Introduction Modelling parallel systems Linear Time Properties Regular Properties Linear Temporal Logic (LTL) Computation-Tree Logic **Equivalences and Abstraction** bisimulation CTL, CTL*-equivalence computing the bisimulation quotient abstraction stutter steps simulation relations

 $s_1 \sim_{\mathcal{T}} s_2$ iff s_1 , s_2 satisfy the same CTL* formulas iff s_1 , s_2 satisfy the same CTL formulas

 $s_1 \sim_{\mathcal{T}} s_2$ iff s_1 , s_2 satisfy the same CTL* formulas iff s_1 , s_2 satisfy the same CTL formulas

for the simulation preorder $\leq_{\mathcal{T}}$:

 $s_1 \sim_{\mathcal{T}} s_2$ iff s_1 , s_2 satisfy the same CTL* formulas iff s_1 , s_2 satisfy the same CTL formulas

for the simulation preorder $\leq_{\mathcal{T}}$:

by a sublogic **L** of **CTL*** that subsumes **LTL**

 $s_1 \sim_{\mathcal{T}} s_2$ iff s_1 , s_2 satisfy the same CTL* formulas iff s_1 , s_2 satisfy the same CTL formulas

for the simulation preorder $\leq_{\mathcal{T}}$:

by a sublogic **L** of **CTL*** that subsumes **LTL**

$$s_1 \preceq_T s_2$$
 iff for all formulas $\Phi \in \mathbb{L}$:
 $s_2 \models \Phi$ implies $s_1 \models \Phi$

 $s_1 \sim_{\mathcal{T}} s_2$ iff s_1 , s_2 satisfy the same CTL* formulas iff s_1 , s_2 satisfy the same CTL formulas

for the simulation preorder $\leq_{\mathcal{T}}$:

by a sublogic **L** of **CTL*** that subsumes **LTL**

```
s_1 \preceq_{\mathcal{T}} s_2 iff for all formulas \Phi \in \mathbb{L}:

s_2 \models \Phi implies s_1 \models \Phi
```

observation: L cannot be closed under negation

CTL* formulas in positive normal form, without ∃

∀CTL* state formulas:

$$\Phi ::= true \mid false \mid a \mid \neg a \mid$$

$$\Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid \forall \varphi$$

∀CTL* path formulas:

$$\varphi ::= \Phi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \bigcirc \varphi \mid$$
$$\varphi_1 \mathsf{U} \varphi_2 \mid \varphi_1 \mathsf{W} \varphi_2$$

```
∀CTL* state formulas:
          \Phi ::= true \mid false \mid a \mid \neg a \mid
                           \Phi_1 \wedge \Phi_2 \mid \Phi_1 \vee \Phi_2 \mid \forall \varphi
∀CTL* path formulas:
          \varphi ::= \Phi \mid \varphi_1 \wedge \varphi_2 \mid \varphi_1 \vee \varphi_2 \mid \bigcirc \varphi \mid
                           \varphi_1 \cup \varphi_2 \mid \varphi_1 \cup \varphi_2
```

eventually:
$$\Diamond \varphi \stackrel{\mathsf{def}}{=} \mathit{true} \, \mathsf{U} \, \varphi$$

```
∀CTL* state formulas:
           \Phi ::= true \mid false \mid a \mid \neg a \mid
                           \Phi_1 \wedge \Phi_2 \mid \Phi_1 \vee \Phi_2 \mid \forall \varphi
∀CTL* path formulas:
           \varphi ::= \Phi \mid \varphi_1 \wedge \varphi_2 \mid \varphi_1 \vee \varphi_2 \mid \bigcirc \varphi \mid
                           \varphi_1 \cup \varphi_2 \mid \varphi_1 \cup \varphi_2
```

eventually:
$$\Diamond \varphi \stackrel{\text{def}}{=} true \cup \varphi$$
 always: $\Box \varphi \stackrel{\text{def}}{=} \varphi \cup \varphi$

```
∀CTL* state formulas:
           \Phi ::= true \mid false \mid a \mid \neg a \mid
                           \Phi_1 \wedge \Phi_2 \mid \Phi_1 \vee \Phi_2 \mid \forall \varphi
∀CTL* path formulas:
           \varphi ::= \Phi \mid \varphi_1 \wedge \varphi_2 \mid \varphi_1 \vee \varphi_2 \mid \bigcirc \varphi \mid
                           \varphi_1 \cup \varphi_2 \mid \varphi_1 \cup \varphi_2
```

for all LTL formulas φ in PNF:

for all LTL formulas φ in PNF:

$$s \models_{\mathsf{LTL}} \varphi$$
 iff $s \models_{\mathsf{VCTL}^*} \forall \varphi$

∀CTL* state formulas:

$$\Phi ::= true \mid false \mid a \mid \neg a \mid$$

$$\Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid \forall \varphi$$

∀CTL* path formulas:

$$\varphi ::= \Phi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \bigcirc \varphi \mid$$
$$\varphi_1 \mathsf{U} \varphi_2 \mid \varphi_1 \mathsf{W} \varphi_2$$

for all LTL formulas φ in PNF:

$$s \models_{\mathsf{LTL}} \varphi \quad \mathsf{iff} \quad s \models_{\mathsf{VCTL}^*} \forall \varphi$$

but ∀◊∀□a cannot be expressed in LTL

The universal fragments of CTL* and CTL

```
syntax of \forall \mathsf{CTL}^*:
\Phi ::= \mathsf{true} \, | \, \mathsf{false} \, | \, \mathsf{a} \, | \, \neg \mathsf{a} \, | \, \Phi_1 \wedge \Phi_2 \, | \, \Phi_1 \vee \Phi_2 \, | \, \forall \varphi
\varphi ::= \Phi \, | \, \varphi_1 \wedge \varphi_2 \, | \, \varphi_1 \vee \varphi_2 \, | \, \bigcirc \varphi \, | \, \varphi_1 \, \mathsf{U} \, \varphi_2 \, | \, \varphi_1 \, \mathsf{W} \, \varphi_2
```

∀CTL: sublogic of **∀CTL***

- no Boolean operators for paths formulas
- the arguments of the temporal modalities
 O, U and W are state formulas

```
syntax of ∀CTL*:
```

$$\Phi ::= true | false | a | \neg a | \Phi_1 \wedge \Phi_2 | \Phi_1 \vee \Phi_2 | \forall \varphi$$

$$\varphi ::= \Phi | \varphi_1 \wedge \varphi_2 | \varphi_1 \vee \varphi_2 | \bigcirc \varphi | \varphi_1 \cup \varphi_2 | \varphi_1 \cup \varphi_2$$

∀CTL: sublogic of **∀CTL***

```
syntax of \forall CTL:
```

$$\Phi ::= true \mid false \mid a \mid \neg a \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid$$
$$\forall \bigcirc \Phi \mid \forall (\Phi_1 \cup \Phi_2) \mid \forall (\Phi_1 \cup \Phi_2)$$

Logical characterization of simulation

GRM5.5-19A

Logical characterization of simulation

Logical characterization of simulation

$$(1) \quad \mathbf{s_1} \ \preceq_{\mathcal{T}} \ \mathbf{s_2}$$

- $(1) \quad \mathbf{s_1} \quad \preceq_{\mathcal{T}} \quad \mathbf{s_2}$
- (2) for all $\forall CTL$ state formulas Φ : if $s_2 \models \Phi$ then $s_1 \models \Phi$

- $(1) \quad \mathbf{s_1} \quad \preceq_{\mathcal{T}} \quad \mathbf{s_2}$
- (2) for all $\forall CTL$ state formulas Φ : if $s_2 \models \Phi$ then $s_1 \models \Phi$
 - (3) for all $\forall \mathsf{CTL}^*$ state formulas Φ : if $s_2 \models \Phi$ then $s_1 \models \Phi$

$$AP = \{a\}$$

e.g.,
$$\mathcal{T}_1 \not\models \forall \bigcirc (\forall \bigcirc \neg a \lor \forall \bigcirc a)$$

$$\mathcal{T}_2 \not\models \forall \bigcirc (\forall \bigcirc \neg a \lor \forall \bigcirc a)$$

$$T_1$$
:
 $\{a\}$
 $\{a\}$
 $\{a\}$
 $\{a\}$
 $\{a\}$
 $\{a\}$

$$AP = \{a\}$$

e.g.,
$$\mathcal{T}_1 \not\models \forall \bigcirc (\forall \bigcirc \neg a \lor \forall \bigcirc a)$$

$$\mathcal{T}_2 \models \forall \bigcirc (\forall \bigcirc \neg a \lor \forall \bigcirc a)$$

$$\mathcal{T}_1 \not\models \forall \Diamond (\forall \Box \neg a \lor \forall \Box a)$$

$$\mathcal{T}_2 \models \forall \Diamond (\forall \Box \neg a \lor \forall \Box a)$$

∀CTL/∀CTL* and the simulation preorder

For finite TS without terminal states, the following statements are equivalent:

- (1) $s_1 \preceq_T s_2$ (2) for all $\forall \mathsf{CTL}$ formulas $\Phi : s_2 \models \Phi$ implies $s_1 \models \Phi$
- for all $\forall CTL^*$ formulas Φ : $s_2 \models \Phi$ implies $s_1 \models \Phi$

For finite TS without terminal states, the following statements are equivalent:

- (1) $s_1 \preceq_T s_2$ (2) for all $\forall \mathsf{CTL}$ formulas $\Phi : s_2 \models \Phi$ implies $s_1 \models \Phi$
- (3) for all $\forall CTL^*$ formulas Φ : $s_2 \models \Phi$ implies $s_1 \models \Phi$
- $(3) \Longrightarrow (2)$: obvious as $\forall CTL$ is a sublogic of $\forall CTL^*$

∀CTL/∀CTL* and the simulation preorder

For finite TS without terminal states, the following statements are equivalent:

- (1) $s_1 \preceq_T s_2$ (2) for all $\forall \mathsf{CTL}$ formulas $\Phi : s_2 \models \Phi$ implies $s_1 \models \Phi$
- (3) for all $\forall CTL^*$ formulas ϕ : $s_2 \models \phi$ implies $s_1 \models \phi$
- $(3) \Longrightarrow (2)$: obvious as $\forall CTL$ is a sublogic of $\forall CTL^*$
- $(1) \Longrightarrow (3)$: holds for arbitrary (possibly infinite) TS without terminal states

For finite TS without terminal states, the following statements are equivalent:

- (1) $s_1 \preceq_{\mathcal{T}} s_2$ (2) for all $\forall \mathsf{CTL}$ formulas $\Phi : s_2 \models \Phi$ implies $s_1 \models \Phi$
 - (3) for all $\forall \mathsf{CTL}^*$ formulas $\Phi \colon s_2 \models \Phi$ implies $s_1 \models \Phi$
 - $(3) \Longrightarrow (2)$: obvious as **VCTL** is a sublogic of **VCTL***
 - (1) ⇒ (3): holds for arbitrary (possibly infinite) TS without terminal states

proof by structural induction

For finite TS without terminal states, the following statements are equivalent:

- (1) $s_1 \preceq_T s_2$ (2) for all $\forall \mathsf{CTL}$ formulas $\Phi : s_2 \models \Phi$ implies $s_1 \models \Phi$
- (3) for all $\forall CTL^*$ formulas Φ : $s_2 \models \Phi$ implies $s_1 \models \Phi$
- $(1) \Longrightarrow (3)$: show by structural induction:

For finite TS without terminal states, the following statements are equivalent:

- (1) $s_1 \preceq_{\mathcal{T}} s_2$ (2) for all $\forall \mathsf{CTL}$ formulas $\Phi : s_2 \models \Phi$ implies $s_1 \models \Phi$
- (3) for all $\forall CTL^*$ formulas Φ : $s_2 \models \Phi$ implies $s_1 \models \Phi$
- $(1) \Longrightarrow (3)$: show by structural induction:
- (i) for all **∀CTL*** state formulas **Φ** and states **s**₁, **s**₂: if $s_1 \preceq_{\mathcal{T}} s_2$ and $s_2 \models \Phi$ then $s_1 \models \Phi$

For finite TS without terminal states, the following statements are equivalent:

- (1) $\mathbf{s_1} \preceq_{\mathcal{T}} \mathbf{s_2}$
- (2) for all $\forall CTL$ formulas Φ : $s_2 \models \Phi$ implies $s_1 \models \Phi$
- (3) for all $\forall CTL^*$ formulas Φ : $s_2 \models \Phi$ implies $s_1 \models \Phi$
- $(1) \Longrightarrow (3)$: show by structural induction:
- (i) for all $\forall \mathsf{CTL}^*$ state formulas Φ and states s_1 , s_2 : if $s_1 \preceq_T s_2$ and $s_2 \models \Phi$ then $s_1 \models \Phi$
- (ii) for all $\forall \mathsf{CTL}^*$ path formulas φ and paths π_1 , π_2 : if $\pi_1 \preceq_{\mathcal{T}} \pi_2$ and $\pi_2 \models \varphi$ then $\pi_1 \models \varphi$

For finite TS without terminal states, the following statements are equivalent:

- (1) $s_1 \preceq_T s_2$ (2) for all $\forall \mathsf{CTL}$ formulas $\Phi : s_2 \models \Phi$ implies $s_1 \models \Phi$
- (3) for all $\forall CTL^*$ formulas Φ : $s_2 \models \Phi$ implies $s_1 \models \Phi$
- $(2) \Longrightarrow (1)$:

For finite TS without terminal states, the following statements are equivalent:

```
(1) \mathbf{s_1} \preceq_{\mathcal{T}} \mathbf{s_2}

(2) for all \forall \mathsf{CTL} formulas \Phi : \mathbf{s_2} \models \Phi implies \mathbf{s_1} \models \Phi

(3) for all \forall \mathsf{CTL*} formulas \Phi : \mathbf{s_2} \models \Phi implies \mathbf{s_1} \models \Phi
```

```
(2) \Longrightarrow (1): show that
\mathcal{R} = \left\{ (s_1, s_2) : \text{ for all } \forall \mathsf{CTL} \text{ formulas } \Phi : \\ s_2 \models \Phi \text{ implies } s_1 \models \Phi \right\}
is a simulation
```

For finite TS without terminal states, the following statements are equivalent:

```
(1) s_1 \preceq_{\mathcal{T}} s_2

(2) for all \forall \mathsf{CTL} formulas \Phi : s_2 \models \Phi implies s_1 \models \Phi

(3) for all \forall \mathsf{CTL}^* formulas \Phi : s_2 \models \Phi implies s_1 \models \Phi
```

(2)
$$\Longrightarrow$$
 (1): show that for finite TS:
 $\mathcal{R} = \{ (s_1, s_2) : \text{ for all } \forall \mathsf{CTL} \text{ formulas } \Phi: s_2 \models \Phi \text{ implies } s_1 \models \Phi \}$
is a simulation.

42 / 122

The existential fragment ∃CTL* of CTL*

GRM5.5-20

dual to ∀CTL*, i.e., CTL* formulas in PNF, without ∀

$$\Psi ::= true \mid false \mid a \mid \neg a \mid \Psi_1 \land \Psi_2 \mid \Psi_1 \lor \Psi_2 \mid \exists \varphi$$

∃CTL* path formulas:

$$\varphi ::= \Psi | \varphi_1 \wedge \varphi_2 | \varphi_1 \vee \varphi_2 | \bigcirc \varphi | \varphi_1 \cup \varphi_2 | \varphi_1 \cup \varphi_1 \cup \varphi_2 | \varphi_1 \cup \varphi_1 | \varphi_1 \cup \varphi_2 | \varphi_1 \cup \varphi_1 | \varphi_1 \cup \varphi_1 | \varphi_1 \cup \varphi_2 | \varphi_1 \cup \varphi_1 | \varphi_1 | \varphi_1 \cup \varphi_1 | \varphi_1 |$$

$$\Psi$$
 ::= true | false | a | $\neg a$ | $\Psi_1 \land \Psi_2$ | $\Psi_1 \lor \Psi_2$ | $\exists \varphi$

∃CTL* path formulas:

$$\varphi ::= \Psi | \varphi_1 \wedge \varphi_2 | \varphi_1 \vee \varphi_2 | \bigcirc \varphi | \varphi_1 \cup \varphi_2 | \varphi_1 \cup \varphi_1 | \varphi_1 \cup \varphi_2 | \varphi_1 \cup \varphi_1 \cup \varphi_2 | \varphi_1 \cup \varphi_1 \cup \varphi_1 | \varphi_1 |$$

analogous: ∃CTL

$$\Psi$$
 ::= true | false | a | $\neg a$ | $\Psi_1 \land \Psi_2$ | $\Psi_1 \lor \Psi_2$ | $\exists \varphi$

∃CTL* path formulas:

$$\varphi ::= \Psi | \varphi_1 \wedge \varphi_2 | \varphi_1 \vee \varphi_2 | \bigcirc \varphi | \varphi_1 \cup \varphi_2 | \varphi_1 \cup \varphi_1 \cup \varphi_2 | \varphi_1 \cup \varphi_1 | \varphi_1 \cup \varphi_2 | \varphi_1 \cup \varphi_1 | \varphi_1 | \varphi_1 \cup \varphi_1 | \varphi_1 |$$

analogous: 3CTL

For each $\forall \mathsf{CTL}^*$ formula Φ there is a $\exists \mathsf{CTL}^*$ formula Ψ s.t. $\Phi \equiv \neg \Psi$

$$\Psi$$
 ::= true | false | a | $\neg a$ | $\Psi_1 \land \Psi_2$ | $\Psi_1 \lor \Psi_2$ | $\exists \varphi$

∃CTL* path formulas:

$$\varphi ::= \Psi | \varphi_1 \wedge \varphi_2 | \varphi_1 \vee \varphi_2 | \bigcirc \varphi | \varphi_1 \cup \varphi_2 | \varphi_1 \cup \varphi_1 \cup \varphi_2 | \varphi_1 \cup \varphi_1 \cup \varphi_1 | \varphi_1 |$$

analogous: 3CTL

For each $\forall \mathsf{CTL}^*$ formula Φ there is a $\exists \mathsf{CTL}^*$ formula Ψ s.t. $\Phi \equiv \neg \Psi$ (and vice versa)

$$\Psi ::= true \mid false \mid a \mid \neg a \mid \Psi_1 \land \Psi_2 \mid \Psi_1 \lor \Psi_2 \mid \exists \varphi$$

∃CTL* path formulas:

$$\varphi ::= \Psi | \varphi_1 \wedge \varphi_2 | \varphi_1 \vee \varphi_2 | \bigcirc \varphi | \varphi_1 \cup \varphi_2 | \varphi_1 \cup \varphi_1 \cup \varphi_2 | \varphi_1 \cup \varphi_1 | \varphi_1 \cup \varphi_1 | \varphi_1 \cup \varphi_2 | \varphi_1 | \varphi_1 \cup \varphi_1 | \varphi_1 |$$

analogous: **3CTL**

For each $\forall CTL^*$ formula Φ there is a $\exists CTL^*$ formula Ψ s.t. $\Phi \equiv \neg \Psi$ (and vice versa)

For each $\forall CTL$ formula Φ there is a $\exists CTL$ formula Ψ s.t. $\Phi \equiv \neg \Psi$ (and vice versa)

Logical characterization of simulation

GRM5.5-20A

If s_1 and s_2 are states in a finite TS then the following statements are equivalent:

- $(1) \quad \mathbf{s_1} \preceq_{\mathbf{T}} \mathbf{s_2}$
- (2) for all $\forall CTL$ formulas Φ : if $s_2 \models \Phi$ then $s_1 \models \Phi$
- (3) for all $\forall CTL^*$ formulas Φ : if $s_2 \models \Phi$ then $s_1 \models \Phi$

If s_1 and s_2 are states in a finite TS then the following statements are equivalent:

- (1) $\mathbf{s_1} \preceq_{\mathbf{T}} \mathbf{s_2}$
- (2 \forall) for all \forall CTL formulas Φ : if $s_2 \models \Phi$ then $s_1 \models \Phi$
- (3 \forall) for all \forall CTL* formulas Φ : if $s_2 \models \Phi$ then $s_1 \models \Phi$
- (2 \exists) for all \exists CTL formulas Ψ : if $s_1 \models \Psi$ then $s_2 \models \Psi$
- (3 \exists) for all \exists CTL formulas Ψ : if $s_1 \models \Psi$ then $s_2 \models \Psi$

$$\mathcal{T}_1 \not\models \forall \bigcirc (\forall \bigcirc \neg a \lor \forall \bigcirc a)$$
 $\mathcal{T}_2 \not\models \forall \bigcirc (\forall \bigcirc \neg a \lor \forall \bigcirc a)$
 $\forall \mathsf{CTL} \text{ formula}$

$$\mathcal{T}_{1} \not\models \forall \bigcirc (\forall \bigcirc \neg a \lor \forall \bigcirc a) \\
\mathcal{T}_{2} \not\models \forall \bigcirc (\forall \bigcirc \neg a \lor \forall \bigcirc a)$$

$$\mathcal{T}_{1} \not\models \exists \bigcirc (\exists \bigcirc \neg a \land \exists \bigcirc a) \\
\mathcal{T}_{2} \not\models \exists \bigcirc (\exists \bigcirc \neg a \land \exists \bigcirc a)$$

$$\mathcal{T}_{2} \not\models \exists \bigcirc (\exists \bigcirc \neg a \land \exists \bigcirc a)$$

$$\exists CTL \text{ formula}$$

Characterizations of simulation equivalence

GRM5.5-22

$$\mathcal{T}_1 \simeq \mathcal{T}_2$$
 iff $\mathcal{T}_1 \preceq \mathcal{T}_2$ and $\mathcal{T}_2 \preceq \mathcal{T}_1$

 $\mathcal{T}_1 \simeq \mathcal{T}_2$ iff $\mathcal{T}_1 \preceq \mathcal{T}_2$ and $\mathcal{T}_2 \preceq \mathcal{T}_1$ iff \mathcal{T}_1 , \mathcal{T}_2 satisfy the same $\forall \mathsf{CTL}^*$ formulas

$$\mathcal{T}_1 \simeq \mathcal{T}_2$$
 iff $\mathcal{T}_1 \preceq \mathcal{T}_2$ and $\mathcal{T}_2 \preceq \mathcal{T}_1$ iff \mathcal{T}_1 , \mathcal{T}_2 satisfy the same $\forall \mathsf{CTL}^*$ formulas iff \mathcal{T}_1 , \mathcal{T}_2 satisfy the same $\forall \mathsf{CTL}$ formulas

$$\mathcal{T}_1 \simeq \mathcal{T}_2$$
 iff $\mathcal{T}_1 \preceq \mathcal{T}_2$ and $\mathcal{T}_2 \preceq \mathcal{T}_1$ iff \mathcal{T}_1 , \mathcal{T}_2 satisfy the same $\forall \mathsf{CTL}^*$ formulas iff \mathcal{T}_1 , \mathcal{T}_2 satisfy the same $\forall \mathsf{CTL}$ formulas iff \mathcal{T}_1 , \mathcal{T}_2 satisfy the same $\exists \mathsf{CTL}^*$ formulas

$$\mathcal{T}_1 \simeq \mathcal{T}_2$$
 iff $\mathcal{T}_1 \preceq \mathcal{T}_2$ and $\mathcal{T}_2 \preceq \mathcal{T}_1$ iff \mathcal{T}_1 , \mathcal{T}_2 satisfy the same $\forall \mathsf{CTL}^*$ formulas iff \mathcal{T}_1 , \mathcal{T}_2 satisfy the same $\forall \mathsf{CTL}$ formulas iff \mathcal{T}_1 , \mathcal{T}_2 satisfy the same $\exists \mathsf{CTL}^*$ formulas iff \mathcal{T}_1 , \mathcal{T}_2 satisfy the same $\exists \mathsf{CTL}$ formulas

```
\mathcal{T}_1 \simeq \mathcal{T}_2 iff \mathcal{T}_1 \prec \mathcal{T}_2 and \mathcal{T}_2 \prec \mathcal{T}_1
                  iff \mathcal{T}_1, \mathcal{T}_2 satisfy the same \forall CTL^* formulas
                  iff T_1, T_2 satisfy the same \forall CTL formulas
                  iff T_1, T_2 satisfy the same \exists CTL^* formulas
                  iff T_1, T_2 satisfy the same \exists CTL formulas
... even holds for \forall \mathsf{CTL}^* \setminus \mathsf{U}, \mathsf{W}, \forall \mathsf{CTL} \setminus \mathsf{U}, \mathsf{W},
                                ∃CTL*\U,W, ∃CTL\U,W
```


$$\bigcirc \quad \widehat{=} \{a\}$$

$$\bigcirc \quad \widehat{=} \{b\}$$

$$\bigcirc \widehat{=} \{b\}$$

 \mathcal{T}_1 , \mathcal{T}_2 cannot be distinguished by the temporal logics $\forall \mathsf{CTL}$, $\forall \mathsf{CTL}^*$, $\exists \mathsf{CTL}$, or $\exists \mathsf{CTL}^*$,

 \mathcal{T}_1 , \mathcal{T}_2 cannot be distinguished by the temporal logics $\forall \mathsf{CTL}$, $\forall \mathsf{CTL}^*$, $\exists \mathsf{CTL}$, or $\exists \mathsf{CTL}^*$,

 \mathcal{T}_1 , \mathcal{T}_2 cannot be distinguished by the temporal logics $\forall \mathsf{CTL}$, $\forall \mathsf{CTL}^*$, $\exists \mathsf{CTL}$, or $\exists \mathsf{CTL}^*$,

but by CTL:

$$\mathcal{T}_1 \not\models \forall \bigcirc (\exists \bigcirc a \land \exists \bigcirc b)$$

$$\mathcal{T}_2 \models \forall \bigcirc (\exists \bigcirc a \land \exists \bigcirc b)$$

If s_1 , s_2 satisfy the same $\exists CTL$ formulas then s_1 , s_2 satisfy the same LTL formulas

If s_1 , s_2 satisfy the same $\exists CTL$ formulas then s_1 , s_2 satisfy the same LTL formulas

correct

```
If s_1, s_2 satisfy the same \exists CTL formulas then s_1, s_2 satisfy the same LTL formulas
```

correct

- **3CTL** equivalence
- = simulation equivalence
- = **∀CTL*** equivalence

```
If s_1, s_2 satisfy the same \exists CTL formulas then s_1, s_2 satisfy the same LTL formulas
```

correct

3CTL equivalence

= simulation equivalence

= **∀CTL*** equivalence

and LTL is a sublogic of ∀CTL*

If s_1 , s_2 satisfy the same $\exists CTL$ formulas then s_1 , s_2 satisfy the same LTL formulas

correct

If s_1 , s_2 satisfy the same LTL formulas then s_1 , s_2 satisfy the same \forall CTL formulas

If s_1 , s_2 satisfy the same $\exists CTL$ formulas then s_1 , s_2 satisfy the same LTL formulas

correct

If s_1 , s_2 satisfy the same LTL formulas then s_1 , s_2 satisfy the same \forall CTL formulas

wrong

If s_1 , s_2 satisfy the same $\exists CTL$ formulas then s_1 , s_2 satisfy the same LTL formulas

correct

If s_1 , s_2 satisfy the same LTL formulas then s_1 , s_2 satisfy the same $\forall CTL$ formulas

wrong, as trace equivalence does not imply simulation equivalence

Does there exist a $\exists CTL$ formula Φ s.t. $\mathcal{T}_1 \models \Phi$ and $\mathcal{T}_2 \not\models \Phi$?

 $\mathrm{GRM}5.5\text{-}25$

Does there exist a $\exists CTL$ formula Φ s.t. $\mathcal{T}_1 \models \Phi$ and $\mathcal{T}_2 \not\models \Phi$?

yes

 $\mathrm{GRM}5.5\text{-}25$

Does there exist a $\exists CTL$ formula Φ s.t.

$$\mathcal{T}_1 \models \Phi$$
 and $\mathcal{T}_2 \not\models \Phi$?

yes, as $\mathcal{T}_1 \npreceq \mathcal{T}_2$

 $\mathrm{GRM}5.5\text{-}25$

Does there exist a $\exists CTL$ formula Φ s.t.

$$\mathcal{T}_1 \models \Phi$$
 and $\mathcal{T}_2 \not\models \Phi$?

yes, as
$$\mathcal{T}_1 \npreceq \mathcal{T}_2$$
, e.g., $\Phi = \exists \bigcirc (\exists \bigcirc a \land \exists \bigcirc b)$

 $\mathrm{GRM}5.5\text{-}25$

Does there exist a $\exists CTL$ formula Φ s.t.

$$\mathcal{T}_1 \models \Phi$$
 and $\mathcal{T}_2 \not\models \Phi$?

yes, as
$$\mathcal{T}_1 \npreceq \mathcal{T}_2$$
, e.g., $\Phi = \exists \bigcirc (\exists \bigcirc a \land \exists \bigcirc b)$

Does there exist a \forall CTL formula Φ s.t.

$$\mathcal{T}_1 \models \Phi$$
 and $\mathcal{T}_2 \not\models \Phi$?

 $\mathrm{GRM}5.5\text{-}25$

Does there exist a $\exists CTL$ formula Φ s.t.

$$\mathcal{T}_1 \models \Phi$$
 and $\mathcal{T}_2 \not\models \Phi$?

yes, as
$$\mathcal{T}_1 \npreceq \mathcal{T}_2$$
, e.g., $\Phi = \exists \bigcirc (\exists \bigcirc a \land \exists \bigcirc b)$

Does there exist a $\forall CTL$ formula Φ s.t.

$$\mathcal{T}_1 \models \Phi$$
 and $\mathcal{T}_2 \not\models \Phi$?

no

$$\mathcal{T}_1 \models \Phi$$
 and $\mathcal{T}_2 \not\models \Phi$?

yes, as
$$\mathcal{T}_1 \npreceq \mathcal{T}_2$$
, e.g., $\Phi = \exists \bigcirc (\exists \bigcirc a \land \exists \bigcirc b)$

Does there exist a $\forall CTL$ formula Φ s.t.

$$\mathcal{T}_1 \models \Phi$$
 and $\mathcal{T}_2 \not\models \Phi$?

no, as
$$\mathcal{T}_2 \preceq \mathcal{T}_1$$

Does there exist a $\exists CTL$ formula Φ s.t. $\mathcal{T}_1 \models \Phi$ and $\mathcal{T}_2 \not\models \Phi$?

$$\mathcal{T}_1 \models \Phi$$
 and $\mathcal{T}_2 \not\models \Phi$?

no

$$\mathcal{T}_1 \models \Phi$$
 and $\mathcal{T}_2 \not\models \Phi$?

no, since
$$\mathcal{T}_1 \simeq \mathcal{T}_2$$

$$\mathcal{T}_1 \models \Phi$$
 and $\mathcal{T}_2 \not\models \Phi$?

no, since $\mathcal{T}_1 \simeq \mathcal{T}_2$

simulation for (T_1, T_2) : $\{(s_1, s_2), (v_1, s_2), (t_1, t_2)\}$

$$\mathcal{T}_1 \models \Phi$$
 and $\mathcal{T}_2 \not\models \Phi$?

no, since $\mathcal{T}_1 \simeq \mathcal{T}_2$ simulation for $(\mathcal{T}_1, \mathcal{T}_2)$: $\{(s_1, s_2), (v_1, s_2), (t_1, t_2)\}$ simulation for $(\mathcal{T}_2, \mathcal{T}_1)$: $\{(s_2, s_1), (s_2, v_1), (v_2, v_1), (t_1, t_2)\}$

$$\mathcal{T}_1 \not\models \Phi$$
 and $\mathcal{T}_2 \models \Phi$?

Does there exist a **CTL** formula **Φ** s.t.

$$\mathcal{T}_1 \not\models \Phi$$
 and $\mathcal{T}_2 \models \Phi$?

yes

Does there exist a **CTL** formula **Φ** s.t.

$$\mathcal{T}_1 \not\models \Phi$$
 and $\mathcal{T}_2 \models \Phi$?

yes, as $\mathcal{T}_1 \not\sim \mathcal{T}_2$

$$\mathcal{T}_1 \not\models \Phi$$
 and $\mathcal{T}_2 \models \Phi$?

yes, as
$$T_1 \not\sim T_2$$
, e.g., $\Phi = \exists \bigcirc \forall \Box blue$

 \mathcal{T}_1

Does there exist a **CTL** formula Φ s.t.

$$\mathcal{T}_1 \not\models \Phi$$
 and $\mathcal{T}_2 \models \Phi$?

yes, as
$$\mathcal{T}_1 \not\sim \mathcal{T}_2$$
, e.g., $\Phi = \exists \bigcirc \forall \Box blue$

Does there exist a **LTL** formula φ s.t.

$$\mathcal{T}_1 \not\models \varphi$$
 and $\mathcal{T}_2 \models \varphi$?

$$\mathcal{T}_1 \not\models \Phi$$
 and $\mathcal{T}_2 \models \Phi$?

yes, as
$$\mathcal{T}_1 \not\sim \mathcal{T}_2$$
, e.g., $\Phi = \exists \bigcirc \forall \Box blue$

Does there exist a **LTL** formula φ s.t.

$$\mathcal{T}_1 \not\models \varphi$$
 and $\mathcal{T}_2 \models \varphi$?

no

$$\mathcal{T}_1 \not\models \Phi$$
 and $\mathcal{T}_2 \models \Phi$?

yes, as
$$\mathcal{T}_1 \not\sim \mathcal{T}_2$$
, e.g., $\Phi = \exists \bigcirc \forall \Box blue$

Does there exist a **LTL** formula φ s.t.

$$\mathcal{T}_1 \not\models \varphi$$
 and $\mathcal{T}_2 \models \varphi$?

no, as T_1 , T_2 are simulation equivalent

Simulation quotient

GRM5.5-28

Let
$$T = (S, Act, \rightarrow, S_0, AP, L)$$
 be a TS.

simulation quotient T/\simeq :

transition system that arises from ${m T}$ by collapsing all simulation equivalent states

Let
$$T = (S, Act, \rightarrow, S_0, AP, L)$$
 be a TS. Then:

$$\mathcal{T}/\simeq \stackrel{\mathsf{def}}{=} (S/\simeq, Act', \rightarrow_{\simeq}, S'_0, AP', L')$$

Let
$$T = (S, Act, \rightarrow, S_0, AP, L)$$
 be a TS. Then:

$$T/\simeq \stackrel{\text{def}}{=} (S/\simeq, Act', \rightarrow_{\simeq}, S'_0, AP', L')$$

• state space S/\simeq \longleftrightarrow set of all simulation equivalence classes

Let
$$T = (S, Act, \rightarrow, S_0, AP, L)$$
 be a TS. Then:

$$T/\simeq \stackrel{\text{def}}{=} (S/\simeq, Act', \rightarrow_{\simeq}, S'_0, AP', L')$$

- state space $5/\simeq$ \longleftarrow set of all simulation equivalence classes
- initial states: $S'_0 = \{[s] : s \in S_0\}$

$$[s] = \{s' \in S : s \simeq_{\mathcal{T}} s'\}$$

Let
$$T = (S, Act, \rightarrow, S_0, AP, L)$$
 be a TS. Then:

$$T/\simeq \stackrel{\text{def}}{=} (S/\simeq, Act', \rightarrow_{\simeq}, S'_0, AP', L')$$

- state space $S/\simeq \longleftrightarrow$ set of all simulation equivalence classes
- initial states: $S'_0 = \{[s] : s \in S_0\}$
- labeling: AP' = AP and L'([s]) = L(s)

$$[s] = \{s' \in S : s \simeq_{\mathcal{T}} s'\}$$

Let
$$T = (S, Act, \rightarrow, S_0, AP, L)$$
 be a TS. Then:

$$T/\simeq \stackrel{\text{def}}{=} (S/\simeq, Act', \rightarrow_{\simeq}, S'_0, AP', L')$$

- state space $S/\simeq \longleftarrow$ set of all simulation equivalence classes
- initial states: $S'_0 = \{[s] : s \in S_0\}$
- labeling: AP' = AP and L'([s]) = L(s)
- transition relation: $\frac{s \longrightarrow s'}{[s] \longrightarrow_{\simeq} [s']}$

Let
$$T = (S, Act, \rightarrow, S_0, AP, L)$$
 be a TS. Then:

$$T/\simeq \stackrel{\text{def}}{=} (S/\simeq, Act', \rightarrow_{\simeq}, S'_0, AP', L')$$

- state space $S/\simeq \longleftarrow$ set of all simulation equivalence classes
- initial states: $S'_0 = \{[s] : s \in S_0\}$
- labeling: AP' = AP and L'([s]) = L(s)
- transition relation: $\frac{s \longrightarrow s'}{[s] \longrightarrow_{\simeq} [s']}$

action labels: irrelevant

Let
$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$
 be a TS. Then:
 $\mathcal{T}/\simeq = (S/\simeq, Act', \rightarrow_{\simeq}, S'_0, AP, L')$
where the transitions are given by $s \longrightarrow s'$
 $s \longrightarrow s'$
 $s \longrightarrow s'$

$$\mathcal{T}$$
 and \mathcal{T}/\simeq are simulation equivalent, i.e., $\mathcal{T} \preceq \mathcal{T}/\simeq$ and $\mathcal{T}/\simeq \preceq \mathcal{T}$

Let
$$T = (S, Act, \rightarrow, S_0, AP, L)$$
 be a TS. Then:
 $T/\simeq = (S/\simeq, Act', \rightarrow_{\simeq}, S'_0, AP, L')$
where the transitions are given by $\frac{s \longrightarrow s'}{[s] \longrightarrow_{\simeq} [s']}$

$$\mathcal{T}$$
 and \mathcal{T}/\simeq are simulation equivalent, i.e., $\mathcal{T} \preceq \mathcal{T}/\simeq$ and $\mathcal{T}/\simeq \preceq \mathcal{T}$

Proof. provide simulations for $(T, T/\simeq)$ and $(T/\simeq, T)$

Let
$$T = (S, Act, \rightarrow, S_0, AP, L)$$
 be a TS. Then:
 $T/\simeq = (S/\simeq, Act', \rightarrow_{\simeq}, S'_0, AP, L')$
where the transitions are given by $\frac{s \longrightarrow s'}{[s] \longrightarrow_{\simeq} [s']}$

$${\cal T}$$
 and ${\cal T}/\simeq$ are simulation equivalent, i.e., ${\cal T}\preceq {\cal T}/\simeq$ and ${\cal T}/\simeq \preceq {\cal T}$

Proof. provide simulations for
$$(\mathcal{T}, \mathcal{T}/\simeq)$$
 and $(\mathcal{T}/\simeq, \mathcal{T})$ simulation for $(\mathcal{T}, \mathcal{T}/\simeq)$: $\{(s, [s]) : s \in S\}$

Let
$$T = (S, Act, \rightarrow, S_0, AP, L)$$
 be a TS. Then:
 $T/\simeq = (S/\simeq, Act', \rightarrow_{\simeq}, S'_0, AP, L')$
where the transitions are given by $\frac{s \longrightarrow s'}{[s] \longrightarrow_{\simeq} [s']}$

$$T$$
 and T/\simeq are simulation equivalent, i.e., $T\preceq T/\simeq$ and $T/\simeq \preceq T$

Proof. provide simulations for
$$(\mathcal{T}, \mathcal{T}/\simeq)$$
 and $(\mathcal{T}/\simeq, \mathcal{T})$ simulation for $(\mathcal{T}, \mathcal{T}/\simeq)$: $\{(s, [s]) : s \in S\}$ simulation for $(\mathcal{T}/\simeq, \mathcal{T})$:

Example: simulation quotient

 t_1 , t_2 , t_3 are simulation equivalent v_1 , v_2 are simulation equivalent

 t_1 , t_2 , t_3 are simulation equivalent v_1 , v_2 are simulation equivalent $u_1 \simeq u_2$,

 t_1 , t_2 , t_3 are simulation equivalent

 v_1 , v_2 are simulation equivalent

 $u_1 \simeq u_2$, $w \preceq u_1, u_2$, but $w \not\simeq u_1, u_2$

 t_1 , t_2 , t_3 are simulation equivalent v_1 , v_2 are simulation equivalent $u_1 \simeq u_2$, $w \preceq u_1$, u_2 , but $w \not\simeq u_1$, u_2 $s_1 \simeq s_2$

 t_1 , t_2 , t_3 are simulation equivalent

 v_1 , v_2 are simulation equivalent

$$u_1 \simeq u_2$$
, $w \preceq u_1, u_2$, but $w \not\simeq u_1, u_2$

$$s_1 \simeq s_2$$

simulation for $(\mathcal{T}, \mathcal{T}/\simeq)$:

$$\{(s,[s]): s \text{ is a state in } \mathcal{T} \}$$

simulation for $(\mathcal{T}, \mathcal{T}/\simeq)$:

 $\{(s,[s]): s \text{ is a state in } \mathcal{T} \}$

but $\{([s], s) : s \text{ is a state in } T \}$ is <u>not</u> a simulation for $(T/\sim, T)$

regard $(\{s_1, s_2\}, s_2) \in \mathcal{R}$

regard $(\{s_1, s_2\}, s_2) \in \mathcal{R}$ and $\{s_1, s_2\} \rightarrow_{\simeq} \{w\}$

regard $(\{s_1, s_2\}, s_2) \in \mathcal{R}$ and $\{s_1, s_2\} \rightarrow_{\simeq} \{w\}$ there is <u>no</u> transition $s_2 \rightarrow w'$ in T s.t. $(\{w\}, w') \in \mathcal{R}$

Let
$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$
 be a TS. Then:
 $\mathcal{T}/\simeq = (S/\simeq, Act', \rightarrow_{\simeq}, S'_0, AP, L')$ where the transitions are given by $\begin{array}{c} s \longrightarrow s' \\ \hline [s] \longrightarrow_{\simeq} [s'] \end{array}$

$$T$$
 and T/\simeq are simulation equivalent, i.e., $T\preceq T/\simeq$ and $T/\simeq \preceq T$

Proof. provide simulations for
$$(T, T/\simeq)$$
 and $(T/\simeq, T)$ simulation for $(T, T/\simeq)$: $\{(s, [s]) : s \in S\}$ simulation for $(T/\simeq, T)$:

Let
$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$
 be a TS. Then:
 $\mathcal{T}/\simeq = (S/\simeq, Act', \rightarrow_{\simeq}, S'_0, AP, L')$ where the transitions are given by $\frac{s \rightarrow s'}{[s] \rightarrow_{\simeq} [s']}$

$$T$$
 and T/\simeq are simulation equivalent, i.e., $T\preceq T/\simeq$ and $T/\simeq\preceq T$

Proof. provide simulations for
$$(\mathcal{T}, \mathcal{T}/\simeq)$$
 and $(\mathcal{T}/\simeq, \mathcal{T})$ simulation for $(\mathcal{T}, \mathcal{T}/\simeq)$: $\{(s, [s]) : s \in S\}$ simulation for $(\mathcal{T}/\simeq, \mathcal{T})$: $\{([s], t) : s \preceq_{\mathcal{T}} t\}$