Compiler Construction

Lecture 13: Semantic Analysis II (Circularity Check)

Thomas Noll

Lehrstuhl für Informatik 2 (Software Modeling and Verification)

noll@cs.rwth-aachen.de

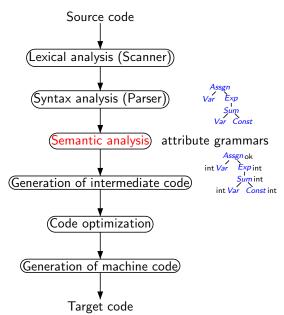
http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Summer Semester 2014

Outline

- 1 Recap: Attribute Grammars
- 2 Circularity of Attribute Grammars
- 3 Attribute Dependency Graphs
- 4 Testing Attribute Grammars for Circularity
- 5 The Circularity Check

Conceptual Structure of a Compiler



Attribute Grammars

Goal: compute context-dependent but runtime-independent properties of a given program

Idea: enrich context-free grammar by semantic rules which annotate syntax tree with attribute values

⇒ Semantic analysis = attribute evaluation

Result: attributed syntax tree

In greater detail:

- With every nonterminal a set of attributes is associated.
- Two types of attributes are distinguished:
 - Synthesized: bottom-up computation (from the leaves to the root)
 Inherited: top-down computation (from the root to the leaves)
- With every production a set of semantic rules is associated.

Formal Definition of Attribute Grammars I

Definition (Attribute grammar)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ with $X := N \uplus \Sigma$.

- Let $Att = Syn \uplus Inh$ be a set of (synthesized or inherited) attributes, and let $V = \bigcup_{\alpha \in Att} V^{\alpha}$ be a union of value sets.
- Let att : $X \to 2^{Att}$ be an attribute assignment, and let $syn(Y) := att(Y) \cap Syn$ and $inh(Y) := att(Y) \cap Inh$ for every $Y \in X$.
- Every production $\pi = Y_0 \rightarrow Y_1 \dots Y_r \in P$ determines the set

$$Var_{\pi} := \{\alpha.i \mid \alpha \in \operatorname{att}(Y_i), i \in \{0, \ldots, r\}\}$$

of attribute variables of π with the subsets of inner and outer variables:

$$In_{\pi} := \{\alpha.i \mid (i = 0, \alpha \in \operatorname{syn}(Y_i)) \text{ or } (i \in [r], \alpha \in \operatorname{inh}(Y_i))\}$$

 $Out_{\pi} := Var_{\pi} \setminus In_{\pi}$

• A semantic rule of π is an equation of the form

$$lpha.i = f(lpha_1.i_1, \ldots, lpha_n.i_n)$$

where $n \in \mathbb{N}$, $lpha.i \in In_{\pi}$, $lpha_i.i_i \in Out_{\pi}$, and $f: V^{lpha_1} \times \ldots \times V^{lpha_n} \to V^{lpha}$.

• For each $\pi \in P$, let E_{π} be a set with exactly one semantic rule for every inner variable of π , and let $E := (E_{\pi} \mid \pi \in P)$.

Then $\mathfrak{A} := \langle G, E, V \rangle$ is called an attribute grammar: $\mathfrak{A} \in AG$.

Attribution of Syntax Trees I

Definition (Attribution of syntax trees)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$, and let t be a syntax tree of G with the set of nodes K.

• K determines the set of attribute variables of t:

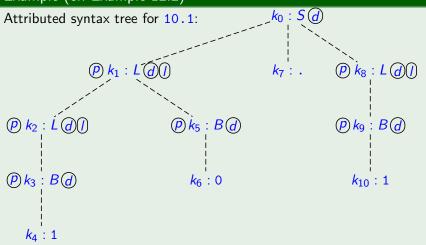
$$Var_t := \{\alpha.k \mid k \in K \text{ labelled with } Y \in X, \alpha \in \text{att}(Y)\}.$$

- Let $k_0 \in K$ be an (inner) node where production $\pi = Y_0 \to Y_1 \dots Y_r \in P$ is applied, and let $k_1, \dots, k_r \in K$ be the corresponding successor nodes. The attribute equation system E_{k_0} of k_0 is obtained from E_{π} by substituting every attribute index $i \in \{0, \dots, r\}$ by k_i .
- The attribute equation system of t is given by

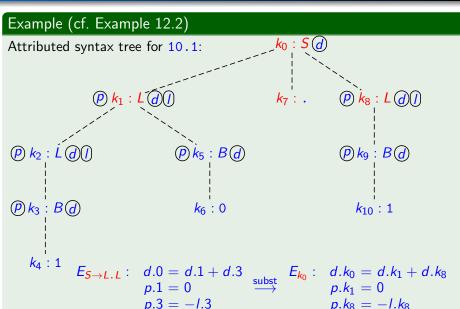
$$E_t := \bigcup \{E_k \mid k \text{ inner node of } t\}.$$

Attribution of Syntax Trees II

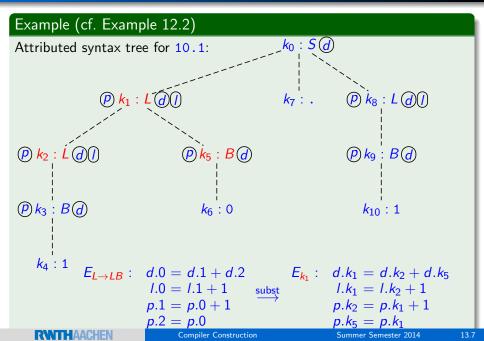
Example (cf. Example 12.2)



Attribution of Syntax Trees II



Attribution of Syntax Trees II



Attribution of Syntax Trees III

Corollary

For each $\alpha.k \in Var_t$ except the inherited attribute variables at the root and the synthesized attribute variables at the leaves of t, E_t contains exactly one equation with left-hand side $\alpha.k$.

Assumptions:

- The start symbol does not have inherited attributes: $inh(S) = \emptyset$.
- Synthesized attributes of terminal symbols are provided by the scanner.

Outline

- Recap: Attribute Grammars
- 2 Circularity of Attribute Grammars
- Attribute Dependency Graphs
- 4 Testing Attribute Grammars for Circularity
- 5 The Circularity Check

Solvability of Attribute Equation System I

Definition 13.1 (Solution of attribute equation system)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$, and let t be a syntax tree of G. A solution of E_t is a mapping

$$v: Var_t \rightarrow V$$

such that, for every $\alpha.k \in Var_t$ and $\alpha.k = f(\alpha.k_1, \dots, \alpha.k_n) \in E_t$, $v(\alpha.k) = f(v(\alpha.k_1), \dots, v(\alpha.k_n))$.

Solvability of Attribute Equation System I

Definition 13.1 (Solution of attribute equation system)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$, and let t be a syntax tree of G. A solution of E_t is a mapping

$$v: Var_t \rightarrow V$$

such that, for every $\alpha.k \in Var_t$ and $\alpha.k = f(\alpha.k_1, \dots, \alpha.k_n) \in E_t$, $v(\alpha.k) = f(v(\alpha.k_1), \dots, v(\alpha.k_n))$.

In general, the attribute equation system E_t of a given syntax tree t can have

- no solution,
- exactly one solution, or
- several solutions.

Solvability of Attribute Equation System II

Example 13.2

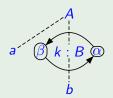
- \bullet $A \rightarrow aB, B \rightarrow b \in P$
- $\alpha \in \text{syn}(B)$, $\beta \in \text{inh}(B)$
- $\beta.2 = f(\alpha.2) \in E_{A \to aB}$
- $\alpha.0 = \beta.0 \in E_{B \to b}$

Solvability of Attribute Equation System II

Example 13.2

- \bullet $A \rightarrow aB, B \rightarrow b \in P$
- $\alpha \in \text{syn}(B)$, $\beta \in \text{inh}(B)$
- $\beta.2 = f(\alpha.2) \in E_{A \rightarrow aB}$
- $\alpha.0 = \beta.0 \in E_{B \to b}$

⇒ cyclic dependency:



$$E_t: \quad \beta.k = f(\alpha.k)$$

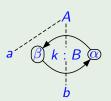
 $\alpha.k = \beta.k$

Solvability of Attribute Equation System II

Example 13.2

- \bullet $A \rightarrow aB, B \rightarrow b \in P$
- $\alpha \in \text{syn}(B)$, $\beta \in \text{inh}(B)$
- $\beta.2 = f(\alpha.2) \in E_{A \to aB}$
- $\alpha.0 = \beta.0 \in E_{B \to b}$
- \implies for $V^{\alpha}:=V^{\beta}:=\mathbb{N}$ and
 - f(x) := x + 1: no solution
 - f(x) := 2x: exactly one solution $(v(\alpha.k) = v(\beta.k) = 0)$
 - f(x) := x: infinitely many solutions $(v(\alpha.k) = v(\beta.k) = y$ for any $y \in \mathbb{N}$)

⇒ cyclic dependency:



$$E_t$$
: $\beta.k = f(\alpha.k)$
 $\alpha.k = \beta.k$

Circularity of Attribute Grammars

Goal: unique solvability of equation system

⇒ avoid cyclic dependencies

Circularity of Attribute Grammars

Goal: unique solvability of equation system

⇒ avoid cyclic dependencies

Definition 13.3 (Circularity)

An attribute grammar $\mathfrak{A} = \langle G, E, V \rangle \in AG$ is called <u>circular</u> if there exists a syntax tree t such that the attribute equation system E_t is recursive (i.e., some attribute variable of t depends on itself). Otherwise it is called noncircular.

Circularity of Attribute Grammars

Goal: unique solvability of equation system

⇒ avoid cyclic dependencies

Definition 13.3 (Circularity)

An attribute grammar $\mathfrak{A} = \langle G, E, V \rangle \in AG$ is called circular if there exists a syntax tree t such that the attribute equation system E_t is recursive (i.e., some attribute variable of t depends on itself). Otherwise it is called noncircular.

Remark: because of the division of Var_{π} into In_{π} and Out_{π} , cyclic dependencies cannot occur at production level.

Outline

- Recap: Attribute Grammars
- 2 Circularity of Attribute Grammars
- Attribute Dependency Graphs
- 4 Testing Attribute Grammars for Circularity
- 5 The Circularity Check

Attribute Dependency Graphs I

Goal: graphic representation of attribute dependencies

Definition 13.4 (Production dependency graph)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$ with $G = \langle N, \Sigma, P, S \rangle$. Every production $\pi \in P$ determines the dependency graph $D_{\pi} := \langle Var_{\pi}, \rightarrow_{\pi} \rangle$ where the set of edges $\rightarrow_{\pi} \subseteq Var_{\pi} \times Var_{\pi}$ is given by

$$x \rightarrow_{\pi} y$$
 iff $y = f(\dots, x, \dots) \in E_{\pi}$.

Attribute Dependency Graphs I

Goal: graphic representation of attribute dependencies

Definition 13.4 (Production dependency graph)

Let $\mathfrak{A}=\langle G,E,V\rangle\in AG$ with $G=\langle N,\Sigma,P,S\rangle$. Every production $\pi\in P$ determines the dependency graph $D_\pi:=\langle Var_\pi, \to_\pi\rangle$ where the set of edges $\to_\pi\subseteq Var_\pi\times Var_\pi$ is given by

$$x \to_{\pi} y$$
 iff $y = f(\ldots, x, \ldots) \in E_{\pi}$.

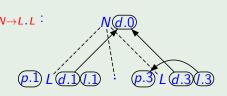
Corollary 13.5

The dependency graph of a production is acyclic (since $\rightarrow_{\pi} \subseteq Out_{\pi} \times In_{\pi}$).

Attribute Dependency Graphs II

Example 13.6 (cf. Example 12.2)

$$\begin{array}{ccc}
\mathbf{0} & N \to L.L: & \Longrightarrow D_{N \to L.L}: \\
d.0 &= d.1 + d.3 \\
p.1 &= 0 \\
p.3 &= -l.3
\end{array}$$



Attribute Dependency Graphs II

Example 13.6 (cf. Example 12.2)

$$N \rightarrow L.L: \implies D_{N\rightarrow L.L}:$$

$$d.0 = d.1 + d.3$$

$$p.1 = 0$$

$$p.3 = -l.3$$

$$p.1 Ld.1(1)$$

Attribute Dependency Graphs III

Just as the attribute equation system E_t of a syntax tree t is obtained from the semantic rules of the contributing productions, the dependency graph of t is obtained by "glueing together" the dependency graphs of the productions.

Attribute Dependency Graphs III

Just as the attribute equation system E_t of a syntax tree t is obtained from the semantic rules of the contributing productions, the dependency graph of t is obtained by "glueing together" the dependency graphs of the productions.

Definition 13.7 (Tree dependency graph)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$, and let t be a syntax tree of G.

• The dependency graph of t is defined by $D_t := \langle Var_t, \rightarrow_t \rangle$ where the set of edges, $\rightarrow_t \subseteq Var_t \times Var_t$, is given by

$$x \to_t y$$
 iff $y = f(\ldots, x, \ldots) \in E_t$.

• D_t is called cyclic if there exists $x \in Var_t$ such that $x \to_t^+ x$.

Attribute Dependency Graphs III

Just as the attribute equation system E_t of a syntax tree t is obtained from the semantic rules of the contributing productions, the dependency graph of t is obtained by "glueing together" the dependency graphs of the productions.

Definition 13.7 (Tree dependency graph)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$, and let t be a syntax tree of G.

• The dependency graph of t is defined by $D_t := \langle Var_t, \rightarrow_t \rangle$ where the set of edges, $\rightarrow_t \subseteq Var_t \times Var_t$, is given by

$$x \to_t y$$
 iff $y = f(\ldots, x, \ldots) \in E_t$.

• D_t is called cyclic if there exists $x \in Var_t$ such that $x \to_t^+ x$.

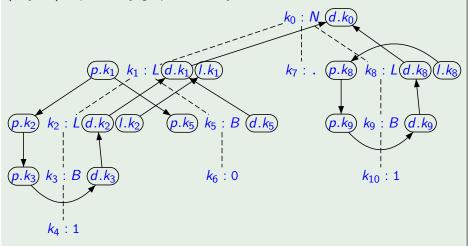
Corollary 13.8

An attribute grammar $\mathfrak{A} = \langle G, E, V \rangle \in AG$ is circular iff there exists a syntax tree t of G such that D_t is cyclic.

Attribute Dependency Graphs IV

Example 13.9 (cf. Example 12.2)

(Acyclic) dependency graph of the syntax tree for 10.1:



Outline

- Recap: Attribute Grammars
- 2 Circularity of Attribute Grammars
- 3 Attribute Dependency Graphs
- 4 Testing Attribute Grammars for Circularity
- 5 The Circularity Check

Observation: a cycle in the dependency graph D_t of a given syntax tree t is caused by the occurrence of a "cover" production

- $\pi = A_0 \rightarrow w_0 A_1 w_1 \dots A_r w_r \in P$ in a node k_0 of t such that
 - the dependencies in E_{k_0} yield the "upper end" of the cycle and
 - for at least one $i \in [r]$, some attributes in $syn(A_i)$ depend on attributes in $inh(A_i)$.

Observation: a cycle in the dependency graph D_t of a given syntax tree t is caused by the occurrence of a "cover" production

- $\pi = A_0 \rightarrow w_0 A_1 w_1 \dots A_r w_r \in P$ in a node k_0 of t such that
 - the dependencies in E_{k_0} yield the "upper end" of the cycle and
 - for at least one $i \in [r]$, some attributes in $syn(A_i)$ depend on attributes in $inh(A_i)$.

Example 13.10

on the board

Observation: a cycle in the dependency graph D_t of a given syntax tree t is caused by the occurrence of a "cover" production

- $\pi = A_0 \rightarrow w_0 A_1 w_1 \dots A_r w_r \in P$ in a node k_0 of t such that
 - the dependencies in E_{k_0} yield the "upper end" of the cycle and
 - for at least one $i \in [r]$, some attributes in $syn(A_i)$ depend on attributes in $inh(A_i)$.

Example 13.10

on the board

To identify such "critical" situations we need to determine for each $i \in [r]$ the possible ways in which attributes in $syn(A_i)$ can depend on attributes in $inh(A_i)$.

Definition 13.11 (Attribute dependence)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$ with $G = \langle N, \Sigma, P, S \rangle$.

• If t is a syntax tree with root label $A \in N$ and root node k, $\alpha \in \operatorname{syn}(A)$, and $\beta \in \operatorname{inh}(A)$ such that $\beta.k \to_t^+ \alpha.k$, then α is dependent on β below A in t (notation: $\beta \xrightarrow{A} \alpha$).

Definition 13.11 (Attribute dependence)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$ with $G = \langle N, \Sigma, P, S \rangle$.

- If t is a syntax tree with root label $A \in N$ and root node k, $\alpha \in \operatorname{syn}(A)$, and $\beta \in \operatorname{inh}(A)$ such that $\beta.k \to_t^+ \alpha.k$, then α is dependent on β below A in t (notation: $\beta \xrightarrow{A} \alpha$).
- For every syntax tree t with root label $A \in N$, $is(A, t) := \{(\beta, \alpha) \in inh(A) \times syn(A) \mid \beta \stackrel{A}{\hookrightarrow} \alpha \text{ in } t\}.$

Definition 13.11 (Attribute dependence)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$ with $G = \langle N, \Sigma, P, S \rangle$.

- If t is a syntax tree with root label $A \in N$ and root node k, $\alpha \in \operatorname{syn}(A)$, and $\beta \in \operatorname{inh}(A)$ such that $\beta.k \to_t^+ \alpha.k$, then α is dependent on β below A in t (notation: $\beta \xrightarrow{A} \alpha$).
- For every syntax tree t with root label $A \in N$,

$$is(A, t) := \{(\beta, \alpha) \in inh(A) \times syn(A) \mid \beta \stackrel{A}{\hookrightarrow} \alpha \text{ in } t\}.$$

• For every $A \in N$,

$$IS(A) := \{is(A, t) \mid t \text{ syntax tree with root label A}\}\ \subseteq 2^{Inh \times Syn}.$$

Definition 13.11 (Attribute dependence)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$ with $G = \langle N, \Sigma, P, S \rangle$.

- If t is a syntax tree with root label $A \in N$ and root node k, $\alpha \in \operatorname{syn}(A)$, and $\beta \in \operatorname{inh}(A)$ such that $\beta.k \to_t^+ \alpha.k$, then α is dependent on β below A in t (notation: $\beta \stackrel{A}{\hookrightarrow} \alpha$).
- For every syntax tree t with root label $A \in N$,

$$is(A, t) := \{(\beta, \alpha) \in inh(A) \times syn(A) \mid \beta \stackrel{A}{\hookrightarrow} \alpha \text{ in } t\}.$$

• For every $A \in N$,

$$IS(A) := \{ is(A, t) \mid t \text{ syntax tree with root label A} \}$$
$$\subseteq 2^{lnh \times Syn}.$$

Remark: it is important that IS(A) is a system of attribute dependence sets, not a union (otherwise: strong noncircularity—see exercises).

Definition 13.11 (Attribute dependence)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$ with $G = \langle N, \Sigma, P, S \rangle$.

- If t is a syntax tree with root label $A \in N$ and root node k, $\alpha \in \operatorname{syn}(A)$, and $\beta \in \operatorname{inh}(A)$ such that $\beta.k \to_t^+ \alpha.k$, then α is dependent on β below A in t (notation: $\beta \xrightarrow{A} \alpha$).
- For every syntax tree t with root label $A \in N$, $is(A, t) := \{(\beta, \alpha) \in inh(A) \times syn(A) \mid \beta \stackrel{A}{\hookrightarrow} \alpha \text{ in } t\}.$
- For every $A \in N$,

$$IS(A) := \{is(A, t) \mid t \text{ syntax tree with root label A}\}\$$

 $\subseteq 2^{Inh \times Syn}.$

Remark: it is important that IS(A) is a system of attribute dependence sets, not a union (otherwise: strong noncircularity—see exercises).

Example 13.12

on the board

Outline

- Recap: Attribute Grammars
- 2 Circularity of Attribute Grammars
- 3 Attribute Dependency Graphs
- 4 Testing Attribute Grammars for Circularity
- 5 The Circularity Check

The Circularity Check I

In the circularity check, the dependency systems IS(A) are iteratively computed. The following notation is employed:

Definition 13.13

Given
$$\pi = A \to w_0 A_1 w_1 \dots A_r w_r \in P$$
 and $is_i \subseteq inh(A_i) \times syn(A_i)$ for every $i \in [r]$, let

$$is[\pi; is_1, \ldots, is_r] \subseteq inh(A) \times syn(A)$$

be given by

$$is[\pi; is_1, \dots, is_r] := \left\{ (\beta, \alpha) \mid (\beta.0, \alpha.0) \in (\rightarrow_{\pi} \cup \bigcup_{i=1}^r \{ (\beta'.p_i, \alpha'.p_i) \mid (\beta', \alpha') \in is_i \})^+ \right\}$$
 where $p_i := \sum_{i=1}^i |w_{i-1}| + i$.

The Circularity Check I

In the circularity check, the dependency systems IS(A) are iteratively computed. The following notation is employed:

Definition 13.13

Given
$$\pi = A \to w_0 A_1 w_1 \dots A_r w_r \in P$$
 and $is_i \subseteq \text{inh}(A_i) \times \text{syn}(A_i)$ for every $i \in [r]$, let

$$is[\pi; is_1, \ldots, is_r] \subseteq inh(A) \times syn(A)$$

be given by

$$is[\pi; is_1, \dots, is_r] := \left\{ (\beta, \alpha) \mid (\beta.0, \alpha.0) \in (\rightarrow_{\pi} \cup \bigcup_{i=1}^r \{ (\beta'.p_i, \alpha'.p_i) \mid (\beta', \alpha') \in is_i \})^+ \right\}$$
 where $p_i := \sum_{i=1}^i |w_{i-1}| + i$.

Example 13.14

on the board