# **Compiler Construction**

#### Lecture 12: Semantic Analysis I (Attribute Grammars)

#### Thomas Noll

Lehrstuhl für Informatik 2 (Software Modeling and Verification)



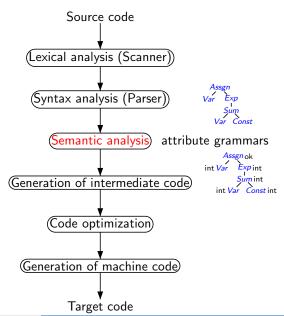
noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Summer Semester 2014

- Overview
- Semantic Analysis
- Attribute Grammars
- Adding Inherited Attributes
- 5 Formal Definition of Attribute Grammars
- 6 The Attribute Equation System

# Conceptual Structure of a Compiler



- Overview
- Semantic Analysis
- Attribute Grammars
- Adding Inherited Attributes
- 5 Formal Definition of Attribute Grammars
- 6 The Attribute Equation System

# **Beyond Syntax**

To generate (efficient) code, the compiler needs to answer many questions:

- Are there identifiers that are not declared? Declared but not used?
- Is x a scalar, an array, or a procedure? Of which type?
- Which declaration of x is used by each reference?
- Is x defined before it is used?
- Is the expression 3 \* x + y type consistent?
- Where should the value of x be stored (register/stack/heap)?
- Do p and q refer to the same memory location (aliasing)?
- ...

# These cannot be expressed using context-free grammars! (e.g., $\{ww \mid w \in \Sigma^*\} \notin CFL_{\Sigma}$ )

#### **Static Semantics**

#### Static semantics

Static semantics refers to properties of program constructs

- which are true for every occurrence of this construct in every program execution (static) and
- can be decided at compile time
- but are context-sensitive and thus not expressible using context-free grammars (semantics).

#### Example properties

Static: type or declaredness of an identifier, number of registers

required to evaluate an expression, ...

Dynamic: value of an expression, size of runtime stack, ...

- Overview
- Semantic Analysis
- Attribute Grammars
- 4 Adding Inherited Attributes
- 5 Formal Definition of Attribute Grammars
- 6 The Attribute Equation System

#### **Attribute Grammars I**

Goal: compute context-dependent but runtime-independent properties of a given program

Idea: enrich context-free grammar by semantic rules which annotate syntax tree with attribute values

⇒ Semantic analysis = attribute evaluation

Result: attributed syntax tree

#### In greater detail:

- With every nonterminal a set of attributes is associated.
- Two types of attributes are distinguished:
  - Synthesized: bottom-up computation (from the leaves to the root)
    Inherited: top-down computation (from the root to the leaves)
- With every production a set of semantic rules is associated.

#### **Attribute Grammars II**

**Advantage:** attribute grammars provide a very flexible and broadly applicable mechanism for transporting information throught the syntax tree ("syntax-directed translation")

- Attribute values: symbol tables, data types, code, error flags, ...
- Application in Compiler Construction:
  - static semantics
  - program analysis for optimization
  - code generation
  - error handling
- Automatic attribute evaluation by compiler generators (cf. yacc's synthesized attributes)
- Originally designed by D. Knuth for defining the semantics of context-free languages (Math. Syst. Theory 2 (1968), pp. 127–145)

# **Example:** Knuth's Binary Numbers I

# Example 12.1 (only synthesized attributes)

Binary numbers (with fraction):

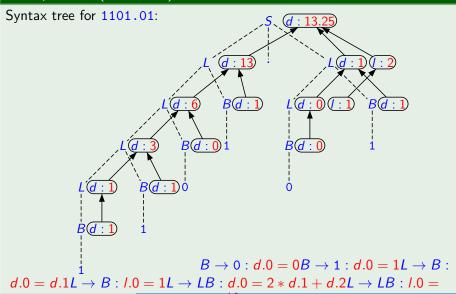
$$G_B: ext{ Numbers } S o L ext{ } d.0 = d.1 \ S o L.L ext{ } d.0 = d.1 + d.3/2^{l.3} \ ext{Lists } L o B ext{ } d.0 = d.1 \ ext{ } l.0 = 1 \ L o LB ext{ } d.0 = 2*d.1 + d.2 \ ext{ } l.0 = l.1 + 1 \ ext{Bits } B o 0 ext{ } d.0 = 0 \ ext{Bits } B o 1 ext{ } d.0 = 1 \ ext{ }$$

Synthesized attributes of S, L, B: d (decimal value; domain:  $V^d := \mathbb{Q}$ ) of L: I (length; domain:  $V^I := \mathbb{N}$ )

Semantic rules: equations with attribute variables (index = position of symbol; 0 = left-hand side)

# **Example:** Knuth's Binary Numbers II

## Example 12.1 (continued)



- Overview
- Semantic Analysis
- Attribute Grammars
- Adding Inherited Attributes
- 5 Formal Definition of Attribute Grammars
- 6 The Attribute Equation System

# **Adding Inherited Attributes I**

#### Example 12.2 (synthesized + inherited attributes)

Binary numbers (with fraction):

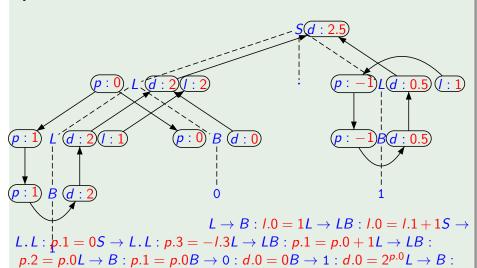
Synthesized attributes of S, L, B: d (decimal value; domain:  $V^d := \mathbb{Q}$ ) of L: I (length; domain:  $V^I := \mathbb{N}$ )

Inherited attribute of L, B: p (position; domain:  $V^p := \mathbb{Z}$ )

# **Adding Inherited Attributes II**

#### Example 12.2 (continued)

Syntax tree for 10.1:



RWTHAACHEN

- Overview
- Semantic Analysis
- Attribute Grammars
- Adding Inherited Attributes
- 5 Formal Definition of Attribute Grammars
- 6 The Attribute Equation System

#### Formal Definition of Attribute Grammars I

#### Definition 12.3 (Attribute grammar)

Let  $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$  with  $X := N \uplus \Sigma$ .

- Let  $Att = Syn \uplus Inh$  be a set of (synthesized or inherited) attributes, and let  $V = \bigcup_{\alpha \in Att} V^{\alpha}$  be a union of value sets.
- Let att :  $X \to 2^{Att}$  be an attribute assignment, and let  $syn(Y) := att(Y) \cap Syn$  and  $inh(Y) := att(Y) \cap Inh$  for every  $Y \in X$ .
- Every production  $\pi = Y_0 \rightarrow Y_1 \dots Y_r \in P$  determines the set

$$Var_{\pi} := \{\alpha.i \mid \alpha \in \operatorname{att}(Y_i), i \in \{0, \ldots, r\}\}$$

of attribute variables of  $\pi$  with the subsets of inner and outer variables:

$$In_{\pi} := \{\alpha.i \mid (i = 0, \alpha \in \operatorname{syn}(Y_i)) \text{ or } (i \in [r], \alpha \in \operatorname{inh}(Y_i))\}$$
  
 $Out_{\pi} := Var_{\pi} \setminus In_{\pi}$ 

• A semantic rule of  $\pi$  is an equation of the form

$$lpha.i = f(lpha_1.i_1,\ldots,lpha_n.i_n)$$
 where  $n \in \mathbb{N}$ ,  $lpha.i \in In_{\pi}$ ,  $lpha_j.i_j \in Out_{\pi}$ , and  $f:V^{lpha_1} imes \ldots imes V^{lpha_n} o V^{lpha}$ .

• For each  $\pi \in P$ , let  $E_{\pi}$  be a set with exactly one semantic rule for every inner variable of  $\pi$ , and let  $E := (E_{\pi} \mid \pi \in P)$ .

Then  $\mathfrak{A} := \langle G, E, V \rangle$  is called an attribute grammar:  $\mathfrak{A} \in AG$ .

#### Formal Definition of Attribute Grammars II

#### Example 12.4 (cf. Example 12.2)

 $\mathfrak{A}_B \in AG$  for binary numbers:

- Attributes:  $Att = Syn \uplus Inh$  with  $Syn = \{d, I\}$  and  $Inh = \{p\}$
- Value sets:  $V^d = \mathbb{Q}$ ,  $V^l = \mathbb{N}$ ,  $V^p = \mathbb{Z}$
- Attribute assignment:

| $Y \in X$ | S            | L                       | В            | 0 | 1 |   |
|-----------|--------------|-------------------------|--------------|---|---|---|
| syn(Y)    | { <i>d</i> } | { <i>d</i> , <i>l</i> } | { <i>d</i> } | Ø | Ø | Ø |
| inh(Y)    | Ø            | { <i>p</i> }            | { <i>p</i> } | Ø | Ø | Ø |

Attribute variables:

| $\pi \in P$ | S 	o L                   | S 	o L.L                 | L 	o B              |
|-------------|--------------------------|--------------------------|---------------------|
| $In_{\pi}$  | $\{d.0, p.1\}$           | $\{d.0, p.1, p.3\}$      | $\{d.0, I.0, p.1\}$ |
| $Out_{\pi}$ | $\{d.1, I.1\}$           | $\{d.1, I.1, d.3, I.3\}$ | $\{d.1, p.0\}$      |
| $\pi \in P$ | L 	o LB                  | B 	o 0                   | B 	o 1              |
| $In_{\pi}$  | $\{d.0, I.0, p.1, p.2\}$ | { <i>d</i> .0}           | $\{d.0\}$           |
| $Out_{\pi}$ | $\{d.1, d.2, l.1, p.0\}$ | $\{p.0\}$                | $\{p.0\}$           |

• Semantic rules: see Example 12.2 (e.g.,  $E_{S \to L} = \{d.0 = d.1, p.1 = 0\}$ )

- Overview
- Semantic Analysis
- Attribute Grammars
- Adding Inherited Attributes
- 5 Formal Definition of Attribute Grammars
- 6 The Attribute Equation System

# **Attribution of Syntax Trees I**

### Definition 12.5 (Attribution of syntax trees)

Let  $\mathfrak{A} = \langle G, E, V \rangle \in AG$ , and let t be a syntax tree of G with the set of nodes K.

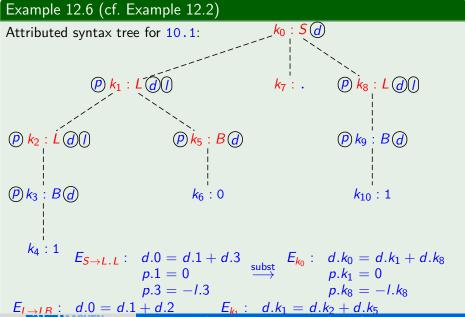
• K determines the set of attribute variables of t:

$$Var_t := \{\alpha.k \mid k \in K \text{ labelled with } Y \in X, \alpha \in \text{att}(Y)\}.$$

- Let  $k_0 \in K$  be an (inner) node where production  $\pi = Y_0 \to Y_1 \dots Y_r \in P$  is applied, and let  $k_1, \dots, k_r \in K$  be the corresponding successor nodes. The attribute equation system  $E_{k_0}$  of  $k_0$  is obtained from  $E_{\pi}$  by substituting every attribute index  $i \in \{0, \dots, r\}$  by  $k_i$ .
- The attribute equation system of t is given by

$$E_t := \bigcup \{E_k \mid k \text{ inner node of } t\}.$$

# **Attribution of Syntax Trees II**



# **Attribution of Syntax Trees III**

#### Corollary 12.7

For each  $\alpha.k \in Var_t$  except the inherited attribute variables at the root and the synthesized attribute variables at the leaves of t,  $E_t$  contains exactly one equation with left-hand side  $\alpha.k$ .

#### **Assumptions:**

- The start symbol does not have inherited attributes:  $inh(S) = \emptyset$ .
- Synthesized attributes of terminal symbols are provided by the scanner.