
2 Lehrstuhl für Informatik 2

Modellierung und Veri�kation von Software

Compiler Construction SoSe 2014

Exercise 1 (Hand in until 02.05.2014)

aaapl. Prof. Dr. Thomas Noll Friedrich Gretz, Souymodip Chakraborty

Exercise 1 ((Lexemes, Symbol Classes and Tokens): (2 Points)

� During the exercises we will implement our very own compiler for the simple language WHILE.

� The target code will be Jasmin : jasmin.sourceforge.net

� The following programs implements the gcd-algorithm in WHILE.

1 /* GCD-Computation of x and y
2 w/ WHILE */
3 int x; int y;
4 x = read();
5 y = read();
6 while ( x != y ) {
7 if (y <= x) {
8 y = y - x;
9 } else {
10 x = x - y;
11 }
12 }
13 // Output result
14 write("GCD: ");
15 write(x);

� Our WHILE programming language should capture variable declarations (ints only), assignments, arithmetic

operations, conditional branches, loops, basic I/O and Java-style comments.

Give a complete list of the symbol classes and corresponding tokens needed for the lexical analysis of WHILE.

Decompose the if-branch of the gcd-program (lines 7-9) into a sequence of lexemes and translate each lexeme

into a symbol.

Exercise 2 ((Regular expressions and FAs): (3 Points)

a) Give regular expressions and languages for the keyword whi le, identi�ers ids and comments cmts inWHILE.

Denote the languages by Lwhile;Lids;Lcmts. Hint: it might be easier to �nd a recursive de�nition for the

regular expression for cmts and the apply Arden's Lemma (cf. Sheet 0, Exercise 3.1) to �nd an explicit

solution!

b) Derive an NFA that accepts w 2 Ltoken, token 2 fwhi le; ids; cmtsg in state qtoken.

c) Solve the simple matching problem for the input string = � stup1d commen+ �= using the algorithm given

in the lecture. Apply the NFA-method! What would change when using the DFA method?

d) Prove or disprove that the language of a recursively de�ned regular expression is regular.

Exercise 3 ((Towards our own Lexer): (5 Points)

This course will be accompanied by a series of practical assignments with the goal to build our own compiler.

Please consider the following general remarks regarding implementation assignments:

� All implementation tasks must be done in Java.

1



2 Lehrstuhl für Informatik 2

Modellierung und Veri�kation von Software

Compiler Construction SoSe 2014

Exercise 1 (Hand in until 02.05.2014)

� Submitted code which does not execute is worthless (0 points). Therefore make sure you submit any third

party libraries (jar �les) that you have used and if you need any adaptation of the classpath in the javac/java

call, then provide us the command line that will run your code. Of course, you should test you code, too.

� You may use third party libraries that do not simplify the assignment considerably. I.e. you might want to

use some data structures from, say Guava1, but you should not use some library that would solve the task

automatically like lexer or parser generator libraries.

� Please document essential parts of your code properly, such that it is possible to grasp the your ideas quickly.

� The code will be graded mostly by functionality but if there are problems the comments will help us clarify

if there is just a typo or a conceptual mistake.

In this exercise we make the �rst steps towards building a lexer. The task of a lexer is to read an input string and

return a sequence of symbols. For now, we start by building deterministic �nite automata that recognise particular

tokens. Please consider the hints below.

1. Write a class, say DFA.java, that is instantiated with a string. This class should represent a DFA that

recognises exactly the given string.

2. Write a class, say CommentDFA.java, that recognises single-line and multi-line comments. (Note, that a

single-line comment is terminated by a newline symbol nn (Linux), carriage return nr (Macintosh) or nrnn

(Windows).)

For testing, instantiate CommentDFA and DFA(�while�). Let them both run on the following input words: �while�,

�While�, �/**while*/�, �/* */*/�, �//foonn�. The expected output should be something like :

$java Main test1.txt

input: while

WHILE: accept

COMMENT: refute

$java Main test2.txt

input: While

WHILE: refute

COMMENT: refute

$java Main test3.txt

input: /**while*/

WHILE: refute

COMMENT: accept

$java Main test4.txt

input: /* */*/

WHILE: refute

COMMENT: refute

$java Main test5.txt

input: //foo

WHILE: refute

COMMENT: accept

Hints:

� On the course web page we provide you with a framework that contains parts of the expected API as well

as the necessary I/O-methods.

� The easiest way to work with that framework is to simply import the �les as an existing project into Eclipse.

1http://code.google.com/p/guava-libraries/

2


