OverView OVERVIEWT.5

Introduction
Modelling parallel systems
Linear Time Properties
Regular Properties
Linear Temporal Logic (LTL)
Computation-Tree Logic
Equivalences and Abstraction
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1/122



Equivalences and preorders GRAMS.5-10
finite trace
inclusion

trace

inclusion

trace bisimulation
equivalence equivalence ~
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Logical characterizations GRA5 519

LT safety[ finite trace
prop. inclusion

LTL trace

inclusion

LTL trace bisimulation CTL*
equivalence equivalence ~ | CTL
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Logical characterizations GRA5 519

LT safety[ finite trace
prop. inclusion

LTL trace

inclusion

LTL trace bisimulation CTL*
equivalence equivalence ~ | CTL

stutter tl’aci stutter bis. equiv.
equivalence = with div. x4V
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Logical characterizations GRA5 519

prop. inclusion

trace
LTL trace bisimulation CTL*
equivalence equivalence ~ CTL

tutter trace tutter bis. equiv.| CTL*
LTL > HS qt \O
\O [equwalence = with div. a4V ]CTL\O
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Logical characterizations GRA5 519

LT safety[ finite trace}

prop. inclusion
[ simulation ]

preorder <
trace
LTL trace bisimulation CTL*
equivalence equivalence ~ CTL

tutter trace tutter bis. equiv.| CTL*
LTL > HS qt \O
\O [equwalence = with div. a4V ]CTL\O
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Logical characterizations GRA5 519

LT safety[ finite trace
prop. inclusion
5|muIat|on
preorder < -<

trace
LTL |ncIu5|on

LTL trace bisimulation CTL*
equivalence equivalence ~ | CTL

tutter trace tutter bis. equiv.| CTL*
LTL > HS qt \O
\O [equwalence = with div. a4V ]CTL\O
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Logical characterizations GRA5 519

LT safety[ finite trace
prop. inclusion

simulation
preorder <

trace
inclusion

LTL for TS without

terminal states

LTL trace bisimulation CTL*
equivalence equivalence ~ | CTL

tutter trace tutter bis. equiv.| CTL*
LTL > H s qt \O
\O [equwalence = with div. a4V ]CTL\O
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Logical characterizations GRA5 519

LT safety[ finite trace
prop. inclusion

simulation
preorder j] VCTL*

trace
inclusion

LTL for TS without

terminal states

LTL trace bisimulation CTL*
equivalence equivalence ~ | CTL

tutter trace tutter bis. equiv.| CTL*
LTL > H s qt \O
\O [equwalence = with div. a4V ]CTL\O
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Logical characterization GRAS 515

for bisimulation equivalence ~7:

s1 ~1 5 iff s, s satisfy the same CTL* formulas
iff s1, sp satisfy the same CTL formulas
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Logical characterization GRAS 515

for bisimulation equivalence ~7:

s1 ~1 5 iff s, s satisfy the same CTL* formulas
iff s1, sp satisfy the same CTL formulas

for the simulation preorder <r:
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Logical characterization GRAS 515

for bisimulation equivalence ~7:

s1 ~1 5 iff s, s satisfy the same CTL* formulas
iff s1, sp satisfy the same CTL formulas

for the simulation preorder <r:
by a sublogic I. of CTL* that subsumes LTL
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Logical characterization GRAS 515

for bisimulation equivalence ~7:

s1 ~1 5 iff s, s satisfy the same CTL* formulas
iff s1, sp satisfy the same CTL formulas

for the simulation preorder <r:
by a sublogic I. of CTL* that subsumes LTL

s1 X7 s iff for all formulas ® € L:
5 | ®impliess; E @
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Logical characterization GRAS 515

for bisimulation equivalence ~7:

s1 ~1 5 iff s, s satisfy the same CTL* formulas
iff s1, sp satisfy the same CTL formulas

for the simulation preorder <r:
by a sublogic I. of CTL* that subsumes LTL

s1 X7 s iff for all formulas ® € L:
5 | ®impliess; E @
T

observation: IL cannot be closed under negation
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The universal fragment VCTL* of CTL* GRMS.5-16

CTL* formulas in positive normal form, without 3
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Syntax of VCTL* GRM5.5-16

VCTL* state formulas:
& = true | false | a | —a |
GIADy | DV, | Vo
VCTL* path formulas:
o u= O | pAp | o1V | Op |
prUp2 | o1 W,
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Syntax of VCTL* GRM5.5-16

VCTL* state formulas:
& = true | false | a | —a |
GIADy | DV, | Vo
VCTL* path formulas:
o u= O | pAp | o1V | Op |
prUp2 | o1 W,

eventually: Q¢ ef trueU ¢
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Syntax of VCTL*

GRMb5.5-16

VCTL* state formulas:
& = true | false | a | —a |
dIAD, | OV D, | Vo
VCTL* path formulas:
o u= O | pAp | o1V | Op |
prUp2 | o1 W,

eventually: Q¢ ef trueU ¢

always: Oy def oW false
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Embedding of LTL in VCTL* GRMS.5-16

VCTL* state formulas:
& = true | false | a | —a |
GIADy | DV, | Vo
VCTL* path formulas:
o u= O | pAp | o1V | Op |
prUp2 | o1 W,

for all LTL formulas ¢ in PNF:
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Embedding of LTL in VCTL* GRMS.5-16

VCTL* state formulas:
& = true | false | a | —a |
GIADy | DV, | Vo
VCTL* path formulas:
o u= O | pAp | o1V | Op |
prUp2 | o1 W,

for all LTL formulas ¢ in PNF:
s e ¢ iff s Fverix Vo
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Embedding of LTL in VCTL* GRMS.5-16

VCTL* state formulas:
& = true | false | a | —a |
GIADy | DV, | Vo
VCTL* path formulas:
o u= O | pAp | o1V | Op |
prUp2 | o1 W,

for all LTL formulas ¢ in PNF:
s e ¢ iff s Fverix Vo

but VOVa cannot be expressed in LTL
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The universal fragments of CTL* and CTL  cuwssar

syntax of VCTL*:
¢ = true|false|a|ﬂa|¢1A¢2|¢1V¢2|V<p

¢ = ®|lpiApa|erVeer|Ov|eiUpa| o1 W,

VCTL: sublogic of VCTL*

e no Boolean operators for paths formulas

e the arguments of the temporal modalities
(), U and W are state formulas
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The universal fragments of CTL* and CTL  cuwssar

syntax of VCTL*:
¢ = true|false|a|ﬂa|<|>1/\<l>2|¢1v¢2|V<p

¢ = ®|lpiApa|erVeer|Ov|eiUpa| o1 W,

VCTL: sublogic of VCTL*

syntax of VCTL:
¢ = true | false | a | -a | P, Ay | b, VvV, |
VOO | V(91U ) | V(01 W dy)




Logical characterization of simulation GRAS.5-19A
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Logical characterization of simulation GRAS.5-19A
Let 7 be a finite TS without terminal states. Then,

for all states s; and s, in 7, the following statements
are equivalent:
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Logical characterization of simulation GRAS.5-19A

Let 7 be a finite TS without terminal states. Then,
for all states s; and s, in 7, the following statements
are equivalent:

(1) s1 27 &
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Logical characterization of simulation GRAS.5-19A

Let 7 be a finite TS without terminal states. Then,
for all states s; and s, in 7, the following statements
are equivalent:

(1) s1 21 %
(2) for all VCTL state formulas &:
if s = ® then s, = ®
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Logical characterization of simulation GRAS.5-19A

Let 7 be a finite TS without terminal states. Then,
for all states s; and s, in 7, the following statements
are equivalent:

(1) s1 21 %
(2) for all VCTL state formulas &:
if s = ® then s, = ®

(3) for all VCTL* state formulas ®:
if s, = ® then 5 = @
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VCTL and simulation GRMB.5-18

Ti:
{a}

4 {a}
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VCTL and simulation GRMB.5-18

Ti:

ta} AP = {a}
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VCTL and simulation GRMB.5-18

Ti:
{a}

eg., T £ VO(VO—a v VOa)
T E YO(VO~a v VOa)




VCTL and simulation GRMB.5-18

Ti:

{a} 2
2 {a} =
eg., T £ VO(VO—a v VOa)

T E YO(VO~a v VOa)
T VO(VO-a v VOa)
T E VO(VO-a v VOa)




VCTL/VCTL* and the simulation preorder  cuss19s

For finite TS without terminal states, the following
statements are equivalent:

(1) s1 21 =
(2) for all VCTL formulas ®: s, = ® implies s; = ®
(3) for all VCTL* formulas ®: s, = ® implies s, = ®
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VCTL/VCTL* and the simulation preorder  cuss19s

For finite TS without terminal states, the following
statements are equivalent:

(1) s1 21 =
(2) for all VCTL formulas ®: s, = ® implies s; = ®
(3) for all VCTL* formulas ®: s, = ® implies s, = ®

(3) = (2): obvious as VCTL is a sublogic of VCTL*
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VCTL/VCTL* and the simulation preorder  cuss19s

For finite TS without terminal states, the following
statements are equivalent:

(1) s1 21 =
(2) for all VCTL formulas ®: s, = ® implies s; = ®
(3) for all VCTL* formulas ®: s, = ® implies s, = ®

(3) = (2): obvious as VCTL is a sublogic of VCTL*

(1) = (3): holds for arbitrary (possibly infinite) TS
without terminal states
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VCTL/VCTL* and the simulation preorder  cuss19s

For finite TS without terminal states, the following
statements are equivalent:

(1) s1 21 =
(2) for all VCTL formulas ®: s, = ® implies s; = ®
(3) for all VCTL* formulas ®: s, = ® implies s, = ®

(3) = (2): obvious as VCTL is a sublogic of VCTL*

(1) = (3): holds for arbitrary (possibly infinite) TS
without terminal states

;

proof by structural induction
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VCTL/VCTL* and the simulation preorder  cuss19s

For finite TS without terminal states, the following
statements are equivalent:

(1) s1 21 =
(2) for all VCTL formulas ®: s, = ® implies s; = ®
(3) for all VCTL* formulas ®: s, = ® implies s, = ®

(1) = (3): show by structural induction:
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VCTL/VCTL* and the simulation preorder  cuss19s

For finite TS without terminal states, the following
statements are equivalent:

(1) s1 21 =
(2) for all VCTL formulas ®: s, = ® implies s; = ®
(3) for all VCTL* formulas ®: s, = ® implies s, = ®

(1) = (3): show by structural induction:

(i) for all VCTL* state formulas ® and states s;, s):
if ss X7 s and 5; |=® then 5 = @
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VCTL/VCTL* and the simulation preorder  cuss19s

For finite TS without terminal states, the following
statements are equivalent:

(1) s1 21 =
(2) for all VCTL formulas ®: s, = ® implies s; = ®
(3) for all VCTL* formulas ®: s, = ® implies s, = ®

(1) = (3): show by structural induction:

(i) for all VCTL* state formulas ® and states s;, s):
if ss X7 s and 5; |=® then 5 = @

(ii) for all VCTL* path formulas ¢ and paths 7y, m5:
if 1 <7 m and m | ¢ then m =
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VCTL/VCTL* and the simulation preorder  cuss19s

For finite TS without terminal states, the following
statements are equivalent:

(1) s1 21 =
(2) for all VCTL formulas ®: s, = ® implies s; = ®
(3) for all VCTL* formulas ®: s, = ® implies s, = ®

(2) = (1):
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VCTL/VCTL* and the simulation preorder  cuss19s

For finite TS without terminal states, the following
statements are equivalent:

(1) s1 21 =
(2) for all VCTL formulas ®: s, = ® implies s; = ®
(3) for all VCTL* formulas ®: s, = ® implies s, = ®

(2) = (1): show that

R = {(s1,%) : forall VCTL formulas ®:
5 ® implies s = ¢}

iIs a simulation.
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VCTL/VCTL* and the simulation preorder  cuss19s

For finite TS without terminal states, the following
statements are equivalent:

(1) a1 21
(2) for all VCTL formulas ®: s, = ® implies s; = ®
(3) for all VCTL* formulas ®: s, = ® implies s; = ®

(2) = (1): show that for finite TS:

R = {(s1,%) : forall VCTL formulas ®:
5 ® implies s = ¢}

iIs a simulation.
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The existential fragment ICTL* of CTL*  cussa
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The existential fragment ICTL* of CTL*  cussa

dual to VCTL¥*, i.e., CTL* formulas in PNF, without V
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The existential fragment ICTL* of CTL*  cussa

ACTL* (state) formulas:

Y = true|faIse|a|—-a|\Ill/\\I12|\I11V\I12|Elcp
3CTL* path formulas:

o = V|p1A@|e1Ver|Op|er1Uez| o1 W,
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The existential fragment ICTL* of CTL*  cussa

ACTL* (state) formulas:

Y = true|faIse|a|—-a|\Ill/\\I12|\I11V\I12|Elcp
3CTL* path formulas:
o = V|oiAg |1V | Op|eiUe:| o1 We,

analogous: 4CTL
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Duality Of VCTL* and HCTL* GRM5.5-20

ACTL* (state) formulas:

Y = true|faIse|a|—-a|\Ill/\\ll2|\I11V\I12|EI<p
3CTL* path formulas:
o = V|oiAg |1V | Op|eiUe:| o1 We,

analogous: 4CTL

For each VCTL* formula ® there is a ACTL* formula W
st. ® = -V
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Duality Of VCTL* and HCTL* GRM5.5-20

ACTL* (state) formulas:

Y = true|faIse|a|—-a|\Ill/\\ll2|\I11V\I12|EI<p
3CTL* path formulas:
o = V|oiAg |1V | Op|eiUe:| o1 We,

analogous: 4CTL

For each VCTL* formula ® there is a ACTL* formula W
st. ® = -W  (and vice versa)
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Duality of VCTL* and JCTL*

GRM5.5-20

ACTL* (state) formulas:

Y = true|faIse|a|—-a|\Ill/\\ll2|\I11V\I12|EI<p
3CTL* path formulas:
o = V|oiAg |1V | Op|eiUe:| o1 We,

analogous: 4CTL

For each VCTL* formula ® there is a ACTL* formula W
st. ® = -W  (and vice versa)

For each VCTL formula ® there is a ACTL formula W
st. ® = -W  (and vice versa)
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Logical characterization of simulation GRAS.5-20A
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Logical characterization of simulation GRAS.5-20A

If s; and s, are states in a finite TS then the following
statements are equivalent:
(1) s1=3rs
(2) for all VCTL formulas ®:
if s = ® then s =&

(3) for all VCTL* formulas ®:
if s, = ® then 5 = @
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Logical characterization of simulation GRAS.5-20A

If s; and s, are states in a finite TS then the following
statements are equivalent:

(1) s=2r=
(2V) for all VCTL formulas ®:
if s = ® then s =&
(3V) for all VCTL* formulas ®:
if s, = ® then 5 = @
(23) for all ICTL formulas W:
ifs1 E WV thens, EW

(33) for all ICTL formulas W:
if s1 | W then 5, W
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Example: VCTL/3CTL and simulation Gms.5-21

2 gia}

Z {a}
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Example: VCTL/3CTL and simulation Gms.5-21

A {a}
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Example: VCTL/3CTL and simulation Gms.5-21

T ¥ YO(VO-a Vv YOa)
T | YO(VO—a Vv VQOa)

VCTL formula
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Example: VCTL/3CTL and simulation

' gia}

Z {a}

T ¥ YO(VO-a Vv YOa)
T | YO(VO—a Vv VQOa)

T = 30302 A 302)
T 3I0E0-a A 30a)

VCTL formula

ACTL formula

GRM5.5-21



Characterizations of simulation equivalence ...
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Characterizations of simulation equivalence ...

for finite TS without terminal states:
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Characterizations of simulation equivalence ...

for finite TS without terminal states:

LT iff h handD 2Ty
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Characterizations of simulation equivalence ...

for finite TS without terminal states:

Ty 2T iff h handTa X Ty
iff 7Ty, T satisfy the same VCTL* formulas
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Characterizations of simulation equivalence ...

for finite TS without terminal states:

Ty 2T iff h handTa X Ty
iff 7Ty, T satisfy the same VCTL* formulas
iff 77, T, satisfy the same VCTL formulas
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Characterizations of simulation equivalence ...

for finite TS without terminal states:

Th~T iff h XThandD 2T
iff 7Ty, T satisfy the same VCTL* formulas
iff 77, T, satisfy the same VCTL formulas
iff 77, Tp satisfy the same ICTL* formulas
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Characterizations of simulation equivalence ...

for finite TS without terminal states:

Th~T iff h XThandD 2T
iff 7Ty, T satisfy the same VCTL* formulas
iff 77, T, satisfy the same VCTL formulas
iff 77, Tp satisfy the same ICTL* formulas
iff 7y, T satisfy the same 3CTL formulas
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Characterizations of simulation equivalence ...

for finite TS without terminal states:

Th~T iff h XThandD 2T
iff 7Ty, T satisfy the same VCTL* formulas
iff 77, T, satisfy the same VCTL formulas
iff 77, Tp satisfy the same ICTL* formulas

iff 7y, T satisfy the same 3CTL formulas
T

.. even holds for VCTL*\ yw, YCTL\yw,
ElCTL*\U,w, EICTL\U,W
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Simulation equivalence GRM5.5-23

T T

@ ={a}
® ={b}
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Simulation equivalence GRM5.5-23

T T

12
O

2 (3}
® =)
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Simulation equivalence GRM5.5-23

T T

@ ={a}
® ={b}

12

Ty, T> cannot be distinguished by the temporal logics
VCTL, VCTL*, ACTL, or ACTL*,
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Simulation equivalence GRM5.5-23

T T

~ @ ={a}
76 ® ={b}

Ty, T> cannot be distinguished by the temporal logics
VCTL, VCTL*, ACTL, or ACTL*,

68 /122



Simulation equivalence GRM5.5-23

T T

~ @ ={a}
76 ® ={b}

Ty, T> cannot be distinguished by the temporal logics
VCTL, VCTL*, ACTL, or ACTL*,

but by CTL:
T = YO@BOa A 30ODb)
T E YO@EOa A 30Db)
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Correct or wrong? GRAS.5-24

In finite TS without terminal states:

If s1, s satisfy the same ACTL formulas
then s;, s satisfy the same LTL formulas
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Correct or wrong? GRAS.5-24

In finite TS without terminal states:

If s1, s satisfy the same ACTL formulas
then s;, s satisfy the same LTL formulas

correct
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Correct or wrong? GRAS.5-24

In finite TS without terminal states:

If s1, s satisfy the same ACTL formulas
then s;, s satisfy the same LTL formulas

correct
JCTL equivalence

= simulation equivalence
VCTL* equivalence
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Correct or wrong? GRAS.5-24

In finite TS without terminal states:

If s1, s satisfy the same ACTL formulas
then s;, s satisfy the same LTL formulas

correct
JCTL equivalence

= simulation equivalence
VCTL* equivalence

and LTL is a sublogic of VCTL*
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Correct or wrong? GRAS.5-24

In finite TS without terminal states:

If s1, s satisfy the same ACTL formulas
then s;, s satisfy the same LTL formulas

correct

If s1, sp satisfy the same LTL formulas
then s, s, satisfy the same VCTL formulas
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Correct or wrong? GRAS.5-24

In finite TS without terminal states:

If s1, s satisfy the same ACTL formulas
then s;, s satisfy the same LTL formulas

correct

If s1, sp satisfy the same LTL formulas
then s, s, satisfy the same VCTL formulas

wrong
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Correct or wrong? GRAS.5-24

In finite TS without terminal states:

If s1, s satisfy the same ACTL formulas
then s;, s satisfy the same LTL formulas

correct

If s1, sp satisfy the same LTL formulas
then s, s, satisfy the same VCTL formulas

wrong, as trace equivalence does not imply
simulation equivalence

76 /122



Does there exist ...? S 5
I T OZo
@ = {a}
@ = {b}

Does there exist a ACTL formula ® s.t.
ThE® and L ED?
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Does there exist ...? S 5
I T OZo
@ = {a}
@ = {b}

Does there exist a ACTL formula ® s.t.
ThE® and L ED?

yes
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Does there exist ...? S 5
I T OZo
@ = {a}
@ = {b}

Does there exist a ACTL formula ® s.t.
ThE® and L ED?

yes,asTh AT,

79/122



Does there exist ...? S 5
I T OZo
@ = {a}
@ = {b}

Does there exist a ACTL formula ® s.t.
ThE® and L ED?

yes, asTh AT, eg., ®=30(30a A 3I0Ob)

80 /122



Does there exist ...? S 5
I T OZo
@ = {a}
@ = {b}

Does there exist a ACTL formula ® s.t.
ThE® and L ED?

yes, asTh AT, eg., ®=30(30a A 3I0Ob)

Does there exist a VCTL formula ® s.t.
ThE® and L ED?
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Does there exist ...? S 5
I T OZo
@ = {a}
@ = {b}

Does there exist a ACTL formula ® s.t.
ThE® and L ED?

yes, asTh AT, eg., ®=30(30a A 3I0Ob)

Does there exist a VCTL formula ® s.t.
ThE® and L ED?

no
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Does there exist ...? S 5
I T OZo
@ = {a}
@ = {b}

Does there exist a ACTL formula ® s.t.
ThE® and L ED?

yes, asTh AT, eg., ®=30(30a A 3I0Ob)

Does there exist a VCTL formula ® s.t.
ThE® and L ED?

no, ash <7
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Does there exist ...? GRMB.5-26

T

T

Does there exist a ACTL formula ® s.t.
TiE® and T lE® ?
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Does there exist ...? GRMB.5-26

T g2

Does there exist a ACTL formula ® s.t.
TiE® and T lE® ?

no
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Does there exist ...? GRMB.5-26

T g2

Does there exist a ACTL formula ® s.t.
TiE® and T lE® ?

no, sincel; ~ 1
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Does there exist ...? GRMB.5-26

4 S1 % 52

t v b V2

Does there exist a ACTL formula ® s.t.
TiE® and T lE® ?

no, sincel; ~ 1

simulation for (71, %): {(s1,%), (v1,%), (t1, )}
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Does there exist ...? GRMB.5-26

4 S1 % 52

t v b V2

Does there exist a ACTL formula ® s.t.
TiE® and T lE® ?

no, sincel; ~ 1
simulation for (71, %): {(s1,%), (v1,%), (t1, )}

simulation for (72, T1):
{(52) 51)7 (52) V1)7 (V27 Vl)) (tl7 t2)}
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Does there exist ...? GRMB.5-27

T g2

Does there exist a CTL formula ® s.t.
TP and HE®?
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Does there exist ...? GRMB.5-27

T g2

Does there exist a CTL formula ® s.t.
TP and HE®?

yes
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Does there exist ...? GRMB.5-27

T g2

Does there exist a CTL formula ® s.t.
TP and HE®?

yes, asTh £ T,
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Does there exist ...? GRMB.5-27

T g2

Does there exist a CTL formula ® s.t.
TP and HE®?

yes, as Ty & T, e.g., ® = IQVOblue
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Does there exist ...? GRMB.5-27

T g2

Does there exist a CTL formula ® s.t.
TP and HE®?

yes, as Ty & T, e.g., ® = IQVOblue

Does there exist a LTL formula ¢ s.t.
TiFp and @ ?
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Does there exist ...? GRMB.5-27

T g2

Does there exist a CTL formula ® s.t.
TP and HE®?

yes, as Ty & T, e.g., ® = IQVOblue

Does there exist a LTL formula ¢ s.t.
TiFp and @ ?

no
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Does there exist ...? GRMB.5-27

T g2

Does there exist a CTL formula ® s.t.
TP and HE®?

yes, as Ty & T, e.g., ® = IQVOblue

Does there exist a LTL formula ¢ s.t.
TiFp and @ ?

no, as 71, 7, are simulation equivalent
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Simulation quotient GRMS.5-28
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Simulation quotient GRMS.5-28

Let T = (S, Act,—, Sp, AP, L) be a TS.

simulation quotient 7 /~:

transition system that arises from 7" by collapsing
all simulation equivalent states
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Simulation quotient GRMS.5-28
Let T = (S, Act,—, So, AP, L) be a TS. Then:
T/~ & (S/~,Act', -, S, AP, L)
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Simulation quotient GRMS.5-28
Let T = (S, Act,—, So, AP, L) be a TS. Then:
T/~ & (S/~,Act', -, S, AP, L)

set of all simulation

e state space S/~ «— :
equivalence classes
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Simulation quotient GRMS.5-28
Let T = (S, Act,—, So, AP, L) be a TS. Then:
T/~ & (S/~,Act', -, S, AP, L)

set of all simulation
equivalence classes

e initial states: S§ = {[s] : s € So}

e state space S/~ «—

[s]={s'€S:s~r5'}
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Simulation quotient GRMS.5-28
Let T = (S, Act,—, So, AP, L) be a TS. Then:
T/~ & (S/~,Act', -, S, AP, L)

set of all simulation

e state space S/~ «— :
equivalence classes

e initial states: S§ = {[s] : s € So}

e labeling: AP' = AP and L'([s]) = L(s)

[s]={s'€S:s~rs'}
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Simulation quotient GRMS.5-28

Let T = (S, Act,—, So, AP, L) be a TS. Then:
T/~ & (S/~,Act', -, S, AP, L)

set of all simulation
equivalence classes

initial states: S) = {[s] : s € So}

state space S/~ «—

labeling: AP’ = AP and L'([s]) = L(s)
—_— S’

[]—>~ [s']

transition relation:
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Simulation quotient GRMS.5-28

Let T = (S, Act,—, So, AP, L) be a TS. Then:

T/~ & (S/~,Act', -, S, AP, L)

set of all simulation
equivalence classes

initial states: S) = {[s] : s € So}

state space S/~ «—

labeling: AP’ = AP and L'([s]) = L(s)

— ¢
[]—>~[5']

action labels: irrelevant

transition relation:
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Similarity of 7 and 7/~ GrG.5-288
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Similarity of 7 and 7/~ GrG.5-288

Let T = (S, Act,—, So, AP, L) be a TS. Then:
T/~ = (§/~,Act',—~, S5, AP, L)

. . s — ¢
where the transitions are given by [ — 5]

T and T/~ are simulation equivalent, i.e.,

T<XT/~ and T/~ <X T
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Similarity of 7 and 7/~ GrG.5-288

Let T = (S, Act,—, So, AP, L) be a TS. Then:
T/~ = (§/~,Act',—~, S5, AP, L)

. . s — ¢
where the transitions are given by [ — 5]

T and T/~ are simulation equivalent, i.e.,

T<XT/~ and T/~ <X T

Proof. provide simulations for (7,7 /~) and (T /~,T)
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Similarity of 7 and 7/~ GrG.5-288

Let T = (S, Act,—, So, AP, L) be a TS. Then:
T/~ = (§/~,Act',—~, S5, AP, L)

. . s — ¢
where the transitions are given by [ — 5]

T and T/~ are simulation equivalent, i.e.,

T<XT/~ and T/~ <X T

Proof. provide simulations for (7,7 /~) and (T /~,T)
simulation for (7,7 /~): {(s,[s]) : s € S}
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Similarity of 7 and 7/~ GrG.5-288

Let T = (S, Act,—, So, AP, L) be a TS. Then:
T/~ = (§/~,Act',—~, S5, AP, L)

. . s — ¢
where the transitions are given by [ — 5]

T and T/~ are simulation equivalent, i.e.,

T<XT/~ and T/~ <X T

Proof. provide simulations for (7,7 /~) and (T /~,T)
simulation for (7,7 /~): {(s,[s]) : s € S}
simulation for (7 /~,T): ?

108 /122



Example: simulation quotient GRMS.5-28

T
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Example: simulation quotient GRMS.5-28

T
S1 L]

7] w ur

nh w1 b t3 W

ty, t», t3 are simulation equivalent

v1, V» are simulation equivalent
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GRMbH.5-28A

Example: simulation quotient

T
S1 L]

7] w ur

nh w1 b t3 W

ty, t», t3 are simulation equivalent

v1, V» are simulation equivalent

n = W,
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GRMbH.5-28A

Example: simulation quotient

T
S1 L]

7] w ur

nh w1 b t3 W

ty, t», t3 are simulation equivalent

v1, V» are simulation equivalent

h ~w, w=u,w butw 2 wu,w
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GRMbH.5-28A

Example: simulation quotient

T
S1 L]

7] w ur

h v b 13 W
ty, t», t3 are simulation equivalent
are simulation equivalent

i, »2
w =X u,th, butw % u,wm

n = W,

51 =9
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GRMbH.5-28A

Example: simulation quotient

T T/~

S1 S {517 52}
n w us {U]_, U2} {W}
(5] Vi [5) t3 V2 {Vl, V2} {t17 b, t3}

ty, t», t3 are simulation equivalent
are simulation equivalent

i, »2
w =X u,th, butw % u,wm

n = W,

51 =9
114 /122



Example: simulation quotient GRMS.5-28

T T/~
s1 9 {s1,%}

u w 7)) {u, ur} {w}

simulation for (7,7 /=~2):
{(s,[s]) : sis a state in T }
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Example: simulation quotient GRMS.5-28

T T/~
s1 9 {s1,%}

u w 7)) {u, ur} {w}

simulation for (7,7 /=~2):

{(s,[s]) : sis a state in T }
but {([s],s): s isastatein T }

is not a simulation for (7 /~,T)
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Example: simulation quotient GRMS.5-28

T T/~
s1 9 {s1,%}

u w 7)) {u, ur} {w}

show that R = {([s],s) : s is a state in T }
is not a simulation for (7 /~,T)
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Example: simulation quotient GRMS.5-28

T T/~
s1 9 {s1,%}

u w 7)) {u, ur} {w}

show that R = {([s],s) : s is a state in T }
is not a simulation for (7 /~,T)

regard ({s1, %2}, %) € R
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Example: simulation quotient GRMS.5-28

T T/~
s1 9 {s1,%}

u w 7)) {u, ur} {w}

show that R = {([s],s) : s is a state in T }
is not a simulation for (7 /~,T)

regard ({s1,%},5) € R and {s1, 5} —~ {w}
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Example: simulation quotient GRMS.5-28

T T/~
s1 9 {s1,%}

u w 7)) {u, ur} {w}

show that R = {([s],s) : s is a state in T }
is not a simulation for (7 /~,T)

regard ({s1,%},5) € R and {s1, 5} —~ {w}
there is no transition s, —» w' in T st. ({w}h,w) ER
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Similarity of 7 and 7/~ G5, 5-28¢

Let T = (S, Act, —, So, AP, L) be a TS. Then:
T/~ = (§/~,Act',—~, S5, AP, L)

N _ s — ¢
where the transitions are given by 6] — [5]

T and T /~ are simulation equivalent, i.e.,

T <XT/~ and T/~ <X T

Proof. provide simulations for (7,7 /~) and (T /~,T)
simulation for (7,7 /~): {(s,[s]) : s € S}
simulation for (7 /~,T): ?
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Similarity of 7 and 7/~ G5, 5-28¢

Let T = (S, Act, —, So, AP, L) be a TS. Then:
T/~ = (§/~,Act',—~, S5, AP, L)

N _ s — ¢
where the transitions are given by 6] — [5]

T and T /~ are simulation equivalent, i.e.,

T <XT/~ and T/~ <X T

Proof. provide simulations for (7,7 /~) and (T /~,T)
simulation for (7,7 /~): {(s,[s]) : s € S}
simulation for (7/~,T): {([s],t):s =27 t}
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