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Attribute Grammars

Goal: compute context-dependent but runtime-independent
properties of a given program

Idea: enrich context-free grammar by semantic rules which
annotate syntax tree with attribute values

=⇒ Semantic analysis = attribute evaluation

Result: attributed syntax tree

In greater detail:

With every nonterminal a set of attributes is associated.

Two types of attributes are distinguished:

Synthesized: bottom-up computation (from the leaves to the root)
Inherited: top-down computation (from the root to the leaves)

With every production a set of semantic rules is associated.
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Formal Definition of Attribute Grammars I

Definition (Attribute grammar)

Let G = 〈N ,Σ,P , S〉 ∈ CFGΣ with X := N ⊎ Σ.

Let Att = Syn ⊎ Inh be a set of (synthesized or inherited) attributes, and let
V =

⋃

α∈Att V
α be a union of value sets.

Let att : X → 2Att be an attribute assignment, and let
syn(Y ) := att(Y ) ∩ Syn and inh(Y ) := att(Y ) ∩ Inh for every Y ∈ X .

Every production π = Y0 → Y1 . . .Yr ∈ P determines the set

Varπ := {α.i | α ∈ att(Yi ), i ∈ {0, . . . , r}}
of attribute variables of π with the subsets of inner and outer variables:

Inπ := {α.i | (i = 0, α ∈ syn(Yi )) or (i ∈ [r ], α ∈ inh(Yi ))}
Outπ := Varπ \ Inπ

A semantic rule of π is an equation of the form

α.i = f (α1.i1, . . . , αn.in)
where n ∈ N, α.i ∈ Inπ, αj .ij ∈ Outπ, and f : Vα1 × . . .× Vαn → Vα.

For each π ∈ P , let Eπ be a set with exactly one semantic rule for every
inner variable of π, and let E := (Eπ | π ∈ P).

Then A := 〈G ,E ,V 〉 is called an attribute grammar: A ∈ AG .
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Attribution of Syntax Trees I

Definition (Attribution of syntax trees)

Let A = 〈G ,E ,V 〉 ∈ AG , and let t be a syntax tree of G with the set of
nodes K .

K determines the set of attribute variables of t:

Var t := {α.k | k ∈ K labelled with Y ∈ X , α ∈ att(Y )}.

Let k0 ∈ K be an (inner) node where production
π = Y0 → Y1 . . .Yr ∈ P is applied, and let k1, . . . , kr ∈ K be the
corresponding successor nodes. The attribute equation system Ek0 of
k0 is obtained from Eπ by substituting every attribute index
i ∈ {0, . . . , r} by ki .

The attribute equation system of t is given by

Et :=
⋃

{Ek | k inner node of t}.
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Attribution of Syntax Trees II

Example (cf. Example 12.2)

Attributed syntax tree for 10.1: k0 : S

k1 : L k7 : . k8 : L

k2 : L k5 : B

k3 : B

k9 : B

k6 : 0

k4 : 1

k10 : 1

d

d lp

d lp

d lp

dp

dp

dp

ES→L.L : d .0 = d .1 + d .3
p.1 = 0
p.3 = −l .3

subst
−→

Ek0 : d .k0 = d .k1 + d .k8
p.k1 = 0
p.k8 = −l .k8

EL→LB : d .0 = d .1 + d .2
l .0 = l .1 + 1 subst

−→

Ek1 : d .k1 = d .k2 + d .k5
l .k1 = l .k2 + 1Compiler Construction Summer Semester 2014 13.7



Attribution of Syntax Trees III

Corollary

For each α.k ∈ Var t except the inherited attribute variables at the root
and the synthesized attribute variables at the leaves of t, Et contains
exactly one equation with left-hand side α.k.

Assumptions:

The start symbol does not have inherited attributes: inh(S) = ∅.

Synthesized attributes of terminal symbols are provided by the
scanner.
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Solvability of Attribute Equation System I

Definition 13.1 (Solution of attribute equation system)

Let A = 〈G ,E ,V 〉 ∈ AG , and let t be a syntax tree of G . A solution of Et

is a mapping

v : Var t → V

such that, for every α.k ∈ Var t and α.k = f (α.k1, . . . , α.kn) ∈ Et ,

v(α.k) = f (v(α.k1), . . . , v(α.kn)).

In general, the attribute equation system Et of a given syntax tree t can
have

no solution,

exactly one solution, or

several solutions.
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Solvability of Attribute Equation System II

Example 13.2

A → aB ,B → b ∈ P

α ∈ syn(B), β ∈ inh(B)

β.2 = f (α.2) ∈ EA→aB

α.0 = β.0 ∈ EB→b

=⇒ for V α := V β := N and

f (x) := x + 1: no solution

f (x) := 2x : exactly one solution
(v(α.k) = v(β.k) = 0)

f (x) := x : infinitely many solutions
(v(α.k) = v(β.k) = y for any y ∈ N)

=⇒ cyclic dependency:

A

a k : B

b

β α

Et : β.k = f (α.k)
α.k = β.k
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Circularity of Attribute Grammars

Goal: unique solvability of equation system
=⇒ avoid cyclic dependencies

Definition 13.3 (Circularity)

An attribute grammar A = 〈G ,E ,V 〉 ∈ AG is called circular if there exists
a syntax tree t such that the attribute equation system Et is recursive
(i.e., some attribute variable of t depends on itself). Otherwise it is called
noncircular.

Remark: because of the division of Varπ into Inπ and Outπ, cyclic
dependencies cannot occur at production level.
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Attribute Dependency Graphs I

Goal: graphic representation of attribute dependencies

Definition 13.4 (Production dependency graph)

Let A = 〈G ,E ,V 〉 ∈ AG with G = 〈N,Σ,P ,S〉. Every production π ∈ P
determines the dependency graph Dπ := 〈Varπ,→π〉 where the set of
edges →π⊆ Varπ × Varπ is given by

x →π y iff y = f (. . . , x , . . .) ∈ Eπ.

Corollary 13.5

The dependency graph of a production is acyclic
(since →π⊆ Outπ × Inπ).
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Attribute Dependency Graphs II

Example 13.6 (cf. Example 12.2)

1 N → L.L :
d .0 = d .1 + d .3
p.1 = 0
p.3 = −l .3

=⇒ DN→L.L : N

L . L

d .0

d .1 l .1p.1 d .3 l .3p.3

2 L → LB :
d .0 = d .1 + d .2
l .0 = l .1 + 1
p.1 = p.0 + 1
p.2 = p.0

=⇒ DN→LB : L

L B

d .0 l .0p.0

d .1 l .1p.1 d .2p.2
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Attribute Dependency Graphs III

Just as the attribute equation system Et of a syntax tree t is obtained
from the semantic rules of the contributing productions, the dependency
graph of t is obtained by “glueing together” the dependency graphs of the
productions.

Definition 13.7 (Tree dependency graph)

Let A = 〈G ,E ,V 〉 ∈ AG , and let t be a syntax tree of G .

The dependency graph of t is defined by Dt := 〈Var t ,→t〉 where the
set of edges, →t⊆ Var t × Var t , is given by

x →t y iff y = f (. . . , x , . . .) ∈ Et .

Dt is called cyclic if there exists x ∈ Var t such that x →+
t x .

Corollary 13.8

An attribute grammar A = 〈G ,E ,V 〉 ∈ AG is circular iff there exists a
syntax tree t of G such that Dt is cyclic.
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Attribute Dependency Graphs IV

Example 13.9 (cf. Example 12.2)

(Acyclic) dependency graph of the syntax tree for 10.1:

k0 : N

k1 : L k7 : . k8 : L

k2 : L

k3 : B

k5 : B k9 : B

k6 : 0

k4 : 1

k10 : 1

d .k0

d .k1 l .k1p.k1

d .k2 l .k2p.k2

d .k8 l .k8p.k8

d .k5p.k5

d .k3p.k3

d .k9p.k9
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Attribute Dependency Graphs and Circularity I

Observation: a cycle in the dependency graph Dt of a given syntax tree t
is caused by the occurrence of a “cover” production
π = A0 → w0A1w1 . . .Arwr ∈ P in a node k0 of t such that

the dependencies in Ek0 yield the “upper end” of the cycle and

for at least one i ∈ [r ], some attributes in syn(Ai ) depend on
attributes in inh(Ai ).

Example 13.10

on the board

To identify such “critical” situations we need to determine for each i ∈ [r ]
the possible ways in which attributes in syn(Ai ) can depend on attributes
in inh(Ai ).
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Attribute Dependency Graphs and Circularity II

Definition 13.11 (Attribute dependence)

Let A = 〈G ,E ,V 〉 ∈ AG with G = 〈N,Σ,P ,S〉.

If t is a syntax tree with root label A ∈ N and root node k ,
α ∈ syn(A), and β ∈ inh(A) such that β.k →+

t α.k , then α is

dependent on β below A in t (notation: β
A
→֒ α).

For every syntax tree t with root label A ∈ N,

is(A, t) := {(β, α) ∈ inh(A)× syn(A) | β
A
→֒ α in t}.

For every A ∈ N,

IS(A) := {is(A, t) | t syntax tree with root label A}
⊆ 2Inh×Syn.

Remark: it is important that IS(A) is a system of attribute dependence
sets, not a union (otherwise: strong noncircularity—see exercises).

Example 13.12

on the board
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The Circularity Check I

In the circularity check, the dependency systems IS(A) are iteratively
computed. The following notation is employed:

Definition 13.13

Given π = A → w0A1w1 . . .Arwr ∈ P and is i ⊆ inh(Ai )× syn(Ai ) for
every i ∈ [r ], let

is[π; is1, . . . , isr ] ⊆ inh(A)× syn(A)
be given by

is[π; is1, . . . , isr ] :=
{

(β, α) | (β.0, α.0) ∈ (→π ∪
⋃r

i=1{(β
′.pi , α

′.pi ) | (β
′, α′) ∈ is i})

+
}

where pi :=
∑i

j=1 |wj−1|+ i .

Example 13.14

on the board

Compiler Construction Summer Semester 2014 13.22


	Recap: Attribute Grammars
	Circularity of Attribute Grammars
	Attribute Dependency Graphs
	Testing Attribute Grammars for Circularity
	The Circularity Check

