apl. Prof. Dr. Thomas Noll

Friedrich Gretz, Souymodip Chakraborty

Exercise 1 (Time and Space Complexity):

Consider the comparison of the complexities for DFA and NFA method given in lecture three, slide 9.

- a) Give an example regular expression, for which the DFA method requires the worst-case space complexity $\mathcal{O}(2^{|\alpha|})$. Argue why your answer is correct.
- b) Give an example regular expression, for which the NFA method requires the worst-case time complexity $\mathcal{O}(|\alpha| \cdot |w|)$. Defend your answer shortly.

Exercise 2 (Longest First Match Principle):

- a) For extended matching two principles have been introduced to resolve nondeterminism during analysis, the *longest match* principle and the *first match* principle. Argue why these principles are reasonable to use. Instead, we could have insisted on an unambiguous definition of the symbol classes, i.e. for regular expressions $\alpha_1, \ldots, \alpha_n$ it should hold $[\![\alpha_i]\!] \cap [\![\alpha_i]\!] = \emptyset$, for all $1 \leq i < j \leq n$. Why is this not a good idea from a practical point of view? Give examples to support your explanations.
- **b**) Let $\alpha_1, \ldots, \alpha_n$ be regular expressions over Σ and $w \in \Sigma^*$. In the lecture it was assumed that $\varepsilon \not\in [\alpha_i]$ and $[\alpha_i] \neq \emptyset$ for all $i \in \{1, \ldots, n\}$. Show that these are reasonable assumptions by proving the following proposition:
 - If $[\alpha_i] = \emptyset$ for some $i \in \{1, \dots, n\}$ there exists no flm-analysis of w w.r.t. $\alpha_1, \dots, \alpha_n$ that is not a *flm*-analysis of w w.r.t. $\alpha_1, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_n$ as well.
 - If $\varepsilon \in [\alpha_i]$ for some $i \in \{1, \dots, n\}$ then the *flm*-analysis of w w.r.t. $\alpha_1, \dots, \alpha_n$ is not unique (if it exists).

Exercise 3 (Backtracking DFA):

Let $\alpha_1 = write$, $\alpha_2 = \Sigma(\Sigma|N)^*$ where $\Sigma := (a|...|z|A|...|Z)$, N := (0|1|...|9). **a)** Construct DFAs \mathfrak{A}_i for α_i such that $\mathcal{L}(\mathfrak{A}_i) = [\alpha_i]$.

- **b)** Construct the product automaton $\mathfrak{A} = \mathfrak{A}_1 \otimes \mathfrak{A}_2$.
- c) Determine the *first match* partitioning of the set of final states in \mathfrak{A} . (The regular expressions are ordered (α_1, α_2) .)
- **d)** Determine the set of reachable and productive states in \mathfrak{A} .
- e) Compute the run of the corresponding backtracking DFA for input writeIn(). Provide the run by giving the corresponding configurations.

(2 Points)

(4 Points)

(4 Points)