysis (Scanner))

4
Syntax analysis (Parser))

Y

(Semantic analysis)

L
(Generation of intermediate code

Y
(Code optimization)

Y
(Generation of machine code

Target code
Rw.rH Compiler Construction Summer Semester 2014 19.3

The Compiler Backend

Final step: translation of (optimized) abstract machine code into “real” machine
code (possibly followed by assembling phase)

m Compiler Construction Summer Semester 2014 19.4

The Compiler Backend

Final step: translation of (optimized) abstract machine code into “real” machine
code (possibly followed by assembling phase)
Goal: runtime and storage efficiency
@ fast backend
@ fast and compact code
@ low memory requirements for data

m Compiler Construction Summer Semester 2014 19.4

The Compiler Backend

Final step: translation of (optimized) abstract machine code into “real” machine
code (possibly followed by assembling phase)
Goal: runtime and storage efficiency

Memory hierarchy:

@ fast backend

@ fast and compact code

@ low memory requirements for data

decreasing speed & costs

@ registers (program counter, data [universal/floating point/
address], frame pointer, index register, condition code, ...)

@ cache (“fast” RAM)

@ main memory (“slow” RAM)

@ background storage (disks, sticks, ...)

Compiler Construction Summer Semester 2014 19.4

The Compiler Backend

Final step: translation of (optimized) abstract machine code into “real” machine
code (possibly followed by assembling phase)
Goal: runtime and storage efficiency
@ fast backend
@ fast and compact code
@ low memory requirements for data
Memory hierarchy: decreasing speed & costs
@ registers (program counter, data [universal/floating point/
address], frame pointer, index register, condition code, ...)
@ cache (“fast” RAM)
@ main memory (“slow” RAM)
@ background storage (disks, sticks, ...)
Principle: use fast memory whenever possible
@ evaluation of expressions in registers
(instead of data/runtime stack)
@ code/procedure stack/heap in main memory

mH Compiler Construction Summer Semester 2014 19.4

The Compiler Backend

Final step: translation of (optimized) abstract machine code into “real” machine
code (possibly followed by assembling phase)
Goal: runtime and storage efficiency
@ fast backend
@ fast and compact code
@ low memory requirements for data
Memory hierarchy: decreasing speed & costs
@ registers (program counter, data [universal/floating point/
address], frame pointer, index register, condition code, ...)
@ cache (“fast” RAM)
@ main memory (“slow” RAM)
@ background storage (disks, sticks, ...)
Principle: use fast memory whenever possible
@ evaluation of expressions in registers
(instead of data/runtime stack)
@ code/procedure stack/heap in main memory
Instruction set: depending on
@ number of operands
@ type of operands
@ addressing modes

mH Compiler Construction Summer Semester 2014 19.4

Code Generation Phases

© Register allocation: registers used for
@ values of (frequently used) variables and intermediate results
@ computing memory addresses (array indexing, ...)
@ passing parameters to procedures/functions

@ Instruction selection:

@ translation of abstract instructions into (sequences of) real instructions
o employ special instructions for efficiency
(e.g., INC(x) rather than ADD(x,1))

© Instruction scheduling (placement): increase level of parallelism
and/or pipelining by smart ordering of instructions

Rw.rH Compiler Construction Summer Semester 2014 19.5

Code Generation Phases

© Register allocation: registers used for
@ values of (frequently used) variables and intermediate results
@ computing memory addresses (array indexing, ...)
@ passing parameters to procedures/functions

@ Instruction selection:

@ translation of abstract instructions into (sequences of) real instructions
o employ special instructions for efficiency
(e.g., INC(x) rather than ADD(x,1))

© Instruction scheduling (placement): increase level of parallelism
and/or pipelining by smart ordering of instructions

m Compiler Construction Summer Semester 2014 19.5

© Register Allocation

m Compiler Construction Summer Semester 2014 19.6

Register Allocation
Example 19.1

Assignment:
z = (utv)-(w-(x+y))

mH Compiler Construction Summer Semester 2014 19.7

Register Allocation

Example 19.1

Assignment:
z = (utv)-(w-(x+y))

Target machine with
r registers Rg, R1, ..., Rr—1
and main memory M

mH Compiler Construction Summer Semester 2014 19.7

Register Allocation

Example 19.1

Assignment:
z = (utv)-(w-(x+y))

Target machine with
r registers Rg, R1, ..., Rr—1
and main memory M

Instruction types:

R; :=M[a]

M[a] :=R;
R; :=R; op M[a]
Rj :=R; op R;

(with address a)

mH Compiler Construction Summer Semester 2014 19.7

Register Allocation

Assignment: Instruction sequence
z = (utv)-(w-(x+y)) for r = 2:

)) Rp := M[u]
Target machine with Ro := Ro+M[v]
r registers Rg, R1, ..., Rr—1 R; := M[x]
and main memory M R; :=Ry+M[y]

M[t] :=R;

Instruction types: Ry := M[w]

Ry = M[al Ry o= Ry-M[t]
M[a] :=R; Ro :=Ro-R;
R; :=R; op M[a] M[z] :=Rg

Rj :=R; op R;
(with address a)

mH Compiler Construction Summer Semester 2014 19.7

Register Allocation

Example 19.1
Assignment: Instruction sequence Shorter sequence:
z = (utv)-(w-(x+y)) for r = 2:
RO :=M[u] R '=M[]
. . 0 - w
Targ(?t machine with Ry := Ro+M[v] Ry := M[x]
r registers Rg, Ry, ..., Ry—1 Ry := M[x] Ry := Rq+M[y]
and main memory M R; :=Ry+M[y] Ry := Ro-Rq
. M[t] :=Ry Ry := M[u]
Instruction types: Ry := M[w] Ry := Ry+M[v]
R; :=M[a] Ry :=Ry-M[t] R; := R1-Ro
M[a] :=R; Ro :=Ro-Ry M[z] := Ry
R; :=R; op M[a] M[z] :=Ro
Rj :=R; op R;
(with address a)

mH Compiler Construction Summer Semester 2014 19.7

Register Allocation

Example 19.1
Assignment: Instruction sequence Shorter sequence:
z = (utv)-(w-(x+y)) for r = 2:
RO :=M[u] R '=M[
. . 0 - w]
Targ(?t machine with Ry := Ro+M[v] Ry := M[x]
r registers Rg, Ry, ..., Ry—1 Ry := M[x] Ry := Ry+M[y]
and main memory M R; :=Ry+M[y] Ry := Ro-Rq
. M[t] :=Rq Ry := M[ul
Instruction types: Ry := M[w] Ry := Ry+M[v]
R; :=M[a] Ry 1= Rq-M[t] Ry :=R;-Ro
M[a] :=R; Ro :=Ro-Ry M[z] := Ry
Ri = Ri op M[a] M[Z] :=R.0
Rj :=R; op R;
(with address a)
@ Reason: first variant requires intermediate storage t for x+y

mH Compiler Construction Summer Semester 2014 19.7

Register Allocation

Assignment: Instruction sequence Shorter sequence:
z = (utv)-(w-(x+y)) for r = 2:
Targ(?t machine with gg = I\R/[(Elll\],[[v] 3(1) z ﬁgﬁ
r registers Rg, Ry, ..., Ry—1 Ry := M[x] Ry := Ry+M [y]
and main memory M R; :=R;+M[y] R := Ro-R;
. M[t] :=Rq Ry := M[ul
Instruction types: Ry := M[w] Ry := Ry+M[v]
R; :=M[a] Ry = Rq-Mlt] Ry := Ri-Ro
M[a] :=R; Ro :=Ro-R1 M[z] :=R;
R; :=R; op M[a] M[z] :=Rg
Rj :=R; op R;
(with address a)
@ Reason: first variant requires intermediate storage t for x+y
@ How to compute systematically?

mH Compiler Construction Summer Semester 2014 19.7

Register Allocation

Assignment: Instruction sequence Shorter sequence:
z = (utv)-(w-(x+y)) for r =2
Targ(?t machine with gg = I\R/[(Elll\],[[v] 3(1) z ﬁgﬁ
r registers Rg, Ry, ..., Ry—1 Ry := M[x] Ry := Ry+M [y]
and main memory M R; :=R;+M[y] R := Ro-R;
. M[t] :=Rq Ry := M[ul
Instruction types: Ry := M[w] Ry := Ry+M[v]
R; :=M[a] Ry = Rq-Mlt] Ry := Ri-Ro
M[a] :=R; Ro :=Ro-R1 M[z] :=R;
R; :=R; op M[a] M[z] :=Rg
Rj :=R; op R;
(with address a)
@ Reason: first variant requires intermediate storage t for x+y
@ How to compute systematically?
o ldea: start with register-intensive subexpressions

mH Compiler Construction Summer Semester 2014 19.7

Register Optimization

o Let e=¢; op e.

@ Assumption: €; requires r; registers for evaluation

m Compiler Construction Summer Semester 2014 19.8

Register Optimization

o Let e=¢; op e.
@ Assumption: €; requires r; registers for evaluation
@ Evaluation of e:

o if n < rn, <r, then e can be evaluated using r, registers:
@ evaluate & (using r, registers)
@ keep result in 1 register
© evaluate e (using 1 + 1 < r> registers in total)
@ combine results
o if b < rp <r, then e can be evaluated using r; registers
@ if n = r < r, then e can be evaluated using r; + 1 registers
@ if more than r registers required: use main memory as intermediate
storage

mH Compiler Construction Summer Semester 2014 19.8

Register Optimization

o Let e=¢; op e.
@ Assumption: €; requires r; registers for evaluation
@ Evaluation of e:
o if n < rn, <r, then e can be evaluated using r, registers:
@ evaluate & (using r, registers)
@ keep result in 1 register
© evaluate e (using 1 + 1 < r> registers in total)
@ combine results
o if b < rp <r, then e can be evaluated using r; registers
@ if n = r < r, then e can be evaluated using r; + 1 registers
@ if more than r registers required: use main memory as intermediate
storage
@ The corresponding optimization algorithm works in two phases:
@ Marking phase (computes r; values)
© Generation phase (produces actual code)

(for details see Wilhelm/Maurer: Ubersetzerbau, 2. Auflage, Springer,
1997, Sct. 12.4)

mH Compiler Construction Summer Semester 2014 19.8

The Marking Phase

Algorithm 19.2 (Marking phase)

Input: expression (with binary operators op and variables x)

Procedure: recursively compute
1 ifxisa “left leaf”
r(x) ==

0 ifxisa “right leaf”
1 if x is at the root
_ Jmax{r(e1), r(e)} if r(e1) # r(e2)
r(er op &) = {r(el) +1 if r(er) = r(e2)

Output: number of required registers r(e)

mH Compiler Construction Summer Semester 2014 19.9

The Marking Phase
Algorithm 19.2 (Marking phase)

Input: expression (with binary operators op and variables x)
Procedure: recursively compute
1 ifxisa “left leaf”
r(x) := 40 ifxisa “right leaf”
1 if x is at the root
max{r(ei), r if r(e r(e
,(elopez):_{ {r(e).r(e)} i r(er) # r(en)

r(er) +1 if r(er) = r(e2)

Output: number of required registers r(e)

Example 19.3 (cf. Example 19.1)

e = (ut+v) - (w-(x+y)): X
+/ _
u/ \v w/ \+

a

mH Compiler Construction Summer Semester 2014 19.9

The Marking Phase
Algorithm 19.2 (Marking phase)

Input: expression (with binary operators op and variables x)

Procedure: recursively compute
1 ifxisa “left leaf”
r(x) :== {O if x is a “right leaf”
1 ifx is at the root
e op) im { max{r(er). r(e2)} if r(er) # r(ea)

r(er) +1 if r(er) = r(e2)

Output: number of required registers r(e)

Example 19.3 (cf. Example 19.1)

e = (ut+v) - (w-(x+y)): X
+/ _
u/ \v w/ \+

1 1/
/N

mH Compiler Construction Summer Semester 2014 19.9

The Marking Phase
Algorithm 19.2 (Marking phase)

Input: expression (with binary operators op and variables x)
Procedure: recursively compute
1 ifxisa “left leaf”
r(x) ;=40 ifxisa “right leaf”
1 ifx is at the root
max{r(ei), r if r(e r
e op &) im { {r(e).r(e)} i r(er) # r(en)

r(er) +1 if r(er) = r(e2)

Output: number of required registers r(e)

Example 19.3 (cf. Example 19.1)

e = (ut+v) - (w-(x+y)): X
+/ _
u/ \v w/ \+
1 0 1 /
/Y

0

mH Compiler Construction Summer Semester 2014 19.9

The Marking Phase
Algorithm 19.2 (Marking phase)

Input: expression (with binary operators op and variables x)

Procedure: recursively compute
1 ifxisa “left leaf”
r(x) := 40 ifxisa “right leaf”
1 ifx is at the root
Alen @ &) = { max{r(e1), r(e2)} if r(er) # r(ez)

r(er) +1 if r(er) = r(e)

Output: number of required registers r(e)

Example 19.3 (cf. Example 19.1)

e = (ut+v) - (w-(x+y)): X
+/ _
u/l\v w/ \+

1 0 1 /1
"y

mH Compiler Construction Summer Semester 2014 19.9

The Marking Phase
Algorithm 19.2 (Marking phase)

Input: expression (with binary operators op and variables x)
Procedure: recursively compute
1 ifxisa “left leaf”
r(x) := 40 ifxisa “right leaf”
1 if x is at the root
_ [max{r(er), r(e)} ifr(er) # r(e)
r(e1 op 62) = {r(el) +1 ,'fr(el) = r(e2)

Output: number of required registers r(e)

Example 19.3 (cf. Example 19.1)

e = (ut+v) - (w-(x+y)): X
+/ _
/N /AN
u v oW+

1 0 1 /1
Y

mH Compiler Construction Summer Semester 2014 19.9

The Marking Phase
Algorithm 19.2 (Marking phase)

Input: expression (with binary operators op and variables x)

Procedure: recursively compute
1 ifxisa “left leaf”
r(x) := 40 ifxisa “right leaf”
1 ifx is at the root
Alen @ &) = { max{r(e1), r(e2)} if r(er) # r(ez)

r(er) +1 if r(er) = r(e)

Output: number of required registers r(e)

Example 19.3 (cf. Example 19.1)

e = (ut+v) - (w-(x+y)): 5
+/ _
A, A

i ¢ 1 s
/N
1 0

mH Compiler Construction Summer Semester 2014 19.9

The Generation Phase |

@ Goal: generate optimal (= shortest) code for evaluating expression e
with register requirement r(e)

m Compiler Construction Summer Semester 2014 19.10

The Generation Phase |

@ Goal: generate optimal (= shortest) code for evaluating expression e
with register requirement r(e)

@ Data structures used in Algorithm 19.4:

RS: stack of available registers
(initially: all registers; never empty)
CS: stack of available main memory cells

mH Compiler Construction Summer Semester 2014 19.10

The Generation Phase |

@ Goal: generate optimal (= shortest) code for evaluating expression e
with register requirement r(e)

@ Data structures used in Algorithm 19.4:

RS:

CS:

stack of available registers
(initially: all registers; never empty)
stack of available main memory cells

@ Auxiliary procedures used in Algorithm 19.4:

output:
top:

pop:
push:
exchange:

outputs the argument as code

returns the topmost entry of a stack S (leaving S
unchanged)

removes and returns the topmost entry of a stack
puts an element onto a stack

exchanges the two topmost elements of a stack

Compiler Construction Summer Semester 2014 19.10

The Generation Phase |1

Algorithm 19.4 (Generation phase)

Input: expression e, annotated with register requirement r(e)

Variables: RS: stack of registers;
CS: stack of memory cells;
R: register; C: memory cell;
Procedure: recursive execution of procedure code(e), defined by code(e) :=

(1) ife = x, r(x) =1: % left leaf (4) ife =e1 op &, r(e1) > r(e),
output(top(RS):= M[x]) r(e) <r:
P .o code(er);
(2)Cé22(;)e;1 opy, r(y) =0: % right leaf R := pop(RS);
output(top(RS):=top(RS) op MLy]) code(e);

output(R:=R op top(RS));
(3) ife=el op e, r(er) < r(e), r(er) < r: push(RS,R)

exchange.(RS); (5)ife=e op ey, r(er) >r, r(e)>r:
code(e); code(e);

R = PODIRS) C := pop(CS);

code(er); . - i
outﬁg}%(éog()RS):top(RS) op R); 352’;‘(1284-[0 =top(R3));

e G sy o) T RS) P QL)

push(CS, C)
Output: optimal (= shortest) code for evaluating e

RWNTH Compiler Construction Summer Semester 2014 19.11

The Generation Phase 111

@ Invariants of Algorithm 19.4:

o after executing code(e), both RS and CS have their original values
o after executing the machine code produced by code(e), the value of e
is stored in the topmost register of RS

m Compiler Construction Summer Semester 2014 19.12

The Generation Phase 111

@ Invariants of Algorithm 19.4:

o after executing code(e), both RS and CS have their original values
o after executing the machine code produced by code(e), the value of e
is stored in the topmost register of RS

@ Shortcoming of Algorithm 19.4: multiple evaluation of common
subexpressions (= dynamic programming [Wilhelm/Maurer])

mH Compiler Construction Summer Semester 2014 19.12

The Generation Phase 111

@ Invariants of Algorithm 19.4:

o after executing code(e), both RS and CS have their original values
o after executing the machine code produced by code(e), the value of e
is stored in the topmost register of RS

@ Shortcoming of Algorithm 19.4: multiple evaluation of common
subexpressions (= dynamic programming [Wilhelm/Maurer])

Example 19.5 (cf. Example 19.3)

e -
L2
e + €: —
u 1\\1 w/2\+
1 0 1 /1
X
1 0
(on the board)

mH Compiler Construction Summer Semester 2014 19.12

Register Allocation by Graph Coloring

@ Algorithm 19.4: register allocation for single expressions
@ Required: global allocation within program/procedure body

@ Approach: graph coloring

m Compiler Construction Summer Semester 2014 19.13

Register Allocation by Graph Coloring

@ Algorithm 19.4: register allocation for single expressions
@ Required: global allocation within program/procedure body

@ Approach: graph coloring

Register Allocation by Graph Coloring

© Use unbounded number of symbolic registers for storing intermediate
values

mH Compiler Construction Summer Semester 2014 19.13

Register Allocation by Graph Coloring

@ Algorithm 19.4: register allocation for single expressions
@ Required: global allocation within program/procedure body

@ Approach: graph coloring

Register Allocation by Graph Coloring

© Use unbounded number of symbolic registers for storing intermediate
values
© Consider life span of symbolic registers: r is live at program point p if

@ there is a path to p on which r is set and
o there is a path from p on which r is read before being set

mH Compiler Construction Summer Semester 2014 19.13

Register Allocation by Graph Coloring

@ Algorithm 19.4: register allocation for single expressions
@ Required: global allocation within program/procedure body

@ Approach: graph coloring

Register Allocation by Graph Coloring

© Use unbounded number of symbolic registers for storing intermediate
values
© Consider life span of symbolic registers: r is live at program point p if
@ there is a path to p on which r is set and
o there is a path from p on which r is read before being set

© Life span of r = program points where r is live

mH Compiler Construction Summer Semester 2014 19.13

Register Allocation by Graph Coloring

@ Algorithm 19.4: register allocation for single expressions
@ Required: global allocation within program/procedure body

@ Approach: graph coloring

Register Allocation by Graph Coloring

© Use unbounded number of symbolic registers for storing intermediate
values

© Consider life span of symbolic registers: r is live at program point p if

@ there is a path to p on which r is set and
o there is a path from p on which r is read before being set

© Life span of r = program points where r is live

© Two registers are in collision if one is set in the life span of the other

mH Compiler Construction Summer Semester 2014 19.13

Register Allocation by Graph Coloring

@ Algorithm 19.4: register allocation for single expressions
@ Required: global allocation within program/procedure body

@ Approach: graph coloring

Register Allocation by Graph Coloring

© Use unbounded number of symbolic registers for storing intermediate
values

© Consider life span of symbolic registers: r is live at program point p if

@ there is a path to p on which r is set and
o there is a path from p on which r is read before being set

© Life span of r = program points where r is live
© Two registers are in collision if one is set in the life span of the other

© VYields register collision graph (nodes = life spans, edges = collisions)

mH Compiler Construction Summer Semester 2014 19.13

Register Allocation by Graph Coloring

@ Algorithm 19.4: register allocation for single expressions
@ Required: global allocation within program/procedure body

@ Approach: graph coloring

Register Allocation by Graph Coloring

© Use unbounded number of symbolic registers for storing intermediate
values

© Consider life span of symbolic registers: r is live at program point p if

@ there is a path to p on which r is set and
o there is a path from p on which r is read before being set

© Life span of r = program points where r is live
© Two registers are in collision if one is set in the life span of the other

© VYields register collision graph (nodes = life spans, edges = collisions)

© Program executable with k real registers iff collision graph k-colorable

mH Compiler Construction Summer Semester 2014 19.13

© Outlook

m Compiler Construction Summer Semester 2014 19.14

Further Topics in Compiler Construction

e ©

Translation of higher-level constructs (modules, classes, ...)
Translation of non-procedural languages
@ object-oriented (polymorphism, dynamic dispatch)
o functional (higher-order functions, type checking/inference)
@ logic (unification, backtracking)

Code optimization
Symbol-table handling
Error handling
Bootstrapping

m Compiler Construction Summer Semester 2014

19.15

Exams & Seminar

© Friday, 25 July, 10:00-13:00, AH 1 (BSc), AH 4 (MSc)
© Wednesday, 3 September, 10:00-13:00, AH 4

m Compiler Construction Summer Semester 2014 19.16

Exams & Seminar

Exams

© Friday, 25 July, 10:00-13:00, AH 1 (BSc), AH 4 (MSc)
© Wednesday, 3 September, 10:00-13:00, AH 4

Winter Semester 2014/15: Trends in Computer-Aided Verification

@ Axiomatic Verification [C. Jansen]

@ Graph-Based Abstraction [T. Noll]

@ Inductive Incremental Verification [T. Lange]

@ Verification of Probabilistic Systems [K. van der Pol]

@ Companion seminar: Probabilistic Programs
[J.-P. Katoen, N. Jansen, B. Kaminski, F. Olmedo]

mH Compiler Construction Summer Semester 2014 19.16

Lectures

Winter Semester 2014 /15: Static Program Analysis

@ Dataflow analysis

@ Abstract interpretation
@ Interprocedural analysis

@ Pointer analysis

mH Compiler Construction Summer Semester 2014 19.17

Winter Semester 2014 /15: Static Program Analysis

@ Dataflow analysis
@ Abstract interpretation
@ Interprocedural analysis

@ Pointer analysis

4

Summer Semester 2015: Semantics and Verification of Software

Operational semantics

Denotational semantics

Semantic equivalence

°
°
@ Axiomatic semantics
°
°

Compiler correctness

mH Compiler Construction Summer Semester 2014 19.17

	Generation of Machine Code
	Register Allocation
	Outlook

