Compiler Construction

Lecture 13: Semantic Analysis Il (Circularity Check)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Summer Semester 2014

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ss-14/cc14/

@ Recap: Attribute Grammars

m Compiler Construction Summer Semester 2014 13.2

Conceptual Structure of a Compiler

Source code

(Lexical analysis (Scanner))

Y A/ssgn
Syntax analysis (Parser)) vt Bxp
§um
y Var Const
(Semantic analysis) attribute grammars
Assgn ok
¥ int Va{ >I<pint
(Generation of intermediate code) Juint

int Var Constint

Y
(Code optimization)

Y
(Generation of machine code

Target code
Rw.rH Compiler Construction Summer Semester 2014 13.3

Attribute Grammars

Goal: compute context-dependent but runtime-independent
properties of a given program

Idea: enrich context-free grammar by semantic rules which
annotate syntax tree with attribute values

= Semantic analysis = attribute evaluation
Result: attributed syntax tree

In greater detail:
@ With every nonterminal a set of attributes is associated.
@ Two types of attributes are distinguished:

Synthesized: bottom-up computation (from the leaves to the root)
Inherited: top-down computation (from the root to the leaves)

@ With every production a set of semantic rules is associated.

mH Compiler Construction Summer Semester 2014 13.4

Formal Definition of Attribute Grammars |

Definition (Attribute grammar)
Let G = (N,%,P,S) € CFGx with X := N W L.

® Let Att = SynW Inh be a set of (synthesized or inherited) attributes, and let

V = Uq,can V¢ be a union of value sets.
@ Let att : X — 24 be an attribute assignment, and let

syn(Y) = att(Y) N Syn and inh(Y) := att(Y) N Inh for every Y € X.
@ Every production 7 = Yy — Yi1...Y, € P determines the set

Var, :={a.i|a € att(Y;),i € {0,...,r}}
of attribute variables of 7 with the subsets of inner and outer variables:
Ing :={a.i| (i=0,a € syn(Y;)) or (i € [r], @ € inh(Y;))}
Out, := Var; \ In;
@ A semantic rule of 7 is an equation of the form
a.i = f(ag.y,...,an.0)

where n € N, a.i € In;, aj.ij € Outr, and f: VO x ... x Vo — Ve,
@ For each w € P, let E, be a set with exactly one semantic rule for every

inner variable of 7, and let E := (E; | w € P).

Then 20 := (G, E, V) is called an attribute grammar: 2 € AG.

RWNTH Compiler Construction Summer Semester 2014

13.5

Attribution of Syntax Trees |

Definition (Attribution of syntax trees)
Let A = (G, E, V) € AG, and let t be a syntax tree of G with the set of
nodes K.

® K determines the set of attribute variables of t:

Var; := {a.k | k € K labelled with Y € X, € att(Y)}.

@ Let ko € K be an (inner) node where production
m=Yyo— Yi1...Y, € Pis applied, and let kq,...,k € K be the
corresponding successor nodes. The attribute equation system Ej; of
ko is obtained from E; by substituting every attribute index
i€{0,...,r} by k.
@ The attribute equation system of t is given by
E; = U{Ek | k inner node of t}.

mH Compiler Construction Summer Semester 2014 13.6

Attribution of Syntax Trees ||

Example (cf. Example 12.2)

Attributed syntax tree for 10.1: ko :

Compiler Construction

Summer Semester 2014

Attribution of Syntax Trees ||

Example (cf. Example 12.2)
Attributed syntax tree for 10.1:

@k QD

s ~

®k2|:L@@ ® ks I: B@)
: :
l l
@k3 . B@ k6 : 0
|
i
kil g d0=d1+d3
pl1=20
p3——13

Compiler Construction

subst
—

Ek'

0 -

@kg . B@

d.ko = d.ky + d.kg
p.kl =0
p.kg —/.kg

Summer Semester 2014

Attribution of Syntax Trees ||

Example (cf. Example 12.2)
Attributed syntax tree for 10.1:

® ki : LD
®k2|:L@@ @[{5; B@
| |
: :
@k3 . B@ k6 : 0
|
i
kil g o d0=d1+d2
[0=1/1+1 subst
pl=p0+1

Compiler Construction

Elq .

d.ky = d.kp + d.ks

l.ki = lL.ko + 1
p-ka = p.-ki +1
p.ks = p.k1

Summer Semester 2014

Attribution of Syntax Trees Ill

For each ai.k € Var: except the inherited attribute variables at the root
and the synthesized attribute variables at the leaves of t, E; contains
exactly one equation with left-hand side . k.

Assumptions:
@ The start symbol does not have inherited attributes: inh(S) = 0.

@ Synthesized attributes of terminal symbols are provided by the
scanner.

mH Compiler Construction Summer Semester 2014 13.8

@ Circularity of Attribute Grammars

m Compiler Construction Summer Semester 2014 13.9

Solvability of Attribute Equation System |

Definition 13.1 (Solution of attribute equation system)
Let A = (G, E, V) € AG, and let t be a syntax tree of G. A solution of E;
is a mapping
v:Vary >V
such that, for every a.k € Var; and a.k = f(auky, ..., a.ky) € Et,
v(a.k) = f(v(a.ky), ..., v(a.ky)).

mH Compiler Construction Summer Semester 2014 13.10

Solvability of Attribute Equation System |

Definition 13.1 (Solution of attribute equation system)
Let A = (G, E, V) € AG, and let t be a syntax tree of G. A solution of E;
is a mapping
v:Vary >V
such that, for every a.k € Var; and a.k = f(auky, ..., a.ky) € Et,
v(a.k) = f(v(a.ky), ..., v(a.ky)).

In general, the attribute equation system E; of a given syntax tree t can
have

@ no solution,
@ exactly one solution, or

@ several solutions.

mH Compiler Construction Summer Semester 2014 13.10

Solvability of Attribute Equation System II

Example 13.2

o A—aB,B—+beP

@ a €syn(B), B € inh(B)
0 f.2="f(a.2) € Epsa
@ a.0=060¢€ Eg_,p

mH Compiler Construction Summer Semester 2014 13.11

Solvability of Attribute Equation System II

Example 13.2

o A—aB,B—+beP
@ o €syn(B), 5 € inh(B) —> cyclic dependency:
) ,82 = f(a2) € EaaB A
o a.0=p0€ Eg_y /,/’ i
a”’ @@@
b
Er: Bk = f(ak)
a.k = Bk

mH Compiler Construction Summer Semester 2014 13.11

Solvability of Attribute Equation System II

Example 13.2

o A—aB,B—+beP

@ o €syn(B), 5 € inh(B) —> cyclic dependency:

0 3.2= f(a2) € Ex B A

@ a.0=p£0¢€ Eg_,p //” i

o
— for V®:= V# := N and

@ f(x) := x+ 1: no solution IID

@ f(x) := 2x: exactly one solution E: B.k=f(a.k)
(v(a.k) = v(B.k) =0) a.k = B.k

@ f(x) := x: infinitely many solutions
(v(a.k) = v(B.k) = y for any y € N)

mH Compiler Construction Summer Semester 2014 13.11

Circularity of Attribute Grammars

Goal: unique solvability of equation system
— avoid cyclic dependencies

m Compiler Construction Summer Semester 2014 13.12

Circularity of Attribute Grammars

Goal: unique solvability of equation system
— avoid cyclic dependencies

Definition 13.3 (Circularity)

An attribute grammar 20 = (G, E, V) € AG is called circular if there exists
a syntax tree t such that the attribute equation system E; is recursive
(i.e., some attribute variable of ¢t depends on itself). Otherwise it is called
noncircular.

mH Compiler Construction Summer Semester 2014 13.12

Circularity of Attribute Grammars

Goal: unique solvability of equation system
— avoid cyclic dependencies

Definition 13.3 (Circularity)

An attribute grammar 20 = (G, E, V) € AG is called circular if there exists
a syntax tree t such that the attribute equation system E; is recursive
(i.e., some attribute variable of ¢t depends on itself). Otherwise it is called
noncircular.

Remark: because of the division of Var, into In; and Out,, cyclic
dependencies cannot occur at production level.

mH Compiler Construction Summer Semester 2014 13.12

9 Attribute Dependency Graphs

m Compiler Construction Summer Semester 2014 13.13

Attribute Dependency Graphs |

Goal: graphic representation of attribute dependencies

Definition 13.4 (Production dependency graph)

Let A = (G, E, V) € AG with G = (N, X, P,S). Every production 7 € P
determines the dependency graph D := (Var,, —,) where the set of
edges —,C Var, x Var, is given by

x—=py iff y=Ff(..,x,...) € E.

mH Compiler Construction Summer Semester 2014 13.14

Attribute Dependency Graphs |

Goal: graphic representation of attribute dependencies

Definition 13.4 (Production dependency graph)

Let A = (G, E, V) € AG with G = (N, X, P,S). Every production 7 € P
determines the dependency graph D := (Var,, —,) where the set of
edges —,C Var, x Var, is given by

x—=py iff y=Ff(..,x,...) € E.

Corollary 13.5

The dependency graph of a production is acyclic
(since —,C Out, X Iny).

mH Compiler Construction Summer Semester 2014 13.14

Attribute Dependency Graphs Il

Example 13.6 (cf. Example 12.2)

Q@ N—-L.L: = Dyn_pr.L:
d0=dl+d3
p.l =0 ,
p.3 =—13 P
@D LE@DD

Summer Semester 2014 13.15

mH Compiler Construction

Attribute Dependency Graphs Il

Example 13.6 (cf. Example 12.2)

Q@ N—-L.L: = Dyn_pr.L:
d0=d1+d3 Y
p.l =0 S
p.3 =—13 P

@D LEDCD

Q@ L—LB:
d0=dl1+d?2
10=11+1
pl=p0+1
p2 = p.0

mH Compiler Construction Summer Semester 2014 13.15

Attribute Dependency Graphs Il

Just as the attribute equation system E; of a syntax tree t is obtained
from the semantic rules of the contributing productions, the dependency
graph of t is obtained by “glueing together” the dependency graphs of the
productions.

mH Compiler Construction Summer Semester 2014 13.16

Attribute Dependency Graphs Il

Just as the attribute equation system E; of a syntax tree t is obtained
from the semantic rules of the contributing productions, the dependency
graph of t is obtained by “glueing together” the dependency graphs of the
productions.

Definition 13.7 (Tree dependency graph)

Let A = (G, E, V) € AG, and let t be a syntax tree of G.

@ The dependency graph of t is defined by D, := (Var;, —) where the
set of edges, —:C Var; x Var;, is given by

x—ey iff y=»Ff(..,x,...)€E;.

@ D; is called cyclic if there exists x € Var; such that x —; x.

mH Compiler Construction Summer Semester 2014 13.16

Attribute Dependency Graphs Il

Just as the attribute equation system E; of a syntax tree t is obtained
from the semantic rules of the contributing productions, the dependency
graph of t is obtained by “glueing together” the dependency graphs of the
productions.

Definition 13.7 (Tree dependency graph)

Let A = (G, E, V) € AG, and let t be a syntax tree of G.

@ The dependency graph of t is defined by D, := (Var;, —) where the
set of edges, —;:C Var; x Var, is given by

x—ey iff y=»Ff(..,x,...)€E;.

@ D; is called cyclic if there exists x € Var; such that x —; x.

Corollary 13.8

An attribute grammar 20 = (G, E, V') € AG is circular iff there exists a
syntax tree t of G such that D is cyclic.

mH Compiler Construction Summer Semester 2014 13.16

Attribute Dependency Graphs IV

Example 13.9 (cf. Example 12.2)
(Acyclic) dependency graph of the syntax tree for 10.1:

mH Compiler Construction Summer Semester 2014 13.17

@ Testing Attribute Grammars for Circularity

m Compiler Construction Summer Semester 2014 13.18

Attribute Dependency Graphs and Circularity |

Observation: a cycle in the dependency graph D; of a given syntax tree t
is caused by the occurrence of a “cover” production
T = Ag — woAiwy ... Aw, € Pin a node kg of t such that

@ the dependencies in E, yield the “upper end” of the cycle and

@ for at least one i € [r], some attributes in syn(A;) depend on
attributes in inh(A4;).

mH Compiler Construction Summer Semester 2014 13.19

Attribute Dependency Graphs and Circularity |

Observation: a cycle in the dependency graph D; of a given syntax tree t
is caused by the occurrence of a “cover” production
T = Ag — woAiwy ... Aw, € Pin a node kg of t such that

@ the dependencies in E, yield the “upper end” of the cycle and

@ for at least one i € [r], some attributes in syn(A;) depend on
attributes in inh(A4;).

Example 13.10

on the board

m Compiler Construction Summer Semester 2014 13.19

Attribute Dependency Graphs and Circularity |

Observation: a cycle in the dependency graph D; of a given syntax tree t
is caused by the occurrence of a “cover” production
T = Ag — woAiwy ... Aw, € Pin a node kg of t such that

@ the dependencies in E, yield the “upper end” of the cycle and

@ for at least one i € [r], some attributes in syn(A;) depend on
attributes in inh(A4;).

Example 13.10

on the board

To identify such “critical” situations we need to determine for each i € [r]
the possible ways in which attributes in syn(A;) can depend on attributes
in inh(A;).

mH Compiler Construction Summer Semester 2014 13.19

Attribute Dependency Graphs and Circularity 11

Definition 13.11 (Attribute dependence)
Let 2 = (G, E, V) € AG with G = (N, X, P, S).

o If t is a syntax tree with root label A € N and root node k,
a € syn(A), and 3 € inh(A) such that 8.k =7 a.k, then « is

A
dependent on 3 below A in t (notation: 8 — «).

mH Compiler Construction Summer Semester 2014 13.20

Attribute Dependency Graphs and Circularity 11

Definition 13.11 (Attribute dependence)
Let 2 = (G, E, V) € AG with G = (N, X, P, S).

o If t is a syntax tree with root label A € N and root node k,
a € syn(A), and 3 € inh(A) such that 3.k —7 a.k, then « is

. _ A
dependent on 3 below A in t (notation: 8 — «).
@ For every syntax tree t with root label A € N,

is(A, t) :={(B,a) € inh(A) x syn(A) | B A ain t}.

mH Compiler Construction Summer Semester 2014 13.20

Attribute Dependency Graphs and Circularity 11

Definition 13.11 (Attribute dependence)
Let 2 = (G, E, V) € AG with G = (N, X, P, S).

o If t is a syntax tree with root label A € N and root node k,
a € syn(A), and 3 € inh(A) such that 3.k —7 a.k, then « is

. _ A
dependent on 3 below A in t (notation: 8 — «).
@ For every syntax tree t with root label A € N,

is(A, t) :={(B,a) € inh(A) x syn(A) | B A ain t}.
o For every AelN,

IS(A) :

{is(A, t) | t syntax tree with root label A}
2

C 92InhxSyn

mH Compiler Construction Summer Semester 2014 13.20

Attribute Dependency Graphs and Circularity 11

Definition 13.11 (Attribute dependence)
Let A = (G,E, V) € AG with G = (N, X, P,S).
o If t is a syntax tree with root label A € N and root node k,
a € syn(A), and 8 € inh(A) such that 5.k —7 a.k, then a is

. _ A
dependent on 3 below A in t (notation: 8 — «).
@ For every syntax tree t with root label A € N,

is(A, t) :={(B,a) € inh(A) x syn(A) | B A ain t}.
o For every AelN,

IS(A) :

{is(A, t) | t syntax tree with root label A}
2

C 92InhxSyn

Remark: it is important that /S(A) is a system of attribute dependence
sets, not a union (otherwise: strong noncircularity—see exercises).

mH Compiler Construction Summer Semester 2014 13.20

Attribute Dependency Graphs and Circularity 11

Definition 13.11 (Attribute dependence)
Let A = (G,E, V) € AG with G = (N, X, P,S).
o If t is a syntax tree with root label A € N and root node k,
a € syn(A), and 8 € inh(A) such that 5.k —7 a.k, then a is

. _ A
dependent on 3 below A in t (notation: 8 — «).
@ For every syntax tree t with root label A € N,

is(A, t) :={(B,a) € inh(A) x syn(A) | B A ain t}.
o For every AelN,

IS(A) :

{is(A, t) | t syntax tree with root label A}
2

C 92InhxSyn

Remark: it is important that /S(A) is a system of attribute dependence
sets, not a union (otherwise: strong noncircularity—see exercises).

on the board

mH Compiler Construction Summer Semester 2014 13.20

© The Circularity Check

m Compiler Construction Summer Semester 2014 13.21

The Circularity Check |

In the circularity check, the dependency systems IS(A) are iteratively
computed. The following notation is employed:

Definition 13.13
Given m = A — wpAiwi ... A,w, € P and is; C inh(A;) x syn(A;) for
every i € [r], let

is[m;is1, ..., is,] C inh(A) x syn(A)
be given by
is[m;ist, ... is| ==
{(8,0) 1(8.0,0.0) € (= UL {(B'pir i) | (8,0) € isi})* }

i

where p; :=). [wj_1] +i.

mH Compiler Construction Summer Semester 2014 13.22

The Circularity Check |

In the circularity check, the dependency systems IS(A) are iteratively
computed. The following notation is employed:

Definition 13.13

Given m = A — wpAiwi ... A,w, € P and is; C inh(A;) x syn(A;) for
every i € [r], let
is[m;is1, ..., is,] C inh(A) x syn(A)
be given by
is[m;ist, ... is| ==
{(8.0)1(8.0,0.0) € (= VUL {(8"pis o pi) | (8',0/) € isi})* |

i

where p; :=). [wj_1] +i.

Example 13.14

on the board

mH Compiler Construction Summer Semester 2014 13.22

	Recap: Attribute Grammars
	Circularity of Attribute Grammars
	Attribute Dependency Graphs
	Testing Attribute Grammars for Circularity
	The Circularity Check

