
2 Lehrstuhl für Informatik 2

Modellierung und Veri�kation von Software

Compiler Construction SoSe 2014

Exercise 8 (Hand in before the exercise class on 27.06.2012)

aaapl. Prof. Dr. Thomas Noll Friedrich Gretz, Souymodip Chakraborty

Exercise 1 (Evaluation of Arithmetic Expression): (3 Points)

Write an unambiguous grammar for arithmetic expressions (containing addition, multiplication and parenthesis).

De�ne an attribute Val to �nd the value of an expression. Evaluate 2 � 5+ 3. For this, give the parse tree of this

expression, set up the corresponding equation system and solve it.

Exercise 2 (Attributed Grammars): (4 Points)

Give a context-free grammar for the language fag+. Extend that grammar with attributes so that the language

of G is the following set:

1. L = fa2
n

jn 2 Ng.

2. L = fan
2

jn 2 Ng.

You may use any number of attributes, conditional updates, simple arithmetic and comparison between numbers.

However, you may not use a predicate that directly checks whether a given number (in decimal or binary encoding)

is a power of two or not.

Exercise 3 (Circularity Test): (3 Points)

In this task we implement a semantic check. In our language WHILE we require that every variable identi�er is

declared before the variable is used (read or set). Additionally, a variable de�ned inside a scope like an if statement

or a while loop is not visible outside this scope. We do not care whether a variable has been initialised before it

is read. Examples:

This is valid:

1 int x; int y;
2 if (x <= y) {
3 write("...");
4 }
5 write(x);
6 $

This is not valid (y is unde�ned and z is unde�ned outside

the if-statement):

1 int x;
2 if (x <= y) {
3 int z;
4 // ...

5 }
6 write(z);
7 $

Implement Checker.checkDeclaredBeforeUsed(). Hint: for this you do not need to implement any attributed

grammars and their evaluation. Instead simply walking the abstract syntax tree once and checking the required

property su�ces.

1


