Compiler Construction Lecture 13: Semantic Analysis II (Circularity Check)

Thomas Noll

Lehrstuhl für Informatik 2 (Software Modeling and Verification)

noll@cs.rwth-aachen.de

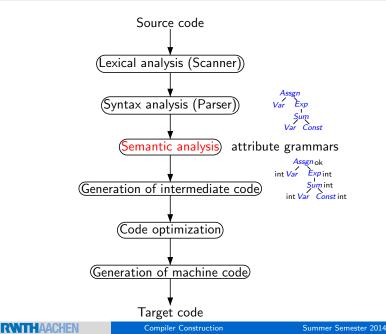
http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Summer Semester 2014

Outline

- 2 Circularity of Attribute Grammars
- 3 Attribute Dependency Graphs
- 4 Testing Attribute Grammars for Circularity
- 5 The Circularity Check

Conceptual Structure of a Compiler



13.3

Goal: compute context-dependent but runtime-independent properties of a given program

- Idea: enrich context-free grammar by semantic rules which annotate syntax tree with attribute values
- → Semantic analysis = attribute evaluation

Result: attributed syntax tree

In greater detail:

- With every nonterminal a set of attributes is associated.
- Two types of attributes are distinguished:
 Synthesized: bottom-up computation (from the leaves to the root) Inherited: top-down computation (from the root to the leaves)
- With every production a set of semantic rules is associated.

Formal Definition of Attribute Grammars I

Definition (Attribute grammar)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ with $X := N \uplus \Sigma$.

- Let Att = Syn ⊎ Inh be a set of (synthesized or inherited) attributes, and let
 V = U_{α∈Att} V^α be a union of value sets.
- Let att : $X \to 2^{Att}$ be an attribute assignment, and let $syn(Y) := att(Y) \cap Syn$ and $inh(Y) := att(Y) \cap Inh$ for every $Y \in X$.
- Every production $\pi = Y_0 \rightarrow Y_1 \dots Y_r \in P$ determines the set

 $Var_{\pi} := \{ \alpha.i \mid \alpha \in \operatorname{att}(Y_i), i \in \{0, \ldots, r\} \}$

of attribute variables of π with the subsets of inner and outer variables:

 $In_{\pi} := \{ \alpha.i \mid (i = 0, \alpha \in syn(Y_i)) \text{ or } (i \in [r], \alpha \in inh(Y_i)) \}$ $Out_{\pi} := Var_{\pi} \setminus In_{\pi}$

• A semantic rule of π is an equation of the form

 $\alpha.i = f(\alpha_1.i_1, \ldots, \alpha_n.i_n)$ where $n \in \mathbb{N}$, $\alpha.i \in In_{\pi}$, $\alpha_j.i_j \in Out_{\pi}$, and $f: V^{\alpha_1} \times \ldots \times V^{\alpha_n} \to V^{\alpha}$.

For each π ∈ P, let E_π be a set with exactly one semantic rule for every inner variable of π, and let E := (E_π | π ∈ P).

Then $\mathfrak{A} := \langle G, E, V \rangle$ is called an attribute grammar: $\mathfrak{A} \in AG$.

Definition (Attribution of syntax trees)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$, and let *t* be a syntax tree of *G* with the set of nodes *K*.

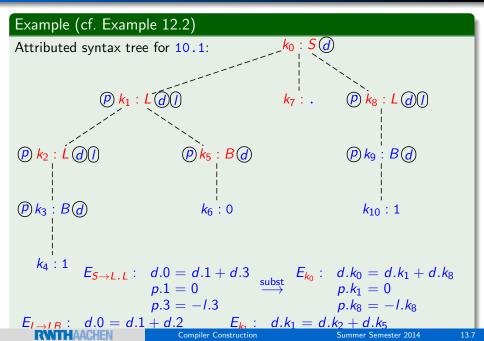
• *K* determines the set of attribute variables of *t*:

 $Var_t := \{ \alpha.k \mid k \in K \text{ labelled with } Y \in X, \alpha \in \operatorname{att}(Y) \}.$

- Let k₀ ∈ K be an (inner) node where production
 π = Y₀ → Y₁... Y_r ∈ P is applied, and let k₁,..., k_r ∈ K be the
 corresponding successor nodes. The attribute equation system E_{k0} of
 k₀ is obtained from E_π by substituting every attribute index
 i ∈ {0,...,r} by k_i.
- The attribute equation system of t is given by

 $E_t := \bigcup \{E_k \mid k \text{ inner node of } t\}.$

Attribution of Syntax Trees II



Corollary

For each $\alpha.k \in Var_t$ except the inherited attribute variables at the root and the synthesized attribute variables at the leaves of t, E_t contains exactly one equation with left-hand side $\alpha.k$.

Assumptions:

- The start symbol does not have inherited attributes: $inh(S) = \emptyset$.
- Synthesized attributes of terminal symbols are provided by the scanner.

Recap: Attribute Grammars

2 Circularity of Attribute Grammars

- 3 Attribute Dependency Graphs
- 4 Testing Attribute Grammars for Circularity
- 5 The Circularity Check

Solvability of Attribute Equation System I

Definition 13.1 (Solution of attribute equation system)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$, and let t be a syntax tree of G. A solution of E_t is a mapping

 $v: \textit{Var}_t \to \textit{V}$

such that, for every $\alpha.k \in Var_t$ and $\alpha.k = f(\alpha.k_1, \ldots, \alpha.k_n) \in E_t$,

$$\mathbf{v}(\alpha.\mathbf{k}) = f(\mathbf{v}(\alpha.\mathbf{k}_1),\ldots,\mathbf{v}(\alpha.\mathbf{k}_n)).$$

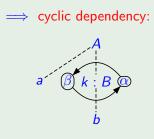
In general, the attribute equation system E_t of a given syntax tree t can have

- no solution,
- exactly one solution, or
- several solutions.

Solvability of Attribute Equation System II

Example 13.2

- $A \rightarrow aB, B \rightarrow b \in P$
- $\alpha \in \operatorname{syn}(B), \beta \in \operatorname{inh}(B)$
- $\beta.2 = f(\alpha.2) \in E_{A \to aB}$
- $\alpha.0 = \beta.0 \in E_{B \to b}$
- \implies for $V^{lpha}:=V^{eta}:=\mathbb{N}$ and
 - f(x) := x + 1: no solution
 - f(x) := 2x: exactly one solution
 (v(α.k) = v(β.k) = 0)
 - f(x) := x: infinitely many solutions $(v(\alpha.k) = v(\beta.k) = y \text{ for any } y \in \mathbb{N})$



 $E_t: \quad \beta.k = f(\alpha.k) \\ \alpha.k = \beta.k$

Goal: unique solvability of equation system

 \implies avoid cyclic dependencies

Definition 13.3 (Circularity)

An attribute grammar $\mathfrak{A} = \langle G, E, V \rangle \in AG$ is called circular if there exists a syntax tree *t* such that the attribute equation system E_t is recursive (i.e., some attribute variable of *t* depends on itself). Otherwise it is called noncircular.

Remark: because of the division of Var_{π} into In_{π} and Out_{π} , cyclic dependencies cannot occur at production level.

Outline

- Recap: Attribute Grammars
- 2 Circularity of Attribute Grammars
- 3 Attribute Dependency Graphs
 - 4 Testing Attribute Grammars for Circularity
 - 5 The Circularity Check

Goal: graphic representation of attribute dependencies

Definition 13.4 (Production dependency graph)

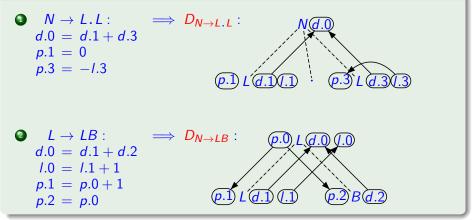
Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$ with $G = \langle N, \Sigma, P, S \rangle$. Every production $\pi \in P$ determines the dependency graph $D_{\pi} := \langle Var_{\pi}, \rightarrow_{\pi} \rangle$ where the set of edges $\rightarrow_{\pi} \subseteq Var_{\pi} \times Var_{\pi}$ is given by

$$x \to_{\pi} y$$
 iff $y = f(\ldots, x, \ldots) \in E_{\pi}$.

Corollary 13.5

The dependency graph of a production is acyclic (since $\rightarrow_{\pi} \subseteq Out_{\pi} \times In_{\pi}$).

Example 13.6 (cf. Example 12.2)



Attribute Dependency Graphs III

Just as the attribute equation system E_t of a syntax tree t is obtained from the semantic rules of the contributing productions, the dependency graph of t is obtained by "glueing together" the dependency graphs of the productions.

Definition 13.7 (Tree dependency graph)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$, and let *t* be a syntax tree of *G*.

The dependency graph of t is defined by D_t := ⟨Var_t, →_t⟩ where the set of edges, →_t ⊆ Var_t × Var_t, is given by

$$x \to_t y$$
 iff $y = f(\ldots, x, \ldots) \in E_t$.

• D_t is called cyclic if there exists $x \in Var_t$ such that $x \to_t^+ x$.

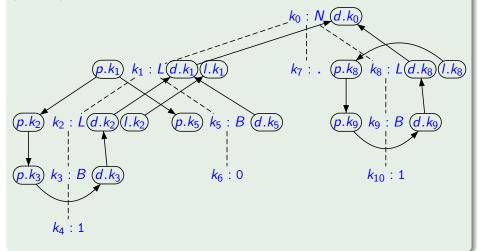
Corollary 13.8

An attribute grammar $\mathfrak{A} = \langle G, E, V \rangle \in AG$ is circular iff there exists a syntax tree t of G such that D_t is cyclic.

Attribute Dependency Graphs IV

Example 13.9 (cf. Example 12.2)

(Acyclic) dependency graph of the syntax tree for 10.1:



Outline

- Recap: Attribute Grammars
- 2 Circularity of Attribute Grammars
- 3 Attribute Dependency Graphs
- 4 Testing Attribute Grammars for Circularity
- 5 The Circularity Check

Attribute Dependency Graphs and Circularity I

Observation: a cycle in the dependency graph D_t of a given syntax tree t is caused by the occurrence of a "cover" production

 $\pi = A_0 \rightarrow w_0 A_1 w_1 \dots A_r w_r \in P$ in a node k_0 of t such that

- the dependencies in E_{k_0} yield the "upper end" of the cycle and
- for at least one $i \in [r]$, some attributes in $syn(A_i)$ depend on attributes in $inh(A_i)$.

Example 13.10

on the board

To identify such "critical" situations we need to determine for each $i \in [r]$ the possible ways in which attributes in $syn(A_i)$ can depend on attributes in $inh(A_i)$.

Attribute Dependency Graphs and Circularity II

Definition 13.11 (Attribute dependence)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$ with $G = \langle N, \Sigma, P, S \rangle$.

If t is a syntax tree with root label A ∈ N and root node k, α ∈ syn(A), and β ∈ inh(A) such that β.k →⁺_t α.k, then α is dependent on β below A in t (notation: β ^A→ α).
For every syntax tree t with root label A ∈ N,

 $is(A, t) := \{ (\beta, \alpha) \in inh(A) \times syn(A) \mid \beta \stackrel{A}{\hookrightarrow} \alpha \text{ in } t \}.$

• For every $A \in N$,

 $\frac{IS(A)}{\subseteq} = \{ is(A, t) \mid t \text{ syntax tree with root label A} \}$ $\subseteq 2^{Inh \times Syn}.$

Remark: it is important that IS(A) is a system of attribute dependence sets, not a union (otherwise: strong noncircularity—see exercises).

Example 13.12 on the board

Outline

- Recap: Attribute Grammars
- 2 Circularity of Attribute Grammars
- 3 Attribute Dependency Graphs
- 4 Testing Attribute Grammars for Circularity
- 5 The Circularity Check

The Circularity Check I

In the circularity check, the dependency systems IS(A) are iteratively computed. The following notation is employed:

Definition 13.13

Given $\pi = A \rightarrow w_0 A_1 w_1 \dots A_r w_r \in P$ and $is_i \subseteq inh(A_i) \times syn(A_i)$ for every $i \in [r]$, let $is[\pi; is_1, \dots, is_r] \subseteq inh(A) \times syn(A)$ be given by $is[\pi; is_1, \dots, is_r] :=$ $\left\{ (\beta, \alpha) \mid (\beta.0, \alpha.0) \in (\rightarrow_{\pi} \cup \bigcup_{i=1}^r \{ (\beta'.p_i, \alpha'.p_i) \mid (\beta', \alpha') \in is_i \})^+ \right\}$ where $p_i := \sum_{j=1}^i |w_{j-1}| + i$.

Example 13.14

on the board