
Compiler Construction
Lecture 13: Semantic Analysis II (Circularity Check)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Summer Semester 2014

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Outline

1 Recap: Attribute Grammars

2 Circularity of Attribute Grammars

3 Attribute Dependency Graphs

4 Testing Attribute Grammars for Circularity

5 The Circularity Check

Compiler Construction Summer Semester 2014 13.2

Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntax analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code

attribute grammars

Assgn

Var Exp

Sum

Var Const

Assgn

Var Exp

Sum

Var Const

ok

int int

int

int int

Compiler Construction Summer Semester 2014 13.3

Attribute Grammars

Goal: compute context-dependent but runtime-independent
properties of a given program

Idea: enrich context-free grammar by semantic rules which
annotate syntax tree with attribute values

=⇒ Semantic analysis = attribute evaluation

Result: attributed syntax tree

In greater detail:

With every nonterminal a set of attributes is associated.

Two types of attributes are distinguished:

Synthesized: bottom-up computation (from the leaves to the root)
Inherited: top-down computation (from the root to the leaves)

With every production a set of semantic rules is associated.

Compiler Construction Summer Semester 2014 13.4

Formal Definition of Attribute Grammars I

Definition (Attribute grammar)

Let G = 〈N ,Σ,P , S〉 ∈ CFGΣ with X := N ⊎ Σ.

Let Att = Syn ⊎ Inh be a set of (synthesized or inherited) attributes, and let
V =

⋃

α∈Att V
α be a union of value sets.

Let att : X → 2Att be an attribute assignment, and let
syn(Y) := att(Y) ∩ Syn and inh(Y) := att(Y) ∩ Inh for every Y ∈ X .

Every production π = Y0 → Y1 . . .Yr ∈ P determines the set

Varπ := {α.i | α ∈ att(Yi), i ∈ {0, . . . , r}}
of attribute variables of π with the subsets of inner and outer variables:

Inπ := {α.i | (i = 0, α ∈ syn(Yi)) or (i ∈ [r], α ∈ inh(Yi))}
Outπ := Varπ \ Inπ

A semantic rule of π is an equation of the form

α.i = f (α1.i1, . . . , αn.in)
where n ∈ N, α.i ∈ Inπ, αj .ij ∈ Outπ, and f : Vα1 × . . .× Vαn → Vα.

For each π ∈ P , let Eπ be a set with exactly one semantic rule for every
inner variable of π, and let E := (Eπ | π ∈ P).

Then A := 〈G ,E ,V 〉 is called an attribute grammar: A ∈ AG .

Compiler Construction Summer Semester 2014 13.5

Attribution of Syntax Trees I

Definition (Attribution of syntax trees)

Let A = 〈G ,E ,V 〉 ∈ AG , and let t be a syntax tree of G with the set of
nodes K .

K determines the set of attribute variables of t:

Var t := {α.k | k ∈ K labelled with Y ∈ X , α ∈ att(Y)}.

Let k0 ∈ K be an (inner) node where production
π = Y0 → Y1 . . .Yr ∈ P is applied, and let k1, . . . , kr ∈ K be the
corresponding successor nodes. The attribute equation system Ek0 of
k0 is obtained from Eπ by substituting every attribute index
i ∈ {0, . . . , r} by ki .

The attribute equation system of t is given by

Et :=
⋃

{Ek | k inner node of t}.

Compiler Construction Summer Semester 2014 13.6

Attribution of Syntax Trees II

Example (cf. Example 12.2)

Attributed syntax tree for 10.1: k0 : S

k1 : L k7 : . k8 : L

k2 : L k5 : B

k3 : B

k9 : B

k6 : 0

k4 : 1

k10 : 1

d

d lp

d lp

d lp

dp

dp

dp

ES→L.L : d .0 = d .1 + d .3
p.1 = 0
p.3 = −l .3

subst
−→

Ek0 : d .k0 = d .k1 + d .k8
p.k1 = 0
p.k8 = −l .k8

EL→LB : d .0 = d .1 + d .2
l .0 = l .1 + 1 subst

−→

Ek1 : d .k1 = d .k2 + d .k5
l .k1 = l .k2 + 1Compiler Construction Summer Semester 2014 13.7

Attribution of Syntax Trees III

Corollary

For each α.k ∈ Var t except the inherited attribute variables at the root
and the synthesized attribute variables at the leaves of t, Et contains
exactly one equation with left-hand side α.k.

Assumptions:

The start symbol does not have inherited attributes: inh(S) = ∅.

Synthesized attributes of terminal symbols are provided by the
scanner.

Compiler Construction Summer Semester 2014 13.8

Outline

1 Recap: Attribute Grammars

2 Circularity of Attribute Grammars

3 Attribute Dependency Graphs

4 Testing Attribute Grammars for Circularity

5 The Circularity Check

Compiler Construction Summer Semester 2014 13.9

Solvability of Attribute Equation System I

Definition 13.1 (Solution of attribute equation system)

Let A = 〈G ,E ,V 〉 ∈ AG , and let t be a syntax tree of G . A solution of Et

is a mapping

v : Var t → V

such that, for every α.k ∈ Var t and α.k = f (α.k1, . . . , α.kn) ∈ Et ,

v(α.k) = f (v(α.k1), . . . , v(α.kn)).

In general, the attribute equation system Et of a given syntax tree t can
have

no solution,

exactly one solution, or

several solutions.

Compiler Construction Summer Semester 2014 13.10

Solvability of Attribute Equation System II

Example 13.2

A → aB ,B → b ∈ P

α ∈ syn(B), β ∈ inh(B)

β.2 = f (α.2) ∈ EA→aB

α.0 = β.0 ∈ EB→b

=⇒ for V α := V β := N and

f (x) := x + 1: no solution

f (x) := 2x : exactly one solution
(v(α.k) = v(β.k) = 0)

f (x) := x : infinitely many solutions
(v(α.k) = v(β.k) = y for any y ∈ N)

=⇒ cyclic dependency:

A

a k : B

b

β α

Et : β.k = f (α.k)
α.k = β.k

Compiler Construction Summer Semester 2014 13.11

Circularity of Attribute Grammars

Goal: unique solvability of equation system
=⇒ avoid cyclic dependencies

Definition 13.3 (Circularity)

An attribute grammar A = 〈G ,E ,V 〉 ∈ AG is called circular if there exists
a syntax tree t such that the attribute equation system Et is recursive
(i.e., some attribute variable of t depends on itself). Otherwise it is called
noncircular.

Remark: because of the division of Varπ into Inπ and Outπ, cyclic
dependencies cannot occur at production level.

Compiler Construction Summer Semester 2014 13.12

Outline

1 Recap: Attribute Grammars

2 Circularity of Attribute Grammars

3 Attribute Dependency Graphs

4 Testing Attribute Grammars for Circularity

5 The Circularity Check

Compiler Construction Summer Semester 2014 13.13

Attribute Dependency Graphs I

Goal: graphic representation of attribute dependencies

Definition 13.4 (Production dependency graph)

Let A = 〈G ,E ,V 〉 ∈ AG with G = 〈N,Σ,P ,S〉. Every production π ∈ P
determines the dependency graph Dπ := 〈Varπ,→π〉 where the set of
edges →π⊆ Varπ × Varπ is given by

x →π y iff y = f (. . . , x , . . .) ∈ Eπ.

Corollary 13.5

The dependency graph of a production is acyclic
(since →π⊆ Outπ × Inπ).

Compiler Construction Summer Semester 2014 13.14

Attribute Dependency Graphs II

Example 13.6 (cf. Example 12.2)

1 N → L.L :
d .0 = d .1 + d .3
p.1 = 0
p.3 = −l .3

=⇒ DN→L.L : N

L . L

d .0

d .1 l .1p.1 d .3 l .3p.3

2 L → LB :
d .0 = d .1 + d .2
l .0 = l .1 + 1
p.1 = p.0 + 1
p.2 = p.0

=⇒ DN→LB : L

L B

d .0 l .0p.0

d .1 l .1p.1 d .2p.2

Compiler Construction Summer Semester 2014 13.15

Attribute Dependency Graphs III

Just as the attribute equation system Et of a syntax tree t is obtained
from the semantic rules of the contributing productions, the dependency
graph of t is obtained by “glueing together” the dependency graphs of the
productions.

Definition 13.7 (Tree dependency graph)

Let A = 〈G ,E ,V 〉 ∈ AG , and let t be a syntax tree of G .

The dependency graph of t is defined by Dt := 〈Var t ,→t〉 where the
set of edges, →t⊆ Var t × Var t , is given by

x →t y iff y = f (. . . , x , . . .) ∈ Et .

Dt is called cyclic if there exists x ∈ Var t such that x →+
t x .

Corollary 13.8

An attribute grammar A = 〈G ,E ,V 〉 ∈ AG is circular iff there exists a
syntax tree t of G such that Dt is cyclic.

Compiler Construction Summer Semester 2014 13.16

Attribute Dependency Graphs IV

Example 13.9 (cf. Example 12.2)

(Acyclic) dependency graph of the syntax tree for 10.1:

k0 : N

k1 : L k7 : . k8 : L

k2 : L

k3 : B

k5 : B k9 : B

k6 : 0

k4 : 1

k10 : 1

d .k0

d .k1 l .k1p.k1

d .k2 l .k2p.k2

d .k8 l .k8p.k8

d .k5p.k5

d .k3p.k3

d .k9p.k9

Compiler Construction Summer Semester 2014 13.17

Outline

1 Recap: Attribute Grammars

2 Circularity of Attribute Grammars

3 Attribute Dependency Graphs

4 Testing Attribute Grammars for Circularity

5 The Circularity Check

Compiler Construction Summer Semester 2014 13.18

Attribute Dependency Graphs and Circularity I

Observation: a cycle in the dependency graph Dt of a given syntax tree t
is caused by the occurrence of a “cover” production
π = A0 → w0A1w1 . . .Arwr ∈ P in a node k0 of t such that

the dependencies in Ek0 yield the “upper end” of the cycle and

for at least one i ∈ [r], some attributes in syn(Ai) depend on
attributes in inh(Ai).

Example 13.10

on the board

To identify such “critical” situations we need to determine for each i ∈ [r]
the possible ways in which attributes in syn(Ai) can depend on attributes
in inh(Ai).

Compiler Construction Summer Semester 2014 13.19

Attribute Dependency Graphs and Circularity II

Definition 13.11 (Attribute dependence)

Let A = 〈G ,E ,V 〉 ∈ AG with G = 〈N,Σ,P ,S〉.

If t is a syntax tree with root label A ∈ N and root node k ,
α ∈ syn(A), and β ∈ inh(A) such that β.k →+

t α.k , then α is

dependent on β below A in t (notation: β
A
→֒ α).

For every syntax tree t with root label A ∈ N,

is(A, t) := {(β, α) ∈ inh(A)× syn(A) | β
A
→֒ α in t}.

For every A ∈ N,

IS(A) := {is(A, t) | t syntax tree with root label A}
⊆ 2Inh×Syn.

Remark: it is important that IS(A) is a system of attribute dependence
sets, not a union (otherwise: strong noncircularity—see exercises).

Example 13.12

on the board

Compiler Construction Summer Semester 2014 13.20

Outline

1 Recap: Attribute Grammars

2 Circularity of Attribute Grammars

3 Attribute Dependency Graphs

4 Testing Attribute Grammars for Circularity

5 The Circularity Check

Compiler Construction Summer Semester 2014 13.21

The Circularity Check I

In the circularity check, the dependency systems IS(A) are iteratively
computed. The following notation is employed:

Definition 13.13

Given π = A → w0A1w1 . . .Arwr ∈ P and is i ⊆ inh(Ai)× syn(Ai) for
every i ∈ [r], let

is[π; is1, . . . , isr] ⊆ inh(A)× syn(A)
be given by

is[π; is1, . . . , isr] :=
{

(β, α) | (β.0, α.0) ∈ (→π ∪
⋃r

i=1{(β
′.pi , α

′.pi) | (β
′, α′) ∈ is i})

+
}

where pi :=
∑i

j=1 |wj−1|+ i .

Example 13.14

on the board

Compiler Construction Summer Semester 2014 13.22

	Recap: Attribute Grammars
	Circularity of Attribute Grammars
	Attribute Dependency Graphs
	Testing Attribute Grammars for Circularity
	The Circularity Check

