Overview

Introduction Modelling parallel systems Linear Time Properties **Regular Properties** Linear Temporal Logic (LTL) Computation-Tree Logic **Equivalences and Abstraction** bisimulation CTL, CTL*-equivalence computing the bisimulation quotient abstraction stutter steps simulation relations

stutter5.4-cl

- linear vs. branching time
 - * linear time: trace relations
 - * branching time: (bi)simulation relations
- (nonsymmetric) preorders vs. equivalences:
 - * preorders: trace inclusion, simulation
 - * equivalences: trace equivalence, bisimulation
- strong vs. weak relations
 - * strong: reasoning about all transitions
 - * weak: abstraction from stutter steps

- linear vs. branching time
 - * linear time: trace relations
 - * branching time: (bi)simulation relations
- (nonsymmetric) preorders vs. equivalences:
 - * preorders: trace inclusion, simulation
 - * equivalences: trace equivalence, bisimulation
- strong vs. weak relations
 - * strong: reasoning about all transitions

* weak: abstraction from stutter steps

- linear vs. branching time
 - * linear time: trace relations
 - * branching time: (bi)simulation relations
- (nonsymmetric) preorders vs. equivalences:
 - * preorders: trace inclusion, simulation

* equivalences: trace equivalence, bisimulation

- strong vs. weak relations
 - * strong: reasoning about all transitions

* weak: abstraction from stutter steps

STUTTER5.4-1

Design by stepwise refinement

internal computation prior to the execution of action lpha

- access on auxiliary variables of T_2
- no access on variables of T_1

internal computation prior to the execution of action lpha

- access on auxiliary variables of \mathcal{T}_2
- no access on variables of T_1

internal computation prior to the execution of action lpha

- access on auxiliary variables of T_2
- no access on variables of T_1

 $s_2 \rightarrow u_1 \rightarrow \dots \rightarrow u_n$: stutter steps w.r.t. AP_1 (or AP)

Mututal exclusion (with arbiter)

stutter5.4-2

abstract representation for process P_i

Mututal exclusion (with arbiter)

STUTTER5.4-2

stutter5.4-3

process P

LOOP FOREVER $x := y \mod 3$ $y := (x + y) \mod 3$ $z := (2y - x) \mod 3$ END LOOP

stutter5.4-3

process $P \rightsquigarrow$ transition system T_P

ℓ ₀	LOOP FOREVER
ℓ_1	x := y MOD 3
ℓ_2	y := (x + y) MOD 3
l ₃	z := (2 y − x) DIV 3
l ₄	END LOOP

stutter5.4-3

process $P \rightsquigarrow$ transition system T_P

ℓ ₀	LOOP FOREVER
ℓ_1	x := y MOD 3
ℓ_2	y := (x + y) MOD 3
l ₃	z := (2 y − x) DIV 3
l4	END LOOP

CTL* property: does $\mathcal{T}_P \models \forall \Box \Diamond (z = 1)$ hold ?

stutter5.4-3

process $P \rightsquigarrow$ transition system \mathcal{T}_P over AP = Eval(z)

ℓ ₀	LOOP FOREVER
ℓ_1	x := y MOD 3
ℓ_2	y := (x + y) MOD 3
l ₃	z := (2y − x) DIV 3
l ₄	END LOOP

CTL* property: does $\mathcal{T}_P \models \forall \Box \Diamond (z = 1)$ hold ?

stutter5.4-3

process $P \rightsquigarrow$ transition system \mathcal{T}_P over AP = Eval(z)

ℓ ₀	LOOP FOREVER	
ℓ_1	x := y MOD 3	← stutter step
l 2	y := (x + y) MOD 3	← stutter step
l ₃	<i>z</i> := (2 <i>y</i> − <i>x</i>) DIV 3	\leftarrow visible action
l ₄	END LOOP	

CTL* property: does $\mathcal{T}_P \models \forall \Box \Diamond (z = 1)$ hold ?

Transition system for process *P*

$$\begin{array}{c} \begin{array}{c} \hline l_1 \ x=2 \ y=4 \ z=3 \\ \hline l_2 \ x=1 \ y=4 \ z=3 \\ \hline l_3 \ x=1 \ y=2 \ z=3 \\ \hline l_1 \ x=1 \ y=2 \ z=1 \\ \hline l_2 \ x=2 \ y=2 \ z=1 \\ \hline l_3 \ x=2 \ y=1 \ z=1 \\ \hline l_1 \ x=2 \ y=1 \ z=0 \\ \hline \end{array}$$

. .

stutter5.4-4

Analysis by abstraction from stutter steps

STUTTER5.4-4

Analysis by abstraction from stutter steps **STUTTER5.4-4**

 $\ell_1 x = 2 y = 4 z = 3$ $\ell_2 x = 1 y = 4 z = 3$ $\ell_3 x = 1 y = 2 z = 3$ $\ell_1 x = 1 y = 2 z = 1$ $\ell_2 x = 2 y = 2 |z=1$ $\ell_3 x = 2 y = 1 |z=1|$ $\ell_1 x = 2 y = 1 z =$

simplified TS representation

Overview

Introduction Modelling parallel systems Linear Time Properties **Regular Properties** Linear Temporal Logic (LTL) Computation-Tree Logic (CTL) **Equivalences and Abstraction** bisimulation, CTL/CTL*-equivalence computing the bisimulation quotient abstraction stutter steps stutter LT relations stutter bisimulation simulation relations

trace equivalence for paths

 π_1 , π_2 are trace equivalent iff $trace(\pi_1) = trace(\pi_2)$

trace equivalence for paths π_1, π_2 are trace equivalent iff $trace(\pi_1) = trace(\pi_2)$ trace inclusion for TS: $Traces(\mathcal{T}_1) \subseteq Traces(\mathcal{T}_2)$ $\forall \pi_1 \in Traces(\mathcal{T}_1) \exists \pi_2 \in Traces(\mathcal{T}_2)$ s.t. π_1, π_2 are trace equivalent

trace equivalence for paths π_1, π_2 are trace equivalent iff $trace(\pi_1) = trace(\pi_2)$ trace inclusion for TS: $Traces(\mathcal{T}_1) \subseteq Traces(\mathcal{T}_2)$ $\forall \pi_1 \in Traces(\mathcal{T}_1) \exists \pi_2 \in Traces(\mathcal{T}_2)$ s.t. π_1 , π_2 are trace equivalent trace equivalence for TS: $Traces(\mathcal{T}_1) \subseteq Traces(\mathcal{T}_2) \land Traces(\mathcal{T}_2) \subseteq Traces(\mathcal{T}_1)$

trace equivalence for paths π_1, π_2 are trace equivalent iff $trace(\pi_1) = trace(\pi_2)$ trace inclusion for TS: $Traces(\mathcal{T}_1) \subseteq Traces(\mathcal{T}_2)$ $\forall \pi_1 \in Traces(\mathcal{T}_1) \exists \pi_2 \in Traces(\mathcal{T}_2)$ s.t. π_1 , π_2 are trace equivalent trace equivalence for TS: $Traces(\mathcal{T}_1) \subseteq Traces(\mathcal{T}_2) \land Traces(\mathcal{T}_2) \subseteq Traces(\mathcal{T}_1)$ $Traces(\mathcal{T}_1) \subseteq Traces(\mathcal{T}_2)$ iff for each LT property E: $T_2 \models E$ implies $T_1 \models E$

trace equivalence for paths π_1, π_2 are trace equivalent iff $trace(\pi_1) = trace(\pi_2)$ trace inclusion for TS: $Traces(\mathcal{T}_1) \subseteq Traces(\mathcal{T}_2)$ $\forall \pi_1 \in Traces(\mathcal{T}_1) \exists \pi_2 \in Traces(\mathcal{T}_2)$ s.t. π_1 , π_2 are trace equivalent trace equivalence for TS: $Traces(\mathcal{T}_1) \subset Traces(\mathcal{T}_2) \land Traces(\mathcal{T}_2) \subset Traces(\mathcal{T}_1)$ $Traces(\mathcal{T}_1) \subseteq Traces(\mathcal{T}_2)$ iff for each LT property E: $T_2 \models E$ implies $T_1 \models E$

trace equivalent TS satisfy the same LTL formulas

Stutter equivalence for paths

Stutter equivalence for paths

stutter equivalence for infinite path fragments:

 $\pi_{1} \stackrel{\Delta}{=} \pi_{2} \quad \text{iff there exists an infinite word} \\ A_{0} A_{1} A_{2} \dots \in (2^{AP})^{\omega} \text{ s.t. the} \\ \text{traces of } \pi_{1} \text{ and } \pi_{2} \text{ are of the form} \\ A_{0} \dots A_{0} A_{1} \dots A_{1} A_{2} \dots A_{2} \dots$

$$\pi_1 \stackrel{\Delta}{=} \pi_2$$
 iff there exists an infinite word
 $A_0 A_1 A_2 \dots \in (2^{AP})^{\omega}$ s.t. the
traces of π_1 and π_2 are of the form
 $A_0^{n_0} A_1^{n_1} A_2^{n_2} \dots$

where n_0, n_1, n_2, \ldots are natural numbers ≥ 1

 $\pi_1 \triangleq \pi_2$ iff there exists an infinite word $A_0 A_1 A_2 \dots \in (2^{AP})^{\omega}$ s.t. the traces of π_1 and π_2 are of the form $A_0^+ A_1^+ A_2^+ \dots$

$$\pi_1 \stackrel{\Delta}{=} \pi_2$$
 iff there exists an infinite word
 $A_0 A_1 A_2 \dots \in (2^{AP})^{\omega}$ s.t. the
traces of π_1 and π_2 are of the form
 $A_0^+ A_1^+ A_2^+ \dots$

stutter equivalence for finite path fragments:

 $\hat{\pi}_{1} \triangleq \hat{\pi}_{2} \quad \text{iff there exists a finite word} \\ A_{0} A_{1} A_{2} \dots A_{n} \in (2^{AP})^{+} \text{ s.t.} \\ \text{the traces of } \hat{\pi}_{1} \text{ and } \hat{\pi}_{2} \text{ are in} \\ A_{0}^{+} A_{1}^{+} A_{2}^{+} \dots A_{n}^{+} \end{cases}$

 $\pi_1 \triangleq \pi_2$ iff there exists an infinite word $A_0 A_1 A_2 \dots \in (2^{AP})^{\omega}$ s.t. the traces of π_1 and π_2 are of the form $A_0^+ A_1^+ A_2^+ \dots$

$$\pi_1 \stackrel{\Delta}{=} \pi_2$$
 iff there exists an infinite word
 $A_0 A_1 A_2 \dots \in (2^{AP})^{\omega}$ s.t. the
traces of π_1 and π_2 are of the form
 $A_0^+ A_1^+ A_2^+ \dots$

stutter trace inclusion for transition systems:

$$\mathcal{T}_1 \trianglelefteq \mathcal{T}_2$$
 iff for all paths π_1 of \mathcal{T}_1
there exists a path π_2 of \mathcal{T}_2
s.t. $\pi_1 \triangleq \pi_2$
Example: stutter trace inclusion ⊴

Example: stutter trace inclusion ⊴

Example: stutter trace inclusion ⊴

all traces have the form $(\emptyset^+ \{b\}^+ \{a\}^+)^{\omega}$ or $(\emptyset^+ \{b\}^+ \{a\}^+)^* \emptyset^{\omega}$

 $\mathcal{T}_1 \trianglelefteq \mathcal{T}_2 \quad \text{iff} \quad \forall \pi_1 \in Paths(\mathcal{T}_1) \exists \pi_2 \in Paths(\mathcal{T}_2)$ s.t. $\pi_1 \triangleq \pi_2$

Does stutter trace inclusion preserve LTL properties?

 $\mathcal{T}_1 \trianglelefteq \mathcal{T}_2 \quad \text{iff} \quad \forall \pi_1 \in Paths(\mathcal{T}_1) \exists \pi_2 \in Paths(\mathcal{T}_2)$ s.t. $\pi_1 \triangleq \pi_2$

 $\mathcal{T}_1 \trianglelefteq \mathcal{T}_2 \quad \text{iff} \quad \forall \pi_1 \in Paths(\mathcal{T}_1) \exists \pi_2 \in Paths(\mathcal{T}_2)$ s.t. $\pi_1 \triangleq \pi_2$

answer: no

 $\mathcal{T}_1 \trianglelefteq \mathcal{T}_2 \quad \text{iff} \quad \forall \pi_1 \in Paths(\mathcal{T}_1) \exists \pi_2 \in Paths(\mathcal{T}_2)$ s.t. $\pi_1 \triangleq \pi_2$

answer: no

Example: **LTL** formulas of the form $\bigcirc a$

Stutter trace inclusion and $LTL_{\setminus O}$

 $\mathcal{T}_1 \trianglelefteq \mathcal{T}_2$ iff $\forall \pi_1 \in Paths(\mathcal{T}_1) \exists \pi_2 \in Paths(\mathcal{T}_2)$ s.t. $\pi_1 \triangleq \pi_2$

Let \mathcal{T}_1 and \mathcal{T}_2 are TS without terminal states and φ an $\mathsf{LTL}_{\setminus \bigcirc}$ formula. Then: $\mathcal{T}_1 \trianglelefteq \mathcal{T}_2 \land \mathcal{T}_2 \models \varphi$ implies $\mathcal{T}_1 \models \varphi$

Stutter trace inclusion and $LTL_{\setminus O}$

 $\mathcal{T}_1 \trianglelefteq \mathcal{T}_2$ iff $\forall \pi_1 \in Paths(\mathcal{T}_1) \exists \pi_2 \in Paths(\mathcal{T}_2)$ s.t. $\pi_1 \triangleq \pi_2$

Let \mathcal{T}_1 and \mathcal{T}_2 are TS without terminal states and φ an $\mathsf{LTL}_{\setminus O}$ formula. Then: $\mathcal{T}_1 \trianglelefteq \mathcal{T}_2 \land \mathcal{T}_2 \models \varphi$ implies $\mathcal{T}_1 \models \varphi$

where $LTL_{O} = LTL$ without the next operator O

Stutter trace equivalence \triangleq for TS

stutter5.4-5a

Stutter trace equivalence $\stackrel{\Delta}{=}$ for TS

stutter trace inclusion $T_1 riangleq T_2$

 $\forall \pi_1 \in Paths(\mathcal{T}_1) \exists \pi_2 \in Paths(\mathcal{T}_2) \text{ s.t. } \pi_1 \triangleq \pi_2$

Stutter trace equivalence \triangleq for TS

STUTTER5.4-5A

stutter trace inclusion $T_1 \trianglelefteq T_2$

 $\forall \pi_1 \in Paths(\mathcal{T}_1) \exists \pi_2 \in Paths(\mathcal{T}_2) \text{ s.t. } \pi_1 \triangleq \pi_2$

stutter trace equivalence

 $\mathcal{T}_1 \stackrel{\Delta}{=} \mathcal{T}_2$ iff $\mathcal{T}_1 \trianglelefteq \mathcal{T}_2$ and $\mathcal{T}_2 \trianglelefteq \mathcal{T}_1$

Stutter trace equivalence $\stackrel{\Delta}{=}$ for TS

STUTTER5.4-5A

stutter trace inclusion $T_1 \trianglelefteq T_2$

 $\forall \pi_1 \in Paths(\mathcal{T}_1) \exists \pi_2 \in Paths(\mathcal{T}_2) \text{ s.t. } \pi_1 \triangleq \pi_2$

stutter trace equivalence

$$\begin{array}{c} \mathcal{T}_1 \stackrel{\Delta}{=} \mathcal{T}_2 \quad \text{iff} \quad \mathcal{T}_1 \trianglelefteq \mathcal{T}_2 \quad \text{and} \quad \mathcal{T}_2 \trianglelefteq \mathcal{T}_1 \\ \uparrow \end{array}$$

kernel of ⊴, i.e.,

coarsest equivalence that refines \trianglelefteq

Stutter trace equivalence \triangleq for TS

STUTTER5.4-5A

stutter trace inclusion $T_1 riangleq T_2$

 $\forall \pi_1 \in Paths(\mathcal{T}_1) \exists \pi_2 \in Paths(\mathcal{T}_2) \text{ s.t. } \pi_1 \stackrel{\Delta}{=} \pi_2$

For all
$$\mathsf{LTL}_{\setminus \bigcirc}$$
 formulas φ :
 $\mathcal{T}_1 \trianglelefteq \mathcal{T}_2 \land \mathcal{T}_2 \models \varphi$ implies $\mathcal{T}_1 \models \varphi$

stutter trace equivalence

$$\begin{array}{c} \mathcal{T}_1 \stackrel{\Delta}{=} \mathcal{T}_2 \quad \text{iff} \quad \mathcal{T}_1 \trianglelefteq \mathcal{T}_2 \quad \text{and} \quad \mathcal{T}_2 \trianglelefteq \mathcal{T}_1 \\ \uparrow \end{array}$$

kernel of ⊴, i.e.,

coarsest equivalence that refines \trianglelefteq

Stutter trace equivalence $\stackrel{\Delta}{=}$ for TS

STUTTER5.4-5A

stutter trace inclusion $T_1 riangleq T_2$

 $\forall \pi_1 \in Paths(\mathcal{T}_1) \exists \pi_2 \in Paths(\mathcal{T}_2) \text{ s.t. } \pi_1 \triangleq \pi_2$

For all
$$\mathsf{LTL}_{\setminus \bigcirc}$$
 formulas φ :
 $\mathcal{T}_1 \trianglelefteq \mathcal{T}_2 \land \mathcal{T}_2 \models \varphi$ implies $\mathcal{T}_1 \models \varphi$

stutter trace equivalence

 $\mathcal{T}_1 \stackrel{\Delta}{=} \mathcal{T}_2$ iff $\mathcal{T}_1 \trianglelefteq \mathcal{T}_2$ and $\mathcal{T}_2 \trianglelefteq \mathcal{T}_1$

If $\mathcal{T}_1 \triangleq \mathcal{T}_2$ then \mathcal{T}_1 and \mathcal{T}_2 are $\mathsf{LTL}_{\setminus O}$ equivalent.

stutter5.4-13a

If
$$\mathcal{T}_1$$
 and \mathcal{T}_2 are TS over AP then:
 $\mathcal{T}_1 \sim \mathcal{T}_2$ implies $\mathcal{T}_1 \triangleq \mathcal{T}_2$

correct

correct, as

- $T_1 \sim T_2$ implies $Traces(T_1) = Traces(T_2)$
- trace equivalent paths are stutter trace equivalent

correct, as

- $T_1 \sim T_2$ implies $Traces(T_1) = Traces(T_2)$
- trace equivalent paths are stutter trace equivalent

obviously: $Traces(\mathcal{T}_1) \subseteq Traces(\mathcal{T}_2)$ implies $\mathcal{T}_1 \trianglelefteq \mathcal{T}_2$

STUTTER5.4-ST-INS-PROP

stutter5.4-st-ins-prop

stutter equivalence for infinite words

stutter equivalence for infinite words σ_1 , $\sigma_2 \in (2^{AP})^{\omega}$:

stutter equivalence for infinite words σ_1 , $\sigma_2 \in (2^{AP})^{\omega}$: $\sigma_1 \stackrel{\Delta}{=} \sigma_2$ iff there exists an infinite word $A_0 A_1 A_2 \dots \in (2^{AP})^{\omega}$ s.t. σ_1 and σ_2 are in $A_0^+ A_1^+ A_2^+ \dots$

stutter equivalence for infinite words σ_1 , $\sigma_2 \in (2^{AP})^{\omega}$: $\sigma_1 \stackrel{\Delta}{=} \sigma_2$ iff there exists an infinite word $A_0 A_1 A_2 \dots \in (2^{AP})^{\omega}$ s.t. σ_1 and σ_2 are in $A_0^+ A_1^+ A_2^+ \dots$

Let $E \subseteq (2^{AP})^{\omega}$ be an LT property. E is called stutter-insensitive iff for all $\sigma_1, \sigma_2 \in (2^{AP})^{\omega}$: if $\sigma_1 \in E$ and $\sigma_1 \triangleq \sigma_2$ then $\sigma_2 \in E$

stutter equivalence for infinite words σ_1 , $\sigma_2 \in (2^{AP})^{\omega}$: $\sigma_1 \stackrel{\Delta}{=} \sigma_2$ iff there exists an infinite word $A_0 A_1 A_2 \dots \in (2^{AP})^{\omega}$ s.t. σ_1 and σ_2 are in $A_0^+ A_1^+ A_2^+ \dots$

Let $E \subseteq (2^{AP})^{\omega}$ be an LT property. E is called stutter-insensitive iff for all $\sigma_1, \sigma_2 \in (2^{AP})^{\omega}$: if $\sigma_1 \in E$ and $\sigma_1 \triangleq \sigma_2$ then $\sigma_2 \in E$

Example: if φ is an LTL_{\O} formula then $E = Words(\varphi)$ is stutter-insensitive Let T_1 , T_2 be two TS and E a stutter-insensitive LT-property. Then:

 $T_1 \trianglelefteq T_2$ and $T_2 \models E$ implies $T_1 \models E$

Let T_1 , T_2 be two TS and E a stutter-insensitive LT-property. Then:

 $T_1 \trianglelefteq T_2$ and $T_2 \models E$ implies $T_1 \models E$

Let T_1 , T_2 be two TS and φ an $LTL_{\setminus O}$ formula. $T_1 \trianglelefteq T_2$ and $T_2 \models \varphi$ implies $T_1 \models \varphi$ Let T_1 , T_2 be two TS and E a stutter-insensitive LT-property. Then:

 $T_1 \trianglelefteq T_2$ and $T_2 \models E$ implies $T_1 \models E$

Let \mathcal{T}_1 , \mathcal{T}_2 be two TS and φ an $\mathsf{LTL}_{\setminus \bigcirc}$ formula. $\mathcal{T}_1 \trianglelefteq \mathcal{T}_2$ and $\mathcal{T}_2 \models \varphi$ implies $\mathcal{T}_1 \models \varphi$

remind: if φ is an LTL_{\O} formula then $E = Words(\varphi)$ is stutter-insensitive

Overview

Introduction Modelling parallel systems Linear Time Properties **Regular Properties** Linear Temporal Logic (LTL) Computation-Tree Logic (CTL) **Equivalences and Abstraction** bisimulation, CTL/CTL*-equivalence computing the bisimulation quotient abstraction stutter steps stutter LT relations stutter bisimulation simulation relations
STUTTER5.4-DEF-STUTTER-BIS

Let $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ be a TS,

possibly with terminal states.

Let $T = (S, Act, \rightarrow, S_0, AP, L)$ be a TS, possibly with terminal states.

A stutter bisimulation for ${m au}$ is

Let $T = (S, Act, \rightarrow, S_0, AP, L)$ be a TS, possibly with terminal states.

A stutter bisimulation for \mathcal{T} is a binary relation \mathcal{R} on S s.t.

Let $T = (S, Act, \rightarrow, S_0, AP, L)$ be a TS, possibly with terminal states.

A stutter bisimulation for \mathcal{T} is a binary relation \mathcal{R} on S s.t. for all $(s_1, s_2) \in \mathcal{R}$:

- $(1) \quad {\rm labeling} \ {\rm condition} \\$
- (2) simulation condition up to stuttering
 "s₂ can mimick all transitions of of s₁"
- (3) simulation condition up to stuttering
 "s1 can mimick all transitions of of s2"

Let $T = (S, Act, \rightarrow, S_0, AP, L)$ be a TS, possibly with terminal states.

A stutter bisimulation for \mathcal{T} is a binary relation \mathcal{R} on S s.t. for all $(s_1, s_2) \in \mathcal{R}$:

(1) labeling condition: $L(s_1) = L(s_2)$

- (2) simulation condition up to stuttering
 "s₂ can mimick all transitions of of s₁"
- (3) simulation condition up to stuttering
 "s1 can mimick all transitions of of s2"

Let $T = (S, Act, \rightarrow, S_0, AP, L)$ be a TS, possibly with terminal states.

A stutter bisimulation for \mathcal{T} is a binary relation \mathcal{R} on S s.t. for all $(s_1, s_2) \in \mathcal{R}$:

(1) labeling condition:
$$L(s_1) = L(s_2)$$

2) simulation condition up to stuttering
 "s₂ can mimick all transitions of of s₁"

(3) simulation condition up to stuttering
 "s₁ can mimick all transitions of of s₂"

÷

A stutter bisimulation for \mathcal{T} is a binary relation \mathcal{R} on **S** s.t. for all $(s_1, s_2) \in \mathcal{R}$:

(2) simulation condition up to stuttering

$$S_1 - \mathcal{R} - S_2$$

Si

:

÷

A stutter bisimulation for \mathcal{T} is a binary relation \mathcal{R} on **S** s.t. for all $(s_1, s_2) \in \mathcal{R}$:

(2) simulation condition up to stuttering

$$[s_1 - \mathcal{R} - s_2]$$

•

with $(s'_1, s_2) \notin \mathcal{R}$

A stutter bisimulation for \mathcal{T} is a binary relation \mathcal{R} on **S** s.t. for all $(s_1, s_2) \in \mathcal{R}$:

A stutter bisimulation for \mathcal{T} is a binary relation \mathcal{R} on **S** s.t. for all $(s_1, s_2) \in \mathcal{R}$:

A stutter bisimulation for \mathcal{T} is a binary relation \mathcal{R} on S such that for all $(s_1, s_2) \in \mathcal{R}$:

- (1) $L(s_1) = L(s_2)$
- (2) for each transition $s_1 \rightarrow s'_1$ with $(s'_1, s_2) \notin \mathcal{R}$ there exists a path fragment $s_2 u_1 u_2 \dots u_n s'_2$ s.t. ...

(3) ...

A stutter bisimulation for \mathcal{T} is a binary relation \mathcal{R} on S such that for all $(s_1, s_2) \in \mathcal{R}$:

- (1) $L(s_1) = L(s_2)$
- (2) for each transition $s_1 \rightarrow s'_1$ with $(s'_1, s_2) \notin \mathcal{R}$ there exists a path fragment $s_2 u_1 u_2 \dots u_n s'_2$ s.t. $n \ge 0$ and $(s_1, u_i) \in \mathcal{R}$ for $1 \le i \le n$

(3) ...

A stutter bisimulation for \mathcal{T} is a binary relation \mathcal{R} on S such that for all $(s_1, s_2) \in \mathcal{R}$:

- (1) $L(s_1) = L(s_2)$
- (2) for each transition $s_1 \rightarrow s'_1$ with $(s'_1, s_2) \notin \mathcal{R}$ there exists a path fragment $s_2 u_1 u_2 \dots u_n s'_2$ s.t. $n \ge 0$ and $(s_1, u_i) \in \mathcal{R}$ for $1 \le i \le n$
- (3) symmetric condition

A stutter bisimulation for \mathcal{T} is a binary relation \mathcal{R} on S such that for all $(s_1, s_2) \in \mathcal{R}$:

- (1) $L(s_1) = L(s_2)$
- (2) for each transition $s_1 \rightarrow s'_1$ with $(s'_1, s_2) \notin \mathcal{R}$ there exists a path fragment $s_2 u_1 u_2 \dots u_n s'_2$ s.t. $n \ge 0$ and $(s_1, u_i) \in \mathcal{R}$ for $1 \le i \le n$
- (3) for each transition $s_2 \rightarrow s'_2$ with $(s_1, s'_2) \notin \mathcal{R}$ there exists a path fragment $s_1 v_1 v_2 \dots v_n s'_1$ s.t. $n \ge 0$ and $(v_i, s_2) \in \mathcal{R}$ for $1 \le i \le n$

Stutter bisimulation equivalence $\approx_{\mathcal{T}}$ STUTTER5.4-DEF-APPROX

Stutter bisimulation equivalence $\approx_{\mathcal{T}}$ stutter

Let \mathcal{T} be a transition system with state space S.

- A stutter bisimulation for \mathcal{T} is a binary relation \mathcal{R} on **S** such that for all $(s_1, s_2) \in \mathcal{R}$:
 - $\left(1\right)$ labeling condition
 - $\left(2\right)$ and $\left(3\right)$ mutual simulation condition

Stutter bisimulation equivalence $\approx_{\mathcal{T}}$ stutter5

Let \mathcal{T} be a transition system with state space S.

A stutter bisimulation for \mathcal{T} is a binary relation \mathcal{R} on **S** such that for all $(s_1, s_2) \in \mathcal{R}$:

- $\left(1\right)$ labeling condition
- $\left(2\right)$ and $\left(3\right)$ mutual simulation condition

stutter bisimulation equivalence $\approx_{\mathcal{T}}$:

Stutter bisimulation equivalence $\approx_{\mathcal{T}}$ STUTTER5

Let \mathcal{T} be a transition system with state space S.

A stutter bisimulation for \mathcal{T} is a binary relation \mathcal{R} on S such that for all $(s_1, s_2) \in \mathcal{R}$:

- $\left(1\right)$ labeling condition
- $\left(2\right)$ and $\left(3\right)$ mutual simulation condition

stutter bisimulation equivalence $\approx_{\mathcal{T}}$:

 $s_1 \approx_{\mathcal{T}} s_2$ iff there exists a stutter bisimulation \mathcal{R} for \mathcal{T} s.t. $(s_1, s_2) \in \mathcal{R}$

$\approx_{\mathcal{T}}$ is an equivalence

stutter5.4-10

stutter5.4-10

symmetry: if $s_1 \approx_T s_2$ then $s_2 \approx_T s_1$

STUTTER5.4-10

symmetry: if $s_1 \approx_T s_2$ then $s_2 \approx_T s_1$

proof: if \mathcal{R} is a stutter bisimulation with $(s_1, s_2) \in \mathcal{R}$ then $\mathcal{R}^{-1} = \{(t_2, t_1) : (t_1, t_2) \in \mathcal{R}\}$ is a stutter bisimulation that contains (s_2, s_1) .

stutter5.4-10

symmetry: if $s_1 \approx_T s_2$ then $s_2 \approx_T s_1$ reflexivity: $s \approx_T s$ for all states s

STUTTER5.4-10

symmetry: if $s_1 \approx_T s_2$ then $s_2 \approx_T s_1$

reflexivity: $\mathbf{s} \approx_{\mathcal{T}} \mathbf{s}$ for all states \mathbf{s}

proof: $\mathcal{R} = \{(s, s) : s \in S\}$ is a stutter bisimulation

stutter5.4-10

symmetry: if $s_1 \approx_T s_2$ then $s_2 \approx_T s_1$

reflexivity: $\mathbf{s} \approx_{\mathcal{T}} \mathbf{s}$ for all states \mathbf{s}

transitivity: $s_1 \approx_T s_2$ and $s_2 \approx_T s_3$ implies $s_1 \approx_T s_3$

STUTTER5.4-10

symmetry: if $s_1 \approx_T s_2$ then $s_2 \approx_T s_1$

reflexivity: $s \approx_T s$ for all states s

transitivity: $s_1 \approx_T s_2$ and $s_2 \approx_T s_3$ implies $s_1 \approx_T s_3$

Proof: Let $\mathcal{R}_{1,2}$ and $\mathcal{R}_{2,3}$ be stutter bisimulations s.t. $(s_1, s_2) \in \mathcal{R}_{1,2}, (s_2, s_3) \in \mathcal{R}_{2,3}$ Show that $\mathcal{R} = \mathcal{R}_{1,2} \circ \mathcal{R}_{2,3}$ is a stutter bisimulation.

 $s_1 - R_{1,2} - s_2 - R_{2,3} - s_3$

S'1

Stutter bisimulation equivalence

 $\approx_{\mathcal{T}}$ is an equivalence on state space **S** of \mathcal{T} such that for all states s_1 , s_2 with $s_1 \approx_{\mathcal{T}} s_2$:

(1) L(s₁) = L(s₂)
(2) simulation condition up to stuttering

Stutter bisimulation equivalence

 $\approx_{\mathcal{T}}$ is the coarsest equivalence on state space **S** of \mathcal{T} such that for all states s_1 , s_2 with $s_1 \approx_{\mathcal{T}} s_2$:

(1) L(s₁) = L(s₂)
(2) simulation condition up to stuttering

Example: mutual exclusion with semaphore STUTTER5.4-6

Example: mutual exclusion with semaphore STUTTER5.4-6

Example: mutual exclusion with semaphore STUTTER5.4-6

stutter bisimulation with three equivalence classes

Peterson algorithm

protocol for P_1

LOOP FOREVER noncritical section $b_1 := true; x := 2$ AWAIT $(x=1) \lor \neg b_2$ critical section $b_1 := false$ END LOOP

Peterson algorithm

protocol for P_1

LOOP FOREVER noncritical section $b_1 := true; x := 2$ AWAIT $(x=1) \lor \neg b_2$ critical section $b_1 := false$ END LOOP noncrit₁ $b_1 := false$ $b_1 := true$ x := 2crit₁ wait₁ $(x=1) \vee \neg b_2$

Peterson algorithm

protocol for P_1

LOOP FOREVER noncritical section $b_1 := true; x := 2$ AWAIT $(x=1) \lor \neg b_2$ critical section $b_1 := false$ END LOOP STUTTER5.4-7

protocol for P_2

LOOP FOREVER noncritical section $b_2 := true; x := 1$ AWAIT (x=2) $\lor \neg b_1$ critical section $b_2 := false$ END LOOP

STUTTER5.4-8

STUTTER5.4-8

STUTTER5.4-8

STUTTER5.4-8

STUTTER5.4-8

STUTTER5.4-8

STUTTER5.4-8

9 stutter bisimulation equivalence classes

STUTTER5.4-11

transition system T_1

transition system T_1 transition system T_2 state space S_1 state space S_2

 $T_1 \approx T_2$ iff there exists a stutter bisimulation \mathcal{R} for $\mathcal{T} = T_1 \uplus T_2$ such that

transition system T_1 transition system T_2 state space S_1 state space S_2

 $T_1 \approx T_2$ iff there exists a stutter bisimulation \mathcal{R} for $\mathcal{T} = T_1 \uplus T_2$ such that

∀ initial states s₁ of T₁ ∃ initial state s₂ of T₂
s.t. s₁ ≈_T s₂

∀ initial states s₂ of T₂ ∃ initial state s₁ of T₁ s.t. s₁ ≈_T s₂

transition system \mathcal{T}_1 transition system \mathcal{T}_2 $\overbrace{S_1}^{\bullet}$ $\overbrace{S_2}^{\bullet}$ $\overbrace{S_2}^{\bullet}$ $\overbrace{S_2}^{\bullet}$ state space S_2

 $T_1 \approx T_2$ iff there exists a stutter bisimulation \mathcal{R} for (T_1, T_2)

transition system \mathcal{T}_1 transition system \mathcal{T}_2 $\overbrace{S_1}^{\bullet}$ $\overbrace{S_2}^{\bullet}$ $\overbrace{S_2}^{\bullet}$ state space S_1 state space S_2

 $T_1 \approx T_2$ iff there exists a stutter bisimulation \mathcal{R} for (T_1, T_2) , i.e., $\mathcal{R} \subseteq S_1 \times S_2$ s.t.

transition system \mathcal{T}_1 transition system \mathcal{T}_2 $\overbrace{S_1}^{\bullet}$ $\overbrace{S_2}^{\bullet}$ $\overbrace{S_2}^{\bullet}$ $\overbrace{S_2}^{\bullet}$ state space S_2

 $T_1 \approx T_2$ iff there exists a stutter bisimulation \mathcal{R} for (T_1, T_2) , i.e., $\mathcal{R} \subseteq S_1 \times S_2$ s.t.

(1) if $(s_1, s_2) \in \mathcal{R}$ then $L_1(s_1) = L_2(s_2)$

Stutter bisimulation equivalence for two TS STUTTER5.4-11

 $T_1 \approx T_2$ iff there exists a stutter bisimulation \mathcal{R} for (T_1, T_2) , i.e., $\mathcal{R} \subseteq S_1 \times S_2$ s.t.

(1) if $(s_1, s_2) \in \mathcal{R}$ then $L_1(s_1) = L_2(s_2)$ (2) and (3) ...

Stutter bisimulation equivalence for two TS stutter5.4-11

 $T_1 \approx T_2$ iff there exists a stutter bisimulation \mathcal{R} for (T_1, T_2) , i.e., $\mathcal{R} \subseteq S_1 \times S_2$ s.t.

- (1) if $(s_1, s_2) \in \mathcal{R}$ then $L_1(s_1) = L_2(s_2)$
- (2) and (3) ...
 (I) ∀ initial state s₁ of T₁ ∃ initial state s₂ of T₂ with (s₁, s₂) ∈ R, and vice versa

Example: door opener

abstract model \mathcal{T}_1

$$AP = \{closed, open, alarm\}$$

stutter5.4-12

130/444

Example: door opener with code no. 181 STUTTER5.4-12

abstract model \mathcal{T}_1

131/444

Example: door opener with code no. 181 STUTTER5.4-12

^{132/444}

Example: door opener with code no. 181 STUTTER5.4-12

^{133/444}

stutter5.4-13

 \mathcal{T}_2 does not contain an equivalent state to s and s'

stutter5.4-13

 $T_1 \approx T_2$

stutter5.4-13

stutter5.4-14

If
$$s_1 \sim_{\mathcal{T}} s_2$$
 then $s_1 \approx_{\mathcal{T}} s_2$

remind: $\sim_{\mathcal{T}}$ bisimulation equivalence for \mathcal{T} $\approx_{\mathcal{T}}$ stutter bisimulation equivalence for \mathcal{T}

stutter5.4-14

If $s_1 \sim_{\mathcal{T}} s_2$ then $s_1 \approx_{\mathcal{T}} s_2$

correct

remind: $\sim_{\mathcal{T}}$ bisimulation equivalence for \mathcal{T} $\approx_{\mathcal{T}}$ stutter bisimulation equivalence for \mathcal{T}

If $s_1 \sim_{\mathcal{T}} s_2$ then $s_1 \approx_{\mathcal{T}} s_2$

correct as $\sim_{\mathcal{T}}$ is a stutter bisimulation for \mathcal{T}

remind: $\sim_{\mathcal{T}}$ bisimulation equivalence for \mathcal{T} $\approx_{\mathcal{T}}$ stutter bisimulation equivalence for \mathcal{T}

If $s_1 \sim_{\mathcal{T}} s_2$ then $s_1 \approx_{\mathcal{T}} s_2$

correct

as $\sim_{\mathcal{T}}$ is a stutter bisimulation for \mathcal{T}

If $s_1 \approx_{\mathcal{T}} s_2$ then $s_1 \sim_{\mathcal{T}} s_2$

If $s_1 \sim_{\mathcal{T}} s_2$ then $s_1 \approx_{\mathcal{T}} s_2$

correct

as $\sim_{\mathcal{T}}$ is a stutter bisimulation for \mathcal{T}

If $s_1 pprox_{\mathcal{T}} s_2$ then $s_1 \sim_{\mathcal{T}} s_2$

wrong
Correct or wrong?

If $s_1 \sim_{\mathcal{T}} s_2$ then $s_1 \approx_{\mathcal{T}} s_2$

correct

as $\sim_{\mathcal{T}}$ is a stutter bisimulation for \mathcal{T}

If
$$s_1 \approx_{\mathcal{T}} s_2$$
 then $s_1 \sim_{\mathcal{T}} s_2$

wrong, e.g.:

Correct or wrong?

stutter5.4-14

If
$$s_1 \sim_{\mathcal{T}} s_2$$
 then $s_1 \approx_{\mathcal{T}} s_2$

correct

as $\sim_{\mathcal{T}}$ is a stutter bisimulation for \mathcal{T}

If
$$s_1 pprox_{\mathcal{T}} s_2$$
 then $s_1 \sim_{\mathcal{T}} s_2$

wrong, e.g.:

correct

correct, as $\approx_{\mathcal{T}}$ is a bisimulation for \mathcal{T}

(1) labeling condition: \checkmark

- (1) labeling condition: \checkmark
- (2) Suppose $\mathbf{s_1} \rightarrow \mathbf{s'_1}$.

correct, as $\approx_{\mathcal{T}}$ is a bisimulation for \mathcal{T}

(1) labeling condition: \checkmark (2) Suppose $s_1 \rightarrow s'_1$. Then: $L(s_1) \neq L(s'_1)$

correct, as $\approx_{\mathcal{T}}$ is a bisimulation for \mathcal{T}

(1) labeling condition: \checkmark (2) Suppose $s_1 \rightarrow s'_1$. Then: $L(s_1) \neq L(s'_1)$ $\implies s_1 \not\approx_T s'_1$

- (1) labeling condition: \checkmark (2) Suppose $s_1 \rightarrow s'_1$. Then: $L(s_1) \neq L(s'_1)$
 - \implies $\mathbf{s}_1 \not\approx_T \mathbf{s}'_1$
 - $\implies \text{ there is a path fragment } s_2 u_1 \dots u_m s'_2$ with $m \ge 0$ and $s_1 \approx_{\mathcal{T}} u_i \land s'_1 \approx_{\mathcal{T}} s'_2$

- (1) labeling condition: \checkmark (2) Suppose $s_1 \rightarrow s'_1$. Then: $L(s_1) \neq L(s'_1)$
 - \implies $s_1 \not\approx_T s'_1$
 - $\implies \text{ there is a path fragment } s_2 u_1 \dots u_m s'_2$ with $m \ge 0$ and $s_1 \approx_{\mathcal{T}} u_i \land s'_1 \approx_{\mathcal{T}} s'_2$
 - \implies m=0.

- (1) labeling condition: \checkmark (2) Suppose $s_1 \rightarrow s'_1$. Then: $L(s_1) \neq L(s'_1)$
 - \implies $s_1 \not\approx_T s'_1$
 - $\implies \text{ there is a path fragment } s_2 u_1 \dots u_m s'_2$ with $m \ge 0$ and $s_1 \approx_{\mathcal{T}} u_i \land s'_1 \approx_{\mathcal{T}} s'_2$
 - \implies *m*=0. Hence: $s_2 \rightarrow s'_2$ and $s'_1 \approx_T s'_2$

Stutter bisimulation quotient

STUTTER5.4-16

Stutter bisimulation quotient

Let $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ be a TS.

Let
$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$
 be a TS.

$$\mathcal{T}/\approx = (S/\approx_{\mathcal{T}}, Act', \rightarrow_{\approx}, S'_0, AP, L')$$

Let
$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$
 be a TS.

$$\mathcal{T}/\approx = (S/\approx_{\mathcal{T}}, Act', \rightarrow_{\approx}, S'_0, AP, L')$$

• state space: $S/\approx_T \longleftarrow$

set of stutter bisimulation equivalence classes

Let
$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$
 be a TS.

$$\mathcal{T}/\approx = (S/\approx_{\mathcal{T}}, Act', \rightarrow_{\approx}, S'_0, AP, L')$$

• state space:
$$S \approx_T$$

• initial states: $S'_0 = \{[s] : s \in S_0\}$

$$[s] = [s]_{\approx_{\mathcal{T}}} = \{s' \in S : s \approx_{\mathcal{T}} s'\}$$

equivalence class of state s

Let
$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$
 be a TS.

$$\mathcal{T}/\approx = (S/\approx_{\mathcal{T}}, Act', \rightarrow_{\approx}, S'_0, AP, L')$$

• state space:
$$S \approx_T$$

- initial states: $S'_0 = \{[s] : s \in S_0\}$
- labeling: L'([s]) = L(s)

$$[s] = [s]_{\approx_{\mathcal{T}}} = \{s' \in \mathsf{S} : s \approx_{\mathcal{T}} s'\}$$

equivalence class of state *s*

Let
$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$
 be a TS.

$$\mathcal{T}/\approx = (S/\approx_{\mathcal{T}}, Act', \rightarrow_{\approx}, S'_0, AP, L')$$

• state space:
$$S \approx_T$$

- initial states: $S'_0 = \{[s] : s \in S_0\}$
- labeling: *L*'([*s*]) = *L*(*s*)
- transition relation:

$$\frac{s \to s' \land s \not\approx_{\mathcal{T}} s'}{[s] \to_{\approx} [s']}$$

Let
$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$
 be a TS.

$$\mathcal{T}/\approx = (S/\approx_{\mathcal{T}}, Act', \rightarrow_{\approx}, S'_0, AP, L')$$

• state space:
$$S \approx_T$$

- initial states: $S'_0 = \{[s] : s \in S_0\}$
- labeling: *L*'([*s*]) = *L*(*s*)
- transition relation: ← actions irrelevant

$$\frac{s \to s' \land s \not\approx_{\mathcal{T}} s'}{[s] \to_{\approx} [s']}$$

Equivalence of \mathcal{T} and its quotient

Let
$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$
 be a TS.

$$\mathcal{T}/\approx = (S/\approx_{\mathcal{T}}, Act', \rightarrow_{\approx}, S'_0, AP, L')$$

where
$$S'_0 = \{[s] : s \in S_0\}$$
 and $L'([s]) = L(s)$
transition relation:

$$\frac{s \to s' \land s \not\approx_{\mathcal{T}} s'}{[s] \to_{\approx} [s']}$$

Equivalence of ${\mathcal T}$ and its quotient

Let
$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$
 be a TS.

stutter bisimulation quotient of \mathcal{T} : $\mathcal{T}/\approx = (S/\approx_{\mathcal{T}}, Act', \rightarrow_{\approx}, S'_0, AP, L')$ where $S'_0 = \{[s] : s \in S_0\}$ and L'([s]) = L(s)transition relation: $\underbrace{s \rightarrow s' \land s \not\approx_{\mathcal{T}} s'}_{[s] \rightarrow_{\approx} [s']}$ $\mathcal{T} \approx \mathcal{T}/\approx$

Equivalence of ${\mathcal T}$ and its quotient

Let
$$T = (S, Act, \rightarrow, S_0, AP, L)$$
 be a TS.

stutter bisimulation quotient of
$$\mathcal{T}$$
:
 $\mathcal{T}/\approx = (S/\approx_T, Act', \rightarrow_\approx, S'_0, AP, L')$
where $S'_0 = \{[s] : s \in S_0\}$ and $L'([s]) = L(s)$
transition relation:
 $\underline{s \rightarrow s' \land s \not\approx_T s'}$
 $\overline{[s] \rightarrow_\approx [s']}$
 $\mathcal{T} \approx \mathcal{T}/\approx$

proof: $\mathcal{R} = \{(s, [s]) : s \in S\}$ is a stutter bisimulation for $(\mathcal{T}, \mathcal{T}/\approx)$

stutter bisimulation with three equivalence classes

formalization by a closed channel system
 [Sender | Timer | Receiver]

- formalization by a closed channel system
 [Sender | Timer | Receiver]
 - TS with about 2³⁰ states for channels of capacity 10

STUTTER5.4-21

stutter5.4-22

SMode=0 SMode=1

stutter5.4-22

 $AP = \{SMode=0, SMode=1, RMode=0, RMode=1\}$ $\Phi = \forall \Box \Diamond SMode=0 \land \forall \Box \Diamond SMode=1$

STUTTER5.4-22

STUTTER5.4-22

$$ABP \not\models \Phi, \text{ but } ABP / \approx \models \Phi$$

stutter5.4-22

If $\mathcal{T}_1 \approx \mathcal{T}_2$ then \mathcal{T}_1 and \mathcal{T}_2 are $\mathsf{LTL}_{\setminus \bigcirc}$ -equivalent.

If $\mathcal{T}_1 \approx \mathcal{T}_2$ then \mathcal{T}_1 and \mathcal{T}_2 are $\mathsf{LTL}_{\setminus \mathcal{O}}$ -equivalent.

wrong.

If $T_1 \approx T_2$ then T_1 and T_2 are $LTL_{\setminus O}$ -equivalent.

wrong.

If $T_1 \approx T_2$ then T_1 and T_2 are LTL_{\O}-equivalent.

wrong.

If $T_1 \approx T_2$ then T_1 and T_2 are $LTL_{\setminus O}$ -equivalent.

wrong.

 $AP = \{a\}$ $\emptyset^{\omega} \in Traces(\mathcal{T}_1)$ $\emptyset^{\omega} \notin Traces(\mathcal{T}_2)$

Abstraction from stuttering: LT vs. BT

STUTTER5.4-23

stutter trace equivalence: $\mathcal{T}_1 \stackrel{\Delta}{=} \mathcal{T}_2$ iff

 $\forall \pi_1 \in Paths(\mathcal{T}_1) \exists \pi_2 \in Paths(\mathcal{T}_2) \text{ s.t. } \pi_1 \triangleq \pi_2$

 $\forall \pi_2 \in Paths(\mathcal{T}_2) \exists \pi_1 \in Paths(\mathcal{T}_1) \text{ s.t. } \pi_1 \triangleq \pi_2$

stutter bisimulation equivalence $\approx_{\mathcal{T}}$

Stutter bisimulation/stutter trace equivalence STUTTER5.4-23

- \triangleq stutter trace equivalence
- \approx stutter bisimulation equivalence

Stutter bisimulation/stutter trace equivalence STUTTER5.4-23

- \triangleq stutter trace equivalence
- \approx stutter bisimulation equivalence

Stutter bisimulation/stutter trace equivalence STUTTER5.4-23

- \triangleq stutter trace equivalence
- \approx stutter bisimulation equivalence

- \triangleq stutter trace equivalence
- \approx stutter bisimulation equivalence

- \triangleq stutter trace equivalence
- \approx stutter bisimulation equivalence

- \triangleq stutter trace equivalence
- \approx stutter bisimulation equivalence

 \approx stutter bisimulation equivalence

$$\thickapprox$$
 and \triangleq are incomparable