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Decidability of the model checking problem? ...
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Decidability of the model checking problem? ...

parallel system requirements

abstract model M specification spec

Turing machine \ / “halt for every input”

model checker

decision algorithm for M sat spec

N

no yes
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General model checking problem is undecidable ....;

parallel system

abstract model M
Turing machine

requirements

specification spec
“halt for every input”

Avd

model checker

M for M sat spec

__
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To ensure decidability . .. o a6
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To ensure decidability . .. o a6

real system requirements
- /
abstraction specification
semantics A
finite transition O/,\

abstract model system

transitfilgr;ti stem or temporal formula, e.g.,
! O(request — {enter _crit)

F@ model checker

“does M sat spec hold 7"

/ N

yes no
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Model checking vs other validation techniques ....:

The validation techniques (testing, simulation,
deductive verification, model checking) are
complementary to each other.

15/152



Model checking vs other validation techniques ....:

The validation techniques (testing, simulation,
deductive verification, model checking) are
complementary to each other.

model checking
e most efficient validation technique, fully automatic

e but mostly only applicable for finite models with
“small” (or “sufficiently structured™) state space
e industrial applications:

* hardware systems
* communication protocols
* coordination protocols for distributed systems
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Historical notes

1976 Keller
1977 Pnueli

1981 Clarke/Emerson
Queille/Sifakis

INTRO/VAL1.3-8

transition systems (TS)
to model parallel systems

temporal logic
to specify parallel systems

first model checker
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Historical notes

1976

1977

1981

1983

1985
1986

Keller
Pnueli
Clarke/Emerson

Queille/Sifakis
Kanellakis/Smolka

Lichtenstein /Pnueli
Vardi/Wolper

INTRO/VAL1.3-8

transition systems (TS)
to model parallel systems

temporal logic LTL
to specify parallel systems

first model checker
for CTL

model checking
for homogeneous
TS-based specifications

model checking
for LTL
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Historical notes VALL3-9

1976  Keller transition systems
1977  Pnueli temporal logic LTL
1981 Clarke/Emerson first model checker

Queille/Sifakis for CTL

1985 Lichtenstein/Pnueli model checking
1986  Vardi/Wolper for LTL

state explosion problem

state space of industrial systems too large
to be handled by naive implementations of
model checking algorithms
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Historical notes
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1977
1981
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temporal logic LTL

first model checker
for CTL
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Historical notes VALL3-9

1976  Keller transition systems
1977  Pnueli temporal logic LTL
1981 Clarke/Emerson first model checker

Queille/Sifakis for CTL

1985 Lichtenstein/Pnueli model checking
1986  Vardi/Wolper for LTL

state explosion problem | o hojic model checking

ca. since 1990 t_V\llitthDDZ )
“advanced techniques” par:|a order reduction

model checking for infinite systems, quantitative analysis,
e.g., real-time systems, probabilistic systems
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Transition system (TS) e

A transition system is a tuple

T = (S, Act,—>, S, AP, L)
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Transition system (TS) e

A transition system is a tuple
T = (S, Act,—, Sp, AP, L)

e S is the state space, i.e., set of states,
e Act is a set of actions,
e — C S x Act x S is the transition relation,
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Transition system (TS) e

A transition system is a tuple
T = (S, Act,—, Sp, AP, L)
e S is the state space, i.e., set of states,

e Act is a set of actions,
e — C S x Act X S is the transition relation,

i.e., transitions have the form s Q, s/
where 5,5’ € S and a € Act
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Transition system (TS) e

A transition system is a tuple
T = (S, Act,—, Sp, AP, L)
e S is the state space, i.e., set of states,

e Act is a set of actions,
e — C S x Act X S is the transition relation,

i.e., transitions have the form s Q, s/
where 5,5’ € S and a € Act

e So C S the set of initial states,
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Transition system (TS) e

A transition system is a tuple
T = (S, Act,—, Sp, AP, L)
e S is the state space, i.e., set of states,

e Act is a set of actions,
e — C S x Act X S is the transition relation,

i.e., transitions have the form s Q, s/
where 5,5’ € S and a € Act

e Sp C S the set of initial states,
e AP a set of atomic propositions,
o L : S — 2%P the labeling function
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Transition system for beverage machine 8142
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Transition system for beverage machine 8142

state space S = {pay, select, coke, sprite}
set of initial states: So = {pay}
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Transition system for beverage machine 8142

actions:
coin
T
get_sprite
get_coke

state space S = {pay, select, coke, sprite}
set of initial states: So = {pay}
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Transition system for beverage machine 8142

actions:
coin
T
get_sprite
get_coke

state space S = {pay, select, coke, sprite}

set of initial states: So = {pay}

set of atomic propositions: AP = {pay, drink}

labeling function: L(coke) = L(sprite) = {drink}
L(pay) = {pay}, L(select) =0
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Transition system for beverage machine 18142

actions:
coin
T
get_sprite
get_coke

state space S = {pay, select, coke, sprite}
set of initial states: So = {pay}
set of atomic propositions: AP =S

labeling function: L(s) = {s} for each state s
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“Behaviour” of transition systems

possible behaviours of a TS result from:

select nondeterministically an initial state s € Sg
WHILE s is non-terminal DO

— . Q
select nondeterministically a transition s — s’

- execute the action o and put s := 5’

36 /152



“Behaviour” of transition systems

possible behaviours of a TS result from:

select nondeterministically an initial state s € Sg
WHILE s is non-terminal DO

— . Q
select nondeterministically a transition s — s’
execute the action o and put s := 5’

0D

executions: maximal “transition sequences”

a " Q .
S0 — 5 —> 85— ... withs €S,
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“Behaviour” of transition systems

possible behaviours of a TS result from:

select nondeterministically an initial state s € Sg
WHILE s is non-terminal DO

— . Q
select nondeterministically a transition s — s’

- execute the action o and put s := 5’

executions: maximal “transition sequences”

a " Q .
S0 — 5 —> 85— ... withs €S,

reachable fragment:

Reach(T) = set of all states that are reachable from
an initial state through some execution
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Linear-time vs branching-time Lrp2.4-1
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T = (S, Act,—, Sp, AP, L)

40 /152



Linear-time vs branching-time Lrp2.4-1

transition system

T = (S, Act,—, Sp, AP, L)

abstraction from actions

state graph
+ labeling

41/152



Linear-time vs branching-time Lrp2.4-1

T = (S, Act,—, Sp, AP, L)

transition system

abstraction from actions

state graph
+ labeling

linear-time view

/ \ branching-time view

42/152



Linear-time vs branching-time

LTB2.4-1

transition system

T = (S, Act,—, Sp, AP, L)

state graph
+ labeling

linear-time view
path-based
state sequences

irrelevant

branching structure

abstraction from actions

/ \ branching-time view

nondeterministic
branches

state & branches
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Linear-time vs branching-time

LTB2.4-1-TRACES

transition system

T = (S, Act,—, Sp, AP, L)

state graph
+ labeling

linear-time view

state sequences

abstraction from actions

AN

branching-time view

state & branches
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Linear-time vs branching-time

LTB2.4-1-TRACES

transition system

T = (S, Act,—, Sp, AP, L)

state graph
+ labeling

linear-time view

state sequences

Y

traces

abstraction from actions

VAN

on AP

projection | branching-time view

state & branches

J

computation tree
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Traces A

for TS with labeling function L : § — 24P

execution: states + actions

(87 (% Q . .. -
Sp —> §] —> 5p —> ... infinite or finite

paths: sequences of states
S S1S ... infinite or 5951 ... .5, finite
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Traces

LTB2.4-4

for TS with labeling function L : § — 24P

)

[0 7] a3

execution: states + actions

S

S0 > 51

> 5

7 e e

. infinite or finite

S0515...

paths: sequences of states
infinite or Sp 51 . .. S, finite

|

traces: sequences of sets of atomic propositions

L(sp) L(s1) L(sp) - --
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Traces

LTB2.4-4

for TS with labeling function L : § — 24P

)

[0 7] a3

execution: states + actions

S

S0 > 51

> 5

7 e e

. infinite or finite

SHS15...

paths: sequences of states
infinite or Sp 51 . .. S, finite

|

traces: sequences of sets of atomic propositions

L(so) L(s1) L(sp) ... € (2*P)u (2*P)*
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Traces A

for TS with labeling function L : § — 24P

execution: states + actions

(87 (% Q . .. -
Sp —> §] —> 5p —> ... infinite or finite

paths: sequences of states
S S1S ... infinite or 5951 ... .5, finite

|

traces: sequences of sets of atomic propositions
L(so) L(s1) L(sp) ... € (2*P)u (2*P)*

for simplicity: we often assume that the given TS has
no terminal states

50 /152



Traces A

for TS with labeling function L : § — 24P

execution: states 4+ actions
o

Sop —> 5] —> 5p —> ... infinite or “firre_

paths: sequences of states

0515 ... infinite or sgS—=rsy—fiite_

traces: sequences of sets of atomic propositions
L(so) L(s1) L(s2) - .. € (247)* u 289

for simplicity: we often assume that the given TS has
no terminal states
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Traces of a transition system LrB2.45

Let 7 bea TS

Traces(T) &ef {trace(r) : m € Paths(T)}

Tracesgn(T) &ef {trace(T) : © € Pathsn(T)}
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Traces of a transition system LrB2.45

Let 7 bea TS

Traces(T) &ef {trace(r) : w € Paths(T)}

initial, maximal path fragment

Tracesgin(T) &ef {trace(T) : © € Pathsn(T)}

initial, finite path fragment
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Traces of a transition system LrB2.45

Let 7 be a TS «—| without terminal states

Traces(T) &ef {trace(r) : w € Paths(T)}

initial, infinite path fragment

Tracesgin(T) &ef {trace(T) : © € Pathsn(T)}

initial, finite path fragment
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Traces of a transition system LrB2.45

Let 7 be a TS «—| without terminal states

Traces(T) def {trace(ﬂ) = Paths(T)} C (24Py”

initial, infinite path fragment

Tracesgin(T) &ef {trace(T) : T € Pathss(T)} C (24F)*

initial, finite path fragment
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Example: traces LTB2.4-54

Let 7 be a TS without terminal states.
Traces(T) & {trace(r) : m € Paths(T)} C (24P)~
Tracessn(T) & {trace(T) : T € Pathsn(T)} C (24F)*

h m TS T with a single
atomic proposition a

{a} 2
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Example: traces LTB2.4-54
Let 7 be a TS without terminal states.
Traces(T) & {trace(r) : m € Paths(T)} C (24P)~
Tracessn(T) & {trace(T) : T € Pathsn(T)} C (24F)*
h m TS T with a single
{a} > atomic proposition a
Traces(T) = {{a}e~, 2*}

Tracessn(T) = {{a}2":n>0} U {@™:m>1}
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Model checking

system Py]|...||Pa requirements
transition specification spec
system T P P

does T satisfy spec ?

—

yes no 4+ error indication

{ model checker J
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Model checking

syntactic description
of Py]|-..||Pn

SOS-rules\ abstraction
from actions

LTB2.4-14A

requirements

l

specification spec

/

state graph of
transition system T

N\

model checker
does 7 satisfy spec ?

~

J

~

yes

no 4+ error indication
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Model checking

syntactic description
of Py]|-..||Pn

requirements

SOS-rules\ abstraction

specification spec

from actions

/

4 )
state graph of
transition system T
N
model checker
does T satisfy spec ?
NS J

~

yes no 4+ error indication
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Model checking

syntactic description
of Py]|-..||Pn

SOS-rules\ abstraction
from actions

LTB2.4-14A

requirements

specification spec,
e.g., LT property

/

f \
state graph of
transition system T

N\

model checker
does T satisfy spec ?

~

J

~

yes

no 4+ error indication
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Linear-time properties (LT properties)
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Linear-time properties (LT properties)

for TS over AP without terminal states

An LT property over AP is a language E of infinite
words over the alphabet ¥ = AP
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Linear-time properties (LT properties)

for TS over AP without terminal states

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P ie., EC (2AP)w.
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Linear-time properties (LT properties)

for TS over AP without terminal states

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P ie., EC (2AP)w.

E.g., for mutual exclusion problems and
AP = {critl, crity, . . }

safety:
set of all infinite words Ag A1 Ay. ..
MUTEX = over 24P such that for all i € N:
crity € A; or crity € A;
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Satisfaction relation for LT properties LTB2.4-15
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Satisfaction relation for LT properties LTB2.4-15

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e, EC (2AP)w.
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Satisfaction relation for LT properties LTB2.4-15

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e, EC (2AP)w.

Satisfaction relation |= for TS:

If 7 is a TS (without terminal states) over AP
and E an LT property over AP then

TEE iff Traces(T)CE
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Satisfaction relation for LT properties LTB2.4-15

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e, EC (2AP)w.

Satisfaction relation |= for TS and states:

If 7 is a TS (without terminal states) over AP
and E an LT property over AP then

TEE iff Traces(T)CE
If s is a state in 7 then
sEE iff Traces(s) C E
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LT properties and trace inclusion 24T -rnace

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e EC (2AP)w.

If 7 is a TS over AP then T |= E iff Traces(T) C E.
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LT properties and trace inclusion 24T -rnace

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e EC (2AP)w.

If 7 is a TS over AP then T |= E iff Traces(T) C E.

Consequence of these definitions:

If 77 and 75 are TS over AP then for all
LT properties E over AP:

Traces(T;) C Traces(B) AL EE= T, EE
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LT properties and trace inclusion 24T -rnace

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e EC (2AP)w.

If 7 is a TS over AP then T |= E iff Traces(T) C E.

Consequence of these definitions:

If 77 and 75 are TS over AP then for all
LT properties E over AP:

Traces(T;) C Traces(B) AL EE= T, EE
N\ /

note: Traces(Ty) C Traces(T;) C E
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LT properties and trace inclusion 24T -rnace

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e EC (2AP)w.

If 7 is a TS over AP then T |= E iff Traces(T) C E.

If 73 and 75 are TS over AP then the
following statements are equivalent:

(1) Traces(T) C Traces(7Ts)

(2) for all LT-properties E over AP:
whenever 7, |= E then T3 E E
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LT properties and trace inclusion 24T -rnace

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e EC (2AP)w.

If 7 is a TS over AP then T |= E iff Traces(T) C E.

If 73 and 75 are TS over AP then the
following statements are equivalent:

(1) Traces(T) C Traces(7Ts)

(2) for all LT-properties E over AP:
whenever 7, |= E then T3 E E

(1) = (2): v
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LT properties and trace inclusion 24T -rnace

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e EC (2AP)w.

If 7 is a TS over AP then T |= E iff Traces(T) C E.

If 73 and 75 are TS over AP then the
following statements are equivalent:

(1) Traces(T) C Traces(7Ts)

(2) for all LT-properties E over AP:
whenever 7, |= E then T3 E E

(2) = (1): consider E = Traces(T,)
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Trace equivalence
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Trace equivalence

Transition systems 7; and 75 over the same set AP
of atomic propositions are called trace equivalent iff

Traces(T;) = Traces(T3)
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Trace equivalence

Transition systems 7; and 75 over the same set AP
of atomic propositions are called trace equivalent iff

Traces(T;) = Traces(T3)

i.e., trace equivalence requires trace inclusion in
both directions
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Trace equivalence

Transition systems 7; and 75 over the same set AP
of atomic propositions are called trace equivalent iff

Traces(T;) = Traces(T3)

i.e., trace equivalence requires trace inclusion in
both directions

Trace equivalent TS satisfy the same LT properties
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LT properties and trace relations S p—

Let 7; and 75 be TS over AP.

The following statements are equivalent:
(1) Traces(T1) C Traces(7T3)
(2) for all LT-properties E: ThE E= Th EFE

The following statements are equivalent:
(1) Traces(Ty) = Traces(73)
(2) for all LT-properties E: Ty EEiff Th | E
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Linear Temporal Logic (LTL) Urise. 1
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Linear Temporal Logic (LTL) Urise. 1

p o= true| a |<p1/\<p2|ﬂ<p

where a € AP
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Linear Temporal Logic (LTL) Urise. 1

p = true| a |<p1/\902|ﬂ90| Op

where a € AP O = next
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Linear Temporal Logic (LTL) Urise. 1

p = true| a |<p1/\<,02|ﬂ<p| Og0|<,01U902

where a € AP O = next U= until
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Linear Temporal Logic (LTL) Urise. 1

p = true| a |<p1/\<,02|ﬂ<p| Og0|<,01U902

where a € AP O = next U= until

atomic
proposition a
ac AP @—0O—0O—0O—0—-0
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Linear Temporal Logic (LTL) Urise. 1

p = true| a |<p1/\<,02|ﬂ<p| Og0|<,01U902

where a € AP O = next U= until
atomic

proposition a

ac AP @—0O—0O—0O—0—-0
next operator a

Oa O—@—0—0—0—0
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Linear Temporal Logic (LTL)

LTLSF3.1-2

p = true| a |<p1/\<,02|ﬂ<p| Og0|<,01U902

U= until

where a € AP O = next
atomic
proposition a
ac AP @—0O—0O—0O—0—-0
next operator a
Oa O—@—0—0—0—0
: a a a b
until operator ~ A
aub 00 0 OO
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Derived operators in LTL LTLSF3.1-2

Q n= true|a|<p1/\<p2|—-go| O<p|g01Ug02

derived operators:

V,—,... as usual
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Derived operators in LTL LTLSF3.1-2

p = true|a|<p1/\<p2|—-<p| O<p|<,01U902

def
derived operators: Op = trueUyp eventually

V,—,... as usual
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Derived operators in LTL LTLSF3.1-2

p = true|a|<p1/\<p2|—.<p| O‘Pl‘PlUSOz

def
derived operators: Op = trueUyp eventually

V,—,... as usual

until operator a a a b

alb @—0—8—@—0—O
eventually b
Ob O—0—0—0—0—0
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Derived operators in LTL

LTLSF3.1-2A

p = true|a|<p1/\<p2|—.<p| O‘Pl‘PlUSOz

def
derived operators: Op = trueUyp eventually

V,—,... as usual Op = —-0-¢ always

until operator a a a b
aUb 0 -0 -0 -0O—-0O

eventually b
Ob O—0—0—0—0—0
always a a a a a a

02 000000
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Next O, until U and eventually ¢ Urise3. 13
O (try_to_send — ) delivered)

try  del
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Next O, until U and eventually ¢ Urise3. 13

O (try_to_send — ) delivered)

try  del

O (try_to_send — try_to_send U delivered)

- ——0—0—0—0—0— -
try try ty del
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Next O, until U and eventually ¢ Urise3. 13
O (try_to_send — ) delivered)

try  del

O (try_to_send — try_to_send U delivered)

- ——0—0—0—0—0— -
try try ty del

O (try_ to_send — ¢ delivered)

- —@ @ @ @ @ o— -
try del
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Examples for LTL formulas LTLSFS. 1-4A

p = true|a|<p1/\<p2|—-<p| O<p|<,01U<P2

eventually always

Qp *f true U @ O ef Q-
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Examples for LTL formulas LTLSFS. 1-4A

p = true|a|<p1/\<p2|—-<p| O<p|<,01U<P2

eventually always

Qp *f true U @ O ef Q-

Examples for LTL formulas:

mutual exclusion: D(—-crit1 \ —-critg)
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Examples for LTL formulas LTLSFS. 1-4A

p = true|a|<p1/\<p2|—-<p| O<p|<,01U<P2

eventually always

Qp *f true U @ O ef Q-

Examples for LTL formulas:
mutual exclusion: D(—-crit1 \ —-critg)

railroad-crossing: D(train_is_near — gate_is_closed)
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Examples for LTL formulas LTLSFS. 1-4A

p = true|a|<p1/\<p2|—-<p| O<p|<,01U<P2

eventually always

Qp *f true U @ O ef Q-

Examples for LTL formulas:
mutual exclusion: D(—-crit1 \ —-critg)
railroad-crossing: D(train_is_near — gate_is_closed)

progress property: [(request — {response)
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Examples for LTL formulas LTLSFS. 1-4A

p = true|a|<p1/\<p2|—-<p| O<p|<,01U<P2

eventually always

Qp *f true U @ O ef Q-

Examples for LTL formulas:
mutual exclusion: D(—-crit1 \ —-critg)

railroad-crossing: train_is_near — gate_is_closed)

O
progress property: [l

(
(request — Oresponse)
traffic light: |:|(

\% O—-red)

99 /152



Infinitely often and eventually forever LTLSFS. 14

p = true|a|<p1/\<p2|—-<p| O<p|<,01U<P2

eventually Q¢ dof true U ¢

always O def Q-
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Infinitely often and eventually forever

LTLSF3.1-4

p = true|a|<p1/\<p2|—-<p| O<p|<,01U<P2

eventually Q¢ ¢ trueU 7
always O def Q-
infinitely often 0o ¢
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Infinitely often and eventually forever

LTLSF3.1-4

p = true|a|<p1/\<p2|—-<p| O<p|<,01U<P2

eventually Q¢ ¢ trueU 7
always Op = -0
infinitely often 0o ¢

e.g., unconditional fairness [crit;

strong fairness OO wait; — OOcrit;
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Infinitely often and eventually forever

LTLSF3.1-4

p = true|a|<p1/\<p2|—-<p| O<p|<,01U<P2

eventually Q¢ ¢ trueU 7
always Op = -0
infinitely often 0o ¢
eventually forever OO

e.g., unconditional fairness [crit;
strong fairness OO wait; — OOcrit;

weak fairness O0wait; — Ocrit;
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LTL-semantics LTLSF3.1-6A
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LTL-semantics LTLSF3.1-6A

interpretation of LTL formulas over traces, i.e.,
infinite words over 24P
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LTL-semantics LTLSF3.1-6A

interpretation of LTL formulas over traces, i.e.,
infinite words over 24P

formalized by a satisfaction relation |= for

e LTL formulas and
e infinite words 0 = Ag A1 Ay ... € (2Ap)w
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Semantics of LTL over infinite words

foro =ApA1 Ay ... € (2AP)w:
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Semantics of LTL over infinite words

foro =ApA1 Ay ... € (2AP)w:

o [ true
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Semantics of LTL over infinite words

foro =ApA1 Ay ... € (2AP)w:

LTLSF3.1-6

o [ true

olEa

iff Ap |= a.,.e., a€A
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Semantics of LTL over infinite words

foro =ApA1 Ay ... € (2AP)w:

o [ true
a|=a iff A0|=a,i.e.,a€Ao
oclEpiNpy iff o ando = o
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Semantics of LTL over infinite words

foro =ApA1 Ay ... € (2AP)w:

olEa

oE—p

o [ true

iff Ap |= a.,.e., a€A

oclEpiNpy iff o ando = o

iff o~
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Semantics of LTL over infinite words

foro =ApA1 Ay ... € (2AP)w:

o [ true

olEa

o
o= Oy

iff Ap |= a.,.e., a€A

oclEpiNpy iff o ando = o

iff o~
iff suffix(o,1)=A1AA;...Fp
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Semantics of LTL over infinite words

foro =ApA1Ay ... € (2AP)w:

o [ true

olEa iff ApfEa.ie,a€A
oclEpiNpy iff o ando = o
oE—p iff o~

ok Qg iff suffix(o,1)=A1AA;...Fp

o p1Uyp,y iff there exists j > 0 such that
suffix(o,j) = AjAis1 Ajy2 - .. E 2 and
suffix(o,i) = Aj A1 Aisa ... E 1 for0<i<j
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LTL Semantics Over TS LTLSF3.1-LTL-WORDS-PATHS
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LT L Se m a n t i CS Ove r T S LTLSF3.1-LTL-WORDS-PATHS

given a TS T = (S, Act, —, Sp, AP, L)
define satisfaction relation |= for
e LTL formulas over AP

e the maximal path fragments and states of 7
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LT L Se m a n t i CS Ove r T S LTLSF3.1-LTL-WORDS-PATHS

given a TS T = (S, Act, —, Sp, AP, L)
define satisfaction relation |= for
e LTL formulas over AP

e the maximal path fragments and states of 7

assumption: T has no terminal states, i.e.,
all maximal path fragments in 7 are infinite
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LTL Semantics Over paths Of TS LTLSF3.1-LTL-WORDS-PATHS
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LTL Semantics Over paths Of TS LTLSF3.1-LTL-WORDS-PATHS

given: TS T = (S, Act,—,Sp, AP, L)
without terminal states
LTL formula ¢ over AP
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LTL Semantics Over paths Of TS LTLSF3.1-LTL-WORDS-PATHS

given: TS T = (S, Act,—,Sp, AP, L)
without terminal states
LTL formula ¢ over AP

interpretation of ¢ over infinite path fragments

T =55%...F¢ iff trace(r) ¢
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LTL Semantics Over paths Of TS LTLSF3.1-LTL-WORDS-PATHS

given: TS T = (S, Act,—,Sp, AP, L)
without terminal states
LTL formula ¢ over AP

interpretation of ¢ over infinite path fragments

T=58%...F¢ iff trace(r) ¢
iff trace(mw) € Words(y)
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LTL Semantics Over paths Of TS LTLSF3.1-LTL-WORDS-PATHS

given: TS T = (S, Act,—,Sp, AP, L)
without terminal states
LTL formula ¢ over AP

interpretation of ¢ over infinite path fragments

T=58%...F¢ iff trace(r) ¢
iff trace(mw) € Words(y)

remind: LT property of an LTL formula:
Words(p) = {o € (2*F)" : o |= ¢}
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LTL semantics over the states of a TS
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LTL semantics over the states of a TS

given: TS T = (S, Act,—,Sp, AP, L)
without terminal states
LTL formula ¢ over AP

interpretation of ¢ over infinite path fragments

T =58%...F¢ iff trace(r) | ¢

interpretation of ¢ over states:

s ¢ iff trace(m) | ¢ for all m € Paths(s)
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LTL semantics over the states of a TS

given: TS T = (S, Act,—,Sp, AP, L)
without terminal states
LTL formula ¢ over AP

interpretation of ¢ over infinite path fragments

T =58%...F¢ iff trace(r) | ¢

interpretation of ¢ over states:

s ¢ iff trace(m) | ¢ for all m € Paths(s)
iff s = Words(yp)
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LTL semantics over the states of a TS

given: TS T = (S, Act,—,Sp, AP, L)
without terminal states
LTL formula ¢ over AP

interpretation of ¢ over infinite path fragments

T =58%...F¢ iff trace(r) | ¢

interpretation of ¢ over states:

s ¢ iff trace(m) | ¢ for all m € Paths(s)
iff s = Words(yp)
A

satisfaction relation for LT properties
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LTL semantics over the states of a TS

given: TS T = (S, Act,—,Sp, AP, L)
without terminal states
LTL formula ¢ over AP

interpretation of ¢ over infinite path fragments

T =58%...F¢ iff trace(r) | ¢

interpretation of ¢ over states:

s ¢ iff trace(m) | ¢ for all m € Paths(s)
iff s = Words(yp)
iff Traces(s) C Words(y)
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Interpretation of LTL formulas over TS imise3 LTS
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Interpretation of LTL formulas over TS imise3 LTS

given: TS T = (S, Act,—,Sp, AP, L)
without terminal states
LTL formula ¢ over AP

T Ee iff sl forall sp€ Sy
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Interpretation of LTL formulas over TS imise3 LTS

given: TS T = (S, Act,—,Sp, AP, L)
without terminal states
LTL formula ¢ over AP

T Ee iff sl forall sp€ Sy
iff trace(w) = ¢ for all m € Paths(T)
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Interpretation of LTL formulas over TS imise3 LTS

given: TS T = (S, Act,—,Sp, AP, L)
without terminal states
LTL formula ¢ over AP

T Ee iff sl forall sp€ Sy
iff trace(w) = ¢ for all m € Paths(T)
iff Traces(7T) C Words(yp)
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Interpretation of LTL formulas over TS

given: TS T = (S, Act,—,Sp, AP, L)
without terminal states
LTL formula ¢ over AP

T Ee iff sl forall sp€ Sy
iff trace(w) = ¢ for all m € Paths(T)
iff Traces(7T) C Words(yp)
iff T = Words(y)
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Interpretation of LTL formulas over TS imise3 LTS

given: TS T = (S, Act,—,Sp, AP, L)
without terminal states
LTL formula ¢ over AP

T Ee iff sl forall sp€ Sy
iff trace(w) = ¢ for all m € Paths(T)
iff Traces(7T) C Words(yp)
iff T = Words(y)

satisfaction relation for LT properties
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Linear-time implementation relations BSEQORS.1-5
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Linear-time implementation relations BSEQORS.1-5

finite trace inclusion and equivalence:
e.g., Tracesfin(T;) C Tracesfin(T)

trace inclusion and trace equivalence:

e.g., Traces(T;) C Traces(Th)
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Linear-time implementation relations BSEQORS.1-5

finite trace inclusion and equivalence:
e.g., Tracesfin(T;) C Tracesfin(T)

preserves all linear-time safety properties

trace inclusion and trace equivalence:

e.g., Traces(T;) C Traces(Th)
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Linear-time implementation relations BSEQORS.1-5

finite trace inclusion and equivalence:
e.g., Tracesfin(T;) C Tracesfin(T)

preserves all linear-time safety properties

trace inclusion and trace equivalence:

e.g., Traces(T;) C Traces(Th)

preserves all LTL properties
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Linear-time implementation relations BSEQORS.1-5

finite trace inclusion and equivalence:
e.g., Tracesfin(T;) C Tracesfin(T)

preserves all linear-time safety properties
trace inclusion and trace equivalence:

e.g., Traces(T;) C Traces(Th)

preserves all LTL properties

* none of the LT relations is compatible with CTL
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Linear-time implementation relations BSEQORS.1-5

finite trace inclusion and equivalence:
e.g., Tracesfin(T;) C Tracesfin(T)

preserves all linear-time safety properties
trace inclusion and trace equivalence:

e.g., Traces(T;) C Traces(Th)

preserves all LTL properties

* none of the LT relations is compatible with CTL

* checking LT relations is computationally hard
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Linear-time implementation relations BSEQORS.1-5

finite trace inclusion and equivalence:
e.g., Tracesfin(T;) C Tracesfin(T)

preserves all linear-time safety properties

trace inclusion and trace equivalence:

e.g., Traces(T;) C Traces(Th)

preserves all LTL properties

* none of the LT relations is compatible with CTL
* checking LT relations is computationally hard

* minimization 7?77
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Minimization w.r.t. trace equivalence?  :soors Lt

Ti: Tr:
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Minimization w.r.t. trace equivalence?  :soors Lt

Ti: Tr:

e Traces(T;) = Traces(Th)
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Minimization w.r.t. trace equivalence?  :soors Lt

Ti: Tr:

e Traces(T;) = Traces(Th)

but 7; and 75 are not isomorphic
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Minimization w.r.t. trace equivalence?  :soors Lt

Ti: Tr:

e Traces(T;) = Traces(Th)
but 7; and 75 are not isomorphic

e T;, T; have 5 states and 7 transitions each
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Minimization w.r.t. trace equivalence?  :soors Lt

Ti: Tr:

e Traces(T;) = Traces(Th)
but 7; and 75 are not isomorphic
e T;, T; have 5 states and 7 transitions each

e there is no smaller TS that is trace-equivalent to 7;
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Classification of implementation relations  sseoors.16
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Classification of implementation relations  :suoors.16

e linear vs. branching time

* linear time: trace relations
* branching time: (bi)simulation relations
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Classification of implementation relations  :suoors.16

e linear vs. branching time

* linear time: trace relations
* branching time: (bi)simulation relations

e (nonsymmetric) preorders vs. equivalences:

*  preorders: trace inclusion, simulation
* equivalences: trace equivalence, bisimulation
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Classification of implementation relations  :suoors.16

e linear vs. branching time

* linear time: trace relations
* branching time: (bi)simulation relations

e (nonsymmetric) preorders vs. equivalences:

*  preorders: trace inclusion, simulation
* equivalences: trace equivalence, bisimulation

e strong vs. weak relations
* strong: reasoning about all transitions
* weak: abstraction from stutter steps
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Summary: equivalences CTLEGS.2-10

[ LTL equivalence ]
A

—
bisimulation CTL equivalence
equivalence CTL* equivalence

~—_

for finitely
branching TS
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Summary: equivalences

CTLEQ5.2-10

[trace equivalence}
7\

bisimulation
equivalence

for finitely

>{ LTL equivalence J
A

CTL equivalence
CTL* equivalence

branching TS
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Summary: equivalences

finite
trace equivalence

A

CTLEQ5.2-10

[trace equivalence}
7\

bisimulation
equivalence

for finitely

>{ LTL equivalence J
A

CTL equivalence
CTL* equivalence

branching TS
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Summary: equivalences

finite
trace equivalence J

|

CTLEQ5.2-10

S

equivalence w.r.t. }

’L LTL safety properties

\

LTL equivalence J

A

CTL equivalence
CTL* equivalence

7\
[trace equivalence} >{
7\
bisimulation
equivalence
~——0
for finitely

branching TS
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