Compiler Construction

Lecture 14: Semantic Analysis III (Attribute Evaluation)

Thomas Noll

Lehrstuhl für Informatik 2 (Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Summer Semester 2014

SOMMERFEST 2014

27-06-2014

14.00-FIRMENKONTAKTMESSE 16.00-BEGRÜSSUNG UND 3MM

Cocktails & Eiskaffee

Fis

Outline

- 1 Recap: Circularity of Attribute Grammars
- The Circularity Check
- 3 Correctness and Complexity of the Circularity Check
- 4 Attribute Evaluation
- 5 Attribute Evaluation by Topological Sorting
- 6 L-Attributed Grammars

Circularity of Attribute Grammars

Goal: unique solvability of equation system

⇒ avoid cyclic dependencies

Definition (Circularity)

An attribute grammar $\mathfrak{A} = \langle G, E, V \rangle \in AG$ is called <u>circular</u> if there exists a syntax tree t such that the attribute equation system E_t is recursive (i.e., some attribute variable of t depends on itself). Otherwise it is called <u>noncircular</u>.

Remark: because of the division of Var_{π} into In_{π} and Out_{π} , cyclic dependencies cannot occur at production level.

Attribute Dependency Graphs and Circularity I

Observation: a cycle in the dependency graph D_t of a given syntax tree t is caused by the occurrence of a "cover" production

- $\pi = A_0 \rightarrow w_0 A_1 w_1 \dots A_r w_r \in P$ in a node k_0 of t such that
 - the dependencies in E_{k_0} yield the "upper end" of the cycle and
 - for at least one $i \in [r]$, some attributes in $syn(A_i)$ depend on attributes in $inh(A_i)$.

Example

on the board

To identify such "critical" situations we need to determine for each $i \in [r]$ the possible ways in which attributes in $syn(A_i)$ can depend on attributes in $inh(A_i)$.

Attribute Dependency Graphs and Circularity II

Definition (Attribute dependence)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$ with $G = \langle N, \Sigma, P, S \rangle$.

- If t is a syntax tree with root label $A \in N$ and root node k, $\alpha \in \operatorname{syn}(A)$, and $\beta \in \operatorname{inh}(A)$ such that $\beta.k \to_t^+ \alpha.k$, then α is dependent on β below A in t (notation: $\beta \xrightarrow{A} \alpha$).
- For every syntax tree t with root label $A \in N$,

$$is(A, t) := \{(\beta, \alpha) \in inh(A) \times syn(A) \mid \beta \stackrel{A}{\hookrightarrow} \alpha \text{ in } t\}.$$

• For every $A \in N$,

$$\frac{IS(A)}{\subseteq 2^{Inh \times Syn}} := \{ is(A, t) \mid t \text{ syntax tree with root label A} \}$$

Remark: it is important that IS(A) is a system of attribute dependence sets, not a union (otherwise: strong noncircularity—see exercises).

Example

on the board

In the circularity check, the dependency systems IS(A) are iteratively computed. The following notation is employed:

Definition

Given
$$\pi = A \to w_0 A_1 w_1 \dots A_r w_r \in P$$
 and $is_i \subseteq \text{inh}(A_i) \times \text{syn}(A_i)$ for every $i \in [r]$, let

 $is[\pi; is_1, \ldots, is_r] \subseteq inh(A) \times syn(A)$

be given by

$$is[\pi; is_1, \dots, is_r] := \left\{ (\beta, \alpha) \mid (\beta.0, \alpha.0) \in (\rightarrow_{\pi} \cup \bigcup_{i=1}^r \{ (\beta'.p_i, \alpha'.p_i) \mid (\beta', \alpha') \in is_i \})^+ \right\}$$
 where $p_i := \sum_{i=1}^i |w_{i-1}| + i$.

Example

on the board

Outline

- Recap: Circularity of Attribute Grammars
- 2 The Circularity Check
- 3 Correctness and Complexity of the Circularity Check
- 4 Attribute Evaluation
- 5 Attribute Evaluation by Topological Sorting
- 6 L-Attributed Grammars

Algorithm 14.1 (Circularity check for attribute grammars)

Input: $\mathfrak{A} = \langle G, E, V \rangle \in AG \text{ with } G = \langle N, \Sigma, P, S \rangle$

Algorithm 14.1 (Circularity check for attribute grammars)

Input:
$$\mathfrak{A} = \langle G, E, V \rangle \in AG \text{ with } G = \langle N, \Sigma, P, S \rangle$$

Procedure:

onumber for every $A \in \mathbb{N}$, iteratively construct IS(A) as follows:

- if $\pi = A \rightarrow w \in P$, then is $[\pi] \in IS(A)$
- $\mathbf{Q} \text{ if } \pi = A \rightarrow w_0 A_1 w_1 \dots A_r w_r \in P \text{ and } is_i \in IS(A_i) \text{ for every } i \in [r], \text{ then } is[\pi; is_1, \dots, is_r] \in IS(A)$

Algorithm 14.1 (Circularity check for attribute grammars)

Input:
$$\mathfrak{A} = \langle G, E, V \rangle \in AG \text{ with } G = \langle N, \Sigma, P, S \rangle$$

- Procedure: for every $A \in \mathbb{N}$, iteratively construct IS(A) as follows:
 - if $\pi = A \rightarrow w \in P$, then is $[\pi] \in IS(A)$
 - if $\pi = A \rightarrow w_0 A_1 w_1 \dots A_r w_r \in P$ and $is_i \in IS(A_i)$ for every $i \in [r]$, then $is[\pi; is_1, \dots, is_r] \in IS(A)$
 - **2** test whether \mathfrak{A} is circular by checking if there exist $\pi = A \to w_0 A_1 w_1 \dots A_r w_r \in P$ and $is_i \in IS(A_i)$ for every $i \in [r]$ such that the following relation is cyclic: $\to_{\pi} \cup \bigcup_{i=1}^r \{(\beta.p_i, \alpha.p_i) \mid (\beta, \alpha) \in is_i\}$ (where $p_i := \sum_{i=1}^i |w_{j-1}| + i$)

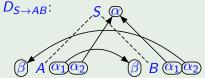
Algorithm 14.1 (Circularity check for attribute grammars)

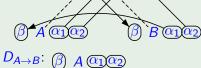
Input:
$$\mathfrak{A} = \langle G, E, V \rangle \in AG \text{ with } G = \langle N, \Sigma, P, S \rangle$$

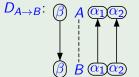
- Procedure: for every $A \in \mathbb{N}$, iteratively construct IS(A) as follows:
 - if $\pi = A \rightarrow w \in P$, then is $[\pi] \in IS(A)$
 - if $\pi = A \rightarrow w_0 A_1 w_1 \dots A_r w_r \in P$ and $is_i \in IS(A_i)$ for every $i \in [r]$, then $is[\pi; is_1, \dots, is_r] \in IS(A)$
 - **2** test whether \mathfrak{A} is circular by checking if there exist $\pi = A \to w_0 A_1 w_1 \dots A_r w_r \in P$ and $is_i \in IS(A_i)$ for every $i \in [r]$ such that the following relation is cyclic: $\rightarrow_{\pi} \cup \bigcup_{i=1}^r \{(\beta.p_i, \alpha.p_i) \mid (\beta, \alpha) \in is_i\}$ (where $p_i := \sum_{i=1}^i |w_{i-1}| + i$)

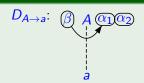
Output: "yes" or "no"

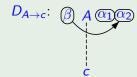
Example 14.2

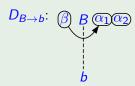












Application of Algorithm 14.1: on the board

Outline

- Recap: Circularity of Attribute Grammars
- 2 The Circularity Check
- 3 Correctness and Complexity of the Circularity Check
- 4 Attribute Evaluation
- 5 Attribute Evaluation by Topological Sorting
- 6 L-Attributed Grammars

Theorem 14.3 (Correctness of circularity check)

An attribute grammar is circular iff Algorithm 14.1 yields the answer "yes".

Theorem 14.3 (Correctness of circularity check)

An attribute grammar is circular iff Algorithm 14.1 yields the answer "yes".

Proof.

by induction on the syntax tree t with cyclic D_t

Theorem 14.3 (Correctness of circularity check)

An attribute grammar is circular iff Algorithm 14.1 yields the answer "yes".

Proof.

by induction on the syntax tree t with cyclic D_t

Lemma 14.4

The time complexity of the circularity check is exponential in the size of the attribute grammar (= maximal length of right-hand sides of productions).

Theorem 14.3 (Correctness of circularity check)

An attribute grammar is circular iff Algorithm 14.1 yields the answer "yes".

Proof.

by induction on the syntax tree t with cyclic D_t

Lemma 14.4

The time complexity of the circularity check is exponential in the size of the attribute grammar (= maximal length of right-hand sides of productions).

Proof.

by reduction of the word problem of alternating Turing machines (see M. Jazayeri: A Simpler Construction for Showing the Intrinsically Exponential Complexity of the Circularity Problem for Attribute Grammars, Comm. of the ACM 28(4), 1981, pp. 715–720)

Outline

- 1 Recap: Circularity of Attribute Grammars
- The Circularity Check
- Correctness and Complexity of the Circularity Check
- 4 Attribute Evaluation
- 5 Attribute Evaluation by Topological Sorting
- 6 L-Attributed Grammars

Given:

- noncircular attribute grammar $\mathfrak{A} = \langle G, E, V \rangle \in AG$
- syntax tree t of G
- valuation $v: Syn_{\Sigma} \to V$ where $Syn_{\Sigma} := \{\alpha.k \mid k \text{ labelled by } a \in \Sigma, \alpha \in \text{syn}(a)\} \subseteq Var_t$

Given: • noncircular attribute grammar $\mathfrak{A} = \langle G, E, V \rangle \in AG$

syntax tree t of G

• valuation $v: Syn_{\Sigma} \to V$ where $Syn_{\Sigma} := \{\alpha.k \mid k \text{ labelled by } a \in \Sigma, \alpha \in \text{syn}(a)\} \subseteq Var_t$

Goal: extend v to (partial) solution $v : Var_t \rightarrow V$

Given:

- noncircular attribute grammar $\mathfrak{A} = \langle G, E, V \rangle \in AG$
- syntax tree t of G
- valuation $v: Syn_{\Sigma} \to V$ where $Syn_{\Sigma} := \{\alpha.k \mid k \text{ labelled by } a \in \Sigma, \alpha \in \text{syn}(a)\} \subseteq Var_t$

Goal: extend v to (partial) solution $v: Var_t \rightarrow V$

Methods:

- **1** Topological sorting of D_t (later):
 - start with variables which depend at most on Syn_{Σ}
 - proceed by successive substitution

Given:

- noncircular attribute grammar $\mathfrak{A} = \langle G, E, V \rangle \in AG$
- syntax tree t of G
- valuation $v: Syn_{\Sigma} \to V$ where $Syn_{\Sigma} := \{\alpha.k \mid k \text{ labelled by } a \in \Sigma, \alpha \in \text{syn}(a)\} \subseteq Var_t$

Goal: extend v to (partial) solution $v: Var_t \rightarrow V$

Methods:

- **1** Topological sorting of D_t (later):
 - start with variables which depend at most on Syn_{Σ}
 - proceed by successive substitution
- Strongly noncircular AGs: recursive functions (details omitted)
 - ① for every $A \in N$ and $\alpha \in \text{syn}(A)$, define evaluation function $g_{A,\alpha}$ with the following parameters:
 - ullet the node of t where lpha has to be evaluated and
 - ullet all inherited attributes of A on which lpha (potentially) depends
 - for every $\alpha \in \text{syn}(S)$, evaluate $g_{S,\alpha}(k_0)$ where k_0 denotes the root of t

Given:

- noncircular attribute grammar $\mathfrak{A} = \langle G, E, V \rangle \in AG$
- syntax tree t of G
- valuation $v: Syn_{\Sigma} \to V$ where $Syn_{\Sigma} := \{\alpha.k \mid k \text{ labelled by } a \in \Sigma, \alpha \in \text{syn}(a)\} \subseteq Var_t$

Goal: extend v to (partial) solution $v: Var_t \rightarrow V$

Methods:

- **1** Topological sorting of D_t (later):
 - start with variables which depend at most on Syn_{Σ}
 - proceed by successive substitution
- Strongly noncircular AGs: recursive functions (details omitted)
 - for every $A \in N$ and $\alpha \in \text{syn}(A)$, define evaluation function $g_{A,\alpha}$ with the following parameters:
 - ullet the node of t where lpha has to be evaluated and
 - ullet all inherited attributes of A on which lpha (potentially) depends
 - for every $\alpha \in \text{syn}(S)$, evaluate $g_{S,\alpha}(k_0)$ where k_0 denotes the root of t
- L-attributed grammars: integration with top-down parsing (later)

- Given:
- noncircular attribute grammar $\mathfrak{A} = \langle G, E, V \rangle \in AG$
- syntax tree t of G
- valuation $v: Syn_{\Sigma} \to V$ where $Syn_{\Sigma} := \{\alpha.k \mid k \text{ labelled by } a \in \Sigma, \alpha \in \text{syn}(a)\} \subseteq Var_t$

Goal: extend v to (partial) solution $v : Var_t \rightarrow V$

- Methods:
- **1** Topological sorting of D_t (later):
 - \bullet start with variables which depend at most on Syn_{Σ}
 - proceed by successive substitution
- Strongly noncircular AGs: recursive functions (details omitted)
 - for every $A \in N$ and $\alpha \in \text{syn}(A)$, define evaluation function $g_{A,\alpha}$ with the following parameters:
 - ullet the node of t where lpha has to be evaluated and
 - ullet all inherited attributes of A on which lpha (potentially) depends
 - for every $\alpha \in \text{syn}(S)$, evaluate $g_{S,\alpha}(k_0)$ where k_0 denotes the root of t
- L-attributed grammars: integration with top-down parsing (later)
- **S**-attributed grammars (i.e., $Inh = \emptyset$): yacc

Outline

- Recap: Circularity of Attribute Grammars
- 2 The Circularity Check
- Correctness and Complexity of the Circularity Check
- 4 Attribute Evaluation
- 5 Attribute Evaluation by Topological Sorting
- 6 L-Attributed Grammars

Algorithm 14.5 (Evaluation by topological sorting)

Input: noncircular $\mathfrak{A} = \langle G, E, V \rangle \in AG$, syntax tree t of G, valuation $v : Syn_{\Sigma} \to V$

Algorithm 14.5 (Evaluation by topological sorting)

Input: noncircular $\mathfrak{A} = \langle G, E, V \rangle \in AG$, syntax tree t of G, valuation $v : Syn_{\Sigma} \to V$

Procedure:
① let $Var := Var_t \setminus Syn_{\Sigma}$ (* attributes to be evaluated *)

2 while $Var \neq \emptyset$ do

• let $x \in Var$ such that $\{y \in Var \mid y \rightarrow_t x\} = \emptyset$

3 let $v(x) := f(v(x_1), \dots, v(x_n))$

Algorithm 14.5 (Evaluation by topological sorting)

```
Input: noncircular \mathfrak{A} = \langle G, E, V \rangle \in AG, syntax tree t of G, valuation v : Syn_{\Sigma} \to V
```

Procedure: \bigcirc let $Var := Var_t \setminus Syn_{\Sigma}$ (* attributes to be evaluated *)

② while $Var \neq \emptyset$ do

• let $x \in Var$ such that $\{y \in Var \mid y \rightarrow_t x\} = \emptyset$

2 let $x = f(x_1, ..., x_n) \in E_t$

3 let $v(x) := f(v(x_1), \dots, v(x_n))$

Output: solution $v : Var_t \rightarrow V$

Algorithm 14.5 (Evaluation by topological sorting)

```
Input: noncircular \mathfrak{A} = \langle G, E, V \rangle \in AG, syntax tree t of G,
          valuation v: Syn_{\Sigma} \to V
```

- Procedure: \bullet let $Var := Var_t \setminus Syn_{\Sigma}$ (* attributes to be evaluated *)
 - 2 while $Var \neq \emptyset$ do
 - let $x \in Var$ such that $\{y \in Var \mid y \rightarrow_t x\} = \emptyset$
 - **2** let $x = f(x_1, ..., x_n) \in E_t$
 - \bullet let $v(x) := f(v(x_1), \dots, v(x_n))$

Output: solution $v: Var_t \rightarrow V$

Remark: noncircularity guarantees that in step 2.1 at least one such x is available

Algorithm 14.5 (Evaluation by topological sorting)

Input: noncircular $\mathfrak{A} = \langle G, E, V \rangle \in AG$, syntax tree t of G, valuation $v : Syn_{\Sigma} \to V$

- Procedure: \bigcirc let $Var := Var_t \setminus Syn_{\Sigma}$ (* attributes to be evaluated *)
 - - let $x \in Var$ such that $\{y \in Var \mid y \rightarrow_t x\} = \emptyset$

 - **3** let $v(x) := f(v(x_1), \dots, v(x_n))$

Output: solution $v : Var_t \rightarrow V$

Remark: noncircularity guarantees that in step 2.1 at least one such x is available

Example 14.6

see Examples 12.1 and 12.2 (Knuth's binary numbers)

Outline

- Recap: Circularity of Attribute Grammars
- The Circularity Check
- Correctness and Complexity of the Circularity Check
- 4 Attribute Evaluation
- 5 Attribute Evaluation by Topological Sorting
- 6 L-Attributed Grammars

L-Attributed Grammars I

In an L-attributed grammar, attribute dependencies on the right-hand sides of productions are only allowed to run from left to right.

L-Attributed Grammars I

In an L-attributed grammar, attribute dependencies on the right-hand sides of productions are only allowed to run from left to right.

Definition 14.1 (L-attributed grammar)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$ such that, for every $\pi \in P$ and $\beta.i = f(\ldots, \alpha.j, \ldots) \in E_{\pi}$ with $\beta \in Inh$ and $\alpha \in Syn$, j < i. Then \mathfrak{A} is called an L-attributed grammar (notation: $\mathfrak{A} \in LAG$).

Remark: note that no restrictions are imposed for $\beta \in Syn$ (for i = 0) or $\alpha \in Inh$ (for j = 0). Thus, in an L-attributed grammar,

- synthesized attributes of the left-hand side can depend on any outer variable and
- every inner variable can depend on any inherited attribute of the left-hand side.

L-Attributed Grammars I

In an L-attributed grammar, attribute dependencies on the right-hand sides of productions are only allowed to run from left to right.

Definition 14.1 (L-attributed grammar)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$ such that, for every $\pi \in P$ and $\beta.i = f(\ldots, \alpha.j, \ldots) \in E_{\pi}$ with $\beta \in Inh$ and $\alpha \in Syn$, j < i. Then \mathfrak{A} is called an L-attributed grammar (notation: $\mathfrak{A} \in LAG$).

Remark: note that no restrictions are imposed for $\beta \in Syn$ (for i = 0) or $\alpha \in Inh$ (for j = 0). Thus, in an L-attributed grammar,

- synthesized attributes of the left-hand side can depend on any outer variable and
- every inner variable can depend on any inherited attribute of the left-hand side.

Corollary 14.2

Every $\mathfrak{A} \in LAG$ is noncircular.

L-Attributed Grammars II

Example 14.3

L-attributed grammar:

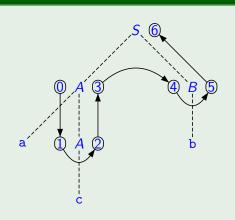
$$S oup AB$$
 $i.1 = 0$
 $i.2 = s.1 + 1$
 $s.0 = s.2 + 1$
 $A oup aA$ $i.2 = i.0 + 1$
 $s.0 = s.2 + 1$
 $A oup c$ $s.0 = i.0 + 1$
 $B oup b$ $s.0 = i.0 + 1$

L-Attributed Grammars II

Example 14.3

L-attributed grammar:

$$S oup AB$$
 $i.1 = 0$
 $i.2 = s.1 + 1$
 $s.0 = s.2 + 1$
 $A oup aA$ $i.2 = i.0 + 1$
 $s.0 = s.2 + 1$
 $A oup c$ $s.0 = i.0 + 1$
 $B oup b$ $s.0 = i.0 + 1$



Evaluation of L-Attributed Grammars

Observation 1: the syntax tree of an L-attributed grammar can be attributed by a depth-first, left-to-right tree traversal with two visits to each node

- top-down: evaluation of inherited attributes
- bottom-up: evaluation of synthesized attributes

Evaluation of L-Attributed Grammars

Observation 1: the syntax tree of an L-attributed grammar can be attributed by a depth-first, left-to-right tree traversal with two visits to each node

- top-down: evaluation of inherited attributes
- bottom-up: evaluation of synthesized attributes

Observation 2: visit sequence fits nicely with parsing

- 1 top-down: expansion steps
- bottom-up: reduction steps

Evaluation of L-Attributed Grammars

Observation 1: the syntax tree of an L-attributed grammar can be attributed by a depth-first, left-to-right tree traversal with two visits to each node

- top-down: evaluation of inherited attributes
- bottom-up: evaluation of synthesized attributes

Observation 2: visit sequence fits nicely with parsing

- 1 top-down: expansion steps
- bottom-up: reduction steps

Idea: extend LL parsing to support reduction steps, and integrate attribute evaluation \implies

- use recursive-descent parser
- add variables and operations for attribute evaluation

Recursive-Descent Parsing I

Ingredients:

- variable token for current token
- function next() for invoking the scanner
- procedure print(i) for displaying the leftmost analysis (or errors)

Recursive-Descent Parsing I

- Ingredients: variable token for current token
 - function next() for invoking the scanner
 - procedure print(i) for displaying the leftmost analysis (or errors)

Method: to every $A \in N$ we assign a procedure

A()

which

- tests token with regard to the lookahead sets of the A-productions,
- prints the corresponding rule number and
- evaluates the corresponding right-hand side as follows:
 - for $a \in \Sigma$: check token: call next()
 - for $A \in \mathbb{N}$: call A

Recursive-Descent Parsing and Evaluation I

Ingredients:

- variable token for current token
- function next() for invoking the scanner
- procedure print(i) for displaying the leftmost analysis (or errors)

Method: to every $A \in N$ we assign a procedure

```
A(in: inh(A), out: syn(A))
```

which

- declares local variables for synthesized attributes on right-hand sides,
- tests token with regard to the lookahead sets of the A-productions,
- prints the corresponding rule number and
- evaluates the corresponding right-hand side as follows:
 - for $a \in \Sigma$: check token; call next()
 - for $A \in \mathbb{N}$: call A with appropriate parameters

Recursive-Descent Parsing II

Example 14.4 (cf. Example 14.3)

```
proc main();
  token := next(); S()
proc S(); (*S \rightarrow AB*)
  if token in {'a', 'c'} then
    print(1); A(); B()
  else print(error); stop fi
proc A(); (*A \rightarrow aA \mid c*)
  if token = 'a' then
    print(2); token := next(); A()
  elsif token = 'c' then
    print(3); token := next()
  else print(error); stop fi
proc B(); (*B \rightarrow b *)
  if token = 'b' then
    print(4); token := next()
  else print(error); stop fi
```

Recursive-Descent Parsing and Evaluation II

Example 14.5 (cf. Example 14.3)

```
proc main(); var s;
  token := next(); S(s); print(s)
proc S(out s0); var s1,s2; (* S \rightarrow A B *)
  if token in {'a', 'c'} then
    print(1); A(0,s1); B(s1 + 1,s2); s0 := s2 + 1
  else print(error); stop fi
proc A(in i0,out s0); var s2; (* A \rightarrow a A \mid c *)
  if token = 'a' then
    print(2); token := next(); A(i0 + 1,s2); s0 := s2 + 1
  elsif token = 'c' then
    print(3); token := next(); s0 := i0 + 1
  else print(error); stop fi
proc B(in i0,out s0); (* B \rightarrow b *)
  if token = 'b' then
    print(4); token := next(); s0 := i0 + 1
  else print(error); stop fi
```