2) Lehrstuhl fiir Informatik 2 Compiler Construction SoSe 2014

Modellierung und Verifikation von Software Exercise 10 (Hand in before the exercise class on 11.07.2010)
apl. Prof. Dr. Thomas Noll Friedrich Gretz, Souymodip Chakraborty
Exercise 1 (Procedure Stack): (1 Points)

Which of the following procedure stacks could be result of the execution of an EPL-programm? Why?
a) pp=13:3:9:1:4:3:2:2:4:5:5:15:1:3:2:12:0:0:0:17:3

b) ,=13:3:9:1:4:3:2:2:5:4:5:15:1:3:2:12:0:0:0:17:3

c) 3=13:3:9:1:4:3:2:2:8:4:5:15:1:3:2:12:0:0:0:17:3

Exercise 2 (Abstract machine execution): (2 Points)

Consider the following intermediate code:

7:LOAD(1, 2); (dif, off)
8:ADD;
9:RET;

26:CALL(38, 1, 3);(ca, dif, loc)

Give the next four states of the abstract machine starting in:

(ca,d,p) =(7,-3,9:4:26:3:7:4:3:36:5:10:4:40:1:2:..))

Recall that the procedure stack has the form:

Cildl[ralw] ]
and the base-function is defined as:
base(p,0) = 1
base(p, dif+ 1) = base(p, dif) + p.base(p, dif)
Exercise 3 (Translation function): (3 Points)

In addition to while-loops we want to have for-loops with implicit declaration of the counter variable in our
example programming language:
for (var :=A; B; (i) G

a) Extend the translation function ct accordingly.

b) Generate intermediate code for
for (var x := 0; x < 10; x :=x + 1) PQ;

without parameters for the CALL instruction generated for P().



o

Lehrstuhl fiir Informatik 2 Compiler Construction SoSe 2014
Modellierung und Verifikation von Software Exercise 10 (Hand in before the exercise class on 11.07.2010)

Exercise 4 (Code generation): (4 Points)

Implement generator.Generator.translateWHILE(AST) which given an abstract syntax tree returns Jasmin
Code in a string. Hint: It is a good approach to write methods for every language construct and call them
recursively. Once you get the idea, it is actually less effort than you might think!

To test your implementation you can write code in WHILE run it through our compiler, save the output and use
Jasmin to build executable Java class files. The latter you can execute and observe their behaviour.

This exercise concludes the implementation of our “While to Jasmin” compiler!



