MOdel checking INTRO/VAL1.3-4

1/152

Model checking o a4

parallel
system

requirements

abstract
model M

specification
spec

N

model checker

2/152

Model checking o a4

parallel
system

abstract specification
model M / spec

model checker

requirements

fully automatic verification tool
checks whether M sat spec

3/152

Model checking o a4

parallel
system

abstract specification
model M / spec

model checker

requirements

fully automatic verification tool
checks whether M sat spec

o

4/152

Model checking o a4

parallel
system

abstract specification
model M / spec

model checker

requirements

fully automatic verification tool
checks whether M sat spec

N

no + countefexample yes

5/152

Decidability of the model checking problem? ...

6/152

Decidability of the model checking problem? ...

parallel system

abstract model M

requirements

specification spec

hAvd

model checker

decision algorithm for M sat spec

no

N

yes

7/152

Decidability of the model checking problem? ...

parallel system requirements

abstract model M specification spec

Turing machine \ / “halt for every input”

model checker

decision algorithm for M sat spec

N

no yes

8/152

General model checking problem is undecidable;

parallel system

abstract model M
Turing machine

requirements

specification spec
“halt for every input”

Avd

model checker

M for M sat spec

__

9/152

To ensure decidability . .. o a6

real system requirements

abstract model specification

model checker
“does M sat spec hold 7"

/ N

yes no

10/152

To ensure decidability . .. o a6

real system requirements

abstraction
semantics

abstract model specification

model checker
“does M sat spec hold 7"

/ N

yes no

11/152

To ensure decidability . .. o a6

real system requirements

abstraction
semantics

abstract model specification

finite
transition system

F@ model checker

“does M sat spec hold 7"

/ N

yes no

12/152

To ensure decidability . .. o a6

real system requirements
- /
abstraction specification
semantics A
finite transition O/,\

abstract model system

finite
transition system

F@ model checker

“does M sat spec hold 7"

/ N

yes no

13/152

To ensure decidability . .. o a6

real system requirements
- /
abstraction specification
semantics A
finite transition O/,\

abstract model system

transitfilgr;ti stem or temporal formula, e.g.,
! O(request — {enter _crit)

F@ model checker

“does M sat spec hold 7"

/ N

yes no

14 /152

Model checking vs other validation techniques:

The validation techniques (testing, simulation,
deductive verification, model checking) are
complementary to each other.

15/152

Model checking vs other validation techniques:

The validation techniques (testing, simulation,
deductive verification, model checking) are
complementary to each other.

model checking
e most efficient validation technique, fully automatic

e but mostly only applicable for finite models with
“small” (or “sufficiently structured™) state space
e industrial applications:

* hardware systems
* communication protocols
* coordination protocols for distributed systems

16 /152

Historical notes

1976 Keller
1977 Pnueli

1981 Clarke/Emerson
Queille/Sifakis

INTRO/VAL1.3-8

transition systems (TS)
to model parallel systems

temporal logic
to specify parallel systems

first model checker

17 /152

Historical notes

1976 Keller
1977 Pnueli

1981 Clarke/Emerson
Queille/Sifakis

INTRO/VAL1.3-8

transition systems (TS)
to model parallel systems

temporal logic LTL
to specify parallel systems

first model checker
for CTL

18/152

Historical notes

1976

1977

1981

1983

1985
1986

Keller
Pnueli
Clarke/Emerson

Queille/Sifakis
Kanellakis/Smolka

Lichtenstein /Pnueli
Vardi/Wolper

INTRO/VAL1.3-8

transition systems (TS)
to model parallel systems

temporal logic LTL
to specify parallel systems

first model checker
for CTL

model checking
for homogeneous
TS-based specifications

model checking
for LTL

19/152

Historical notes VALL3-9

1976 Keller transition systems
1977 Pnueli temporal logic LTL
1981 Clarke/Emerson first model checker

Queille/Sifakis for CTL

1985 Lichtenstein/Pnueli model checking
1986 Vardi/Wolper for LTL

state explosion problem

state space of industrial systems too large
to be handled by naive implementations of
model checking algorithms

20 /152

Historical notes

1976
1977
1981

1985
1986

Keller
Pnueli
Clarke/Emerson

Queille/Sifakis

Lichtenstein/Pnueli
Vardi/Wolper

state explosion problem

ca. since 1990
“advanced techniques”

}

VAL1.3-9

transition systems

temporal logic LTL

first model checker
for CTL

model checking
for LTL

21/152

Historical notes VALL3-9

1976 Keller transition systems
1977 Pnueli temporal logic LTL
1981 Clarke/Emerson first model checker

Queille/Sifakis for CTL

1985 Lichtenstein/Pnueli model checking
1986 Vardi/Wolper for LTL

state explosion problem | o hojic model checking

ca. since 1990 t'V\I/itthDD(Sj)
“advanced techniques” par:la order reduction

22/152

Historical notes VALL3-9

1976 Keller transition systems
1977 Pnueli temporal logic LTL
1981 Clarke/Emerson first model checker

Queille/Sifakis for CTL

1985 Lichtenstein/Pnueli model checking
1986 Vardi/Wolper for LTL

state explosion problem | o hojic model checking

ca. since 1990 t_V\llitthDDZ)
“advanced techniques” par:|a order reduction

model checking for infinite systems, quantitative analysis,
e.g., real-time systems, probabilistic systems

23/152

Transition system (TS) e

A transition system is a tuple

T = (S, Act,—>, S, AP, L)

24/152

Transition system (TS) e

A transition system is a tuple
T = (S, Act,—, Sp, AP, L)

e S is the state space, i.e., set of states,

25 /152

Transition system (TS) e

A transition system is a tuple
T = (S, Act,—, Sp, AP, L)

e S is the state space, i.e., set of states,
e Act is a set of actions,

26 /152

Transition system (TS) e

A transition system is a tuple
T = (S, Act,—, Sp, AP, L)

e S is the state space, i.e., set of states,
e Act is a set of actions,
e — C S x Act x S is the transition relation,

27 /152

Transition system (TS) e

A transition system is a tuple
T = (S, Act,—, Sp, AP, L)
e S is the state space, i.e., set of states,

e Act is a set of actions,
e — C S x Act X S is the transition relation,

i.e., transitions have the form s Q, s/
where 5,5’ € S and a € Act

28/152

Transition system (TS) e

A transition system is a tuple
T = (S, Act,—, Sp, AP, L)
e S is the state space, i.e., set of states,

e Act is a set of actions,
e — C S x Act X S is the transition relation,

i.e., transitions have the form s Q, s/
where 5,5’ € S and a € Act

e So C S the set of initial states,

29/152

Transition system (TS) e

A transition system is a tuple
T = (S, Act,—, Sp, AP, L)
e S is the state space, i.e., set of states,

e Act is a set of actions,
e — C S x Act X S is the transition relation,

i.e., transitions have the form s Q, s/
where 5,5’ € S and a € Act

e Sp C S the set of initial states,
e AP a set of atomic propositions,
o L : S — 2%P the labeling function

30/152

Transition system for beverage machine 8142

31/152

Transition system for beverage machine 8142

state space S = {pay, select, coke, sprite}
set of initial states: So = {pay}

32/152

Transition system for beverage machine 8142

actions:
coin
T
get_sprite
get_coke

state space S = {pay, select, coke, sprite}
set of initial states: So = {pay}

33/152

Transition system for beverage machine 8142

actions:
coin
T
get_sprite
get_coke

state space S = {pay, select, coke, sprite}

set of initial states: So = {pay}

set of atomic propositions: AP = {pay, drink}

labeling function: L(coke) = L(sprite) = {drink}
L(pay) = {pay}, L(select) =0

34/152

Transition system for beverage machine 18142

actions:
coin
T
get_sprite
get_coke

state space S = {pay, select, coke, sprite}
set of initial states: So = {pay}
set of atomic propositions: AP =S

labeling function: L(s) = {s} for each state s

35/152

“Behaviour” of transition systems

possible behaviours of a TS result from:

select nondeterministically an initial state s € Sg
WHILE s is non-terminal DO

— . Q
select nondeterministically a transition s — s’

- execute the action o and put s := 5’

36 /152

“Behaviour” of transition systems

possible behaviours of a TS result from:

select nondeterministically an initial state s € Sg
WHILE s is non-terminal DO

— . Q
select nondeterministically a transition s — s’
execute the action o and put s := 5’

0D

executions: maximal “transition sequences”

a " Q .
S0 — 5 —> 85— ... withs €S,

37/152

“Behaviour” of transition systems

possible behaviours of a TS result from:

select nondeterministically an initial state s € Sg
WHILE s is non-terminal DO

— . Q
select nondeterministically a transition s — s’

- execute the action o and put s := 5’

executions: maximal “transition sequences”

a " Q .
S0 — 5 —> 85— ... withs €S,

reachable fragment:

Reach(T) = set of all states that are reachable from
an initial state through some execution

38/152

Linear-time vs branching-time Lrp2.4-1

39/152

Linear-time vs branching-time Lrp2.4-1

transition system

T = (S, Act,—, Sp, AP, L)

40 /152

Linear-time vs branching-time Lrp2.4-1

transition system

T = (S, Act,—, Sp, AP, L)

abstraction from actions

state graph
+ labeling

41/152

Linear-time vs branching-time Lrp2.4-1

T = (S, Act,—, Sp, AP, L)

transition system

abstraction from actions

state graph
+ labeling

linear-time view

/ \ branching-time view

42/152

Linear-time vs branching-time

LTB2.4-1

transition system

T = (S, Act,—, Sp, AP, L)

state graph
+ labeling

linear-time view
path-based
state sequences

irrelevant

branching structure

abstraction from actions

/ \ branching-time view

nondeterministic
branches

state & branches

43/152

Linear-time vs branching-time

LTB2.4-1-TRACES

transition system

T = (S, Act,—, Sp, AP, L)

state graph
+ labeling

linear-time view

state sequences

abstraction from actions

AN

branching-time view

state & branches

44 /152

Linear-time vs branching-time

LTB2.4-1-TRACES

transition system

T = (S, Act,—, Sp, AP, L)

state graph
+ labeling

linear-time view

state sequences

Y

traces

abstraction from actions

VAN

on AP

projection | branching-time view

state & branches

J

computation tree

45/152

46 /152

Traces A

for TS with labeling function L : § — 24P

execution: states + actions

(87 (% Q . .. -
Sp —> §] —> 5p —> ... infinite or finite

paths: sequences of states
S S1S ... infinite or 59515, finite

47 /152

Traces

LTB2.4-4

for TS with labeling function L : § — 24P

)

[0 7] a3

execution: states + actions

S

S0 > 51

> 5

7 e e

. infinite or finite

S0515...

paths: sequences of states
infinite or Sp 51 . .. S, finite

|

traces: sequences of sets of atomic propositions

L(sp) L(s1) L(sp) - --

48 /152

Traces

LTB2.4-4

for TS with labeling function L : § — 24P

)

[0 7] a3

execution: states + actions

S

S0 > 51

> 5

7 e e

. infinite or finite

SHS15...

paths: sequences of states
infinite or Sp 51 . .. S, finite

|

traces: sequences of sets of atomic propositions

L(so) L(s1) L(sp) ... € (2*P)u (2*P)*

49 /152

Traces A

for TS with labeling function L : § — 24P

execution: states + actions

(87 (% Q . .. -
Sp —> §] —> 5p —> ... infinite or finite

paths: sequences of states
S S1S ... infinite or 59515, finite

|

traces: sequences of sets of atomic propositions
L(so) L(s1) L(sp) ... € (2*P)u (2*P)*

for simplicity: we often assume that the given TS has
no terminal states

50 /152

Traces A

for TS with labeling function L : § — 24P

execution: states 4+ actions
o

Sop —> 5] —> 5p —> ... infinite or “firre_

paths: sequences of states

0515 ... infinite or sgS—=rsy—fiite_

traces: sequences of sets of atomic propositions
L(so) L(s1) L(s2) - .. € (247)* u 289

for simplicity: we often assume that the given TS has
no terminal states

51/152

Traces of a transition system LrB2.45

Let 7 bea TS

Traces(T) &ef {trace(r) : m € Paths(T)}

Tracesgn(T) &ef {trace(T) : © € Pathsn(T)}

52 /152

Traces of a transition system LrB2.45

Let 7 bea TS

Traces(T) &ef {trace(r) : w € Paths(T)}

initial, maximal path fragment

Tracesgin(T) &ef {trace(T) : © € Pathsn(T)}

initial, finite path fragment

53 /152

Traces of a transition system LrB2.45

Let 7 be a TS «—| without terminal states

Traces(T) &ef {trace(r) : w € Paths(T)}

initial, infinite path fragment

Tracesgin(T) &ef {trace(T) : © € Pathsn(T)}

initial, finite path fragment

54 /152

Traces of a transition system LrB2.45

Let 7 be a TS «—| without terminal states

Traces(T) def {trace(ﬂ) = Paths(T)} C (24Py”

initial, infinite path fragment

Tracesgin(T) &ef {trace(T) : T € Pathss(T)} C (24F)*

initial, finite path fragment

55 /152

Example: traces LTB2.4-54

Let 7 be a TS without terminal states.
Traces(T) & {trace(r) : m € Paths(T)} C (24P)~
Tracessn(T) & {trace(T) : T € Pathsn(T)} C (24F)*

h m TS T with a single
atomic proposition a

{a} 2

56 /152

Example: traces LTB2.4-54
Let 7 be a TS without terminal states.
Traces(T) & {trace(r) : m € Paths(T)} C (24P)~
Tracessn(T) & {trace(T) : T € Pathsn(T)} C (24F)*
h m TS T with a single
{a} > atomic proposition a
Traces(T) = {{a}e~, 2*}

Tracessn(T) = {{a}2":n>0} U {@™:m>1}

57 /152

Model checking

system Py]|...||Pa requirements
transition specification spec
system T P P

does T satisfy spec ?

—

yes no 4+ error indication

{ model checker J

58 /152

Model checking

syntactic description
of Py]|-..||Pn

SOS-rules\ abstraction
from actions

LTB2.4-14A

requirements

l

specification spec

/

state graph of
transition system T

N\

model checker
does 7 satisfy spec ?

~

J

~

yes

no 4+ error indication

59 /152

Model checking

syntactic description
of Py]|-..||Pn

requirements

SOS-rules\ abstraction

specification spec

from actions

/

4)
state graph of
transition system T
N
model checker
does T satisfy spec ?
NS J

~

yes no 4+ error indication

60 /152

Model checking

syntactic description
of Py]|-..||Pn

SOS-rules\ abstraction
from actions

LTB2.4-14A

requirements

specification spec,
e.g., LT property

/

f \
state graph of
transition system T

N\

model checker
does T satisfy spec ?

~

J

~

yes

no 4+ error indication

61 /152

Linear-time properties (LT properties)

62 /152

Linear-time properties (LT properties)

for TS over AP without terminal states

An LT property over AP is a language E of infinite
words over the alphabet ¥ = AP

63/152

Linear-time properties (LT properties)

for TS over AP without terminal states

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P ie., EC (2AP)w.

64 /152

Linear-time properties (LT properties)

for TS over AP without terminal states

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P ie., EC (2AP)w.

E.g., for mutual exclusion problems and
AP = {critl, crity, . . }

safety:
set of all infinite words Ag A1 Ay. ..
MUTEX = over 24P such that for all i € N:
crity € A; or crity € A;

65 /152

Satisfaction relation for LT properties LTB2.4-15

66 /152

Satisfaction relation for LT properties LTB2.4-15

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e, EC (2AP)w.

67 /152

Satisfaction relation for LT properties LTB2.4-15

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e, EC (2AP)w.

Satisfaction relation |= for TS:

If 7 is a TS (without terminal states) over AP
and E an LT property over AP then

TEE iff Traces(T)CE

68 /152

Satisfaction relation for LT properties LTB2.4-15

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e, EC (2AP)w.

Satisfaction relation |= for TS and states:

If 7 is a TS (without terminal states) over AP
and E an LT property over AP then

TEE iff Traces(T)CE
If s is a state in 7 then
sEE iff Traces(s) C E

69 /152

LT properties and trace inclusion 24T -rnace

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e EC (2AP)w.

If 7 is a TS over AP then T |= E iff Traces(T) C E.

70/152

LT properties and trace inclusion 24T -rnace

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e EC (2AP)w.

If 7 is a TS over AP then T |= E iff Traces(T) C E.

Consequence of these definitions:

If 77 and 75 are TS over AP then for all
LT properties E over AP:

Traces(T;) C Traces(B) AL EE= T, EE

71/152

LT properties and trace inclusion 24T -rnace

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e EC (2AP)w.

If 7 is a TS over AP then T |= E iff Traces(T) C E.

Consequence of these definitions:

If 77 and 75 are TS over AP then for all
LT properties E over AP:

Traces(T;) C Traces(B) AL EE= T, EE
N\ /

note: Traces(Ty) C Traces(T;) C E

72 /152

LT properties and trace inclusion 24T -rnace

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e EC (2AP)w.

If 7 is a TS over AP then T |= E iff Traces(T) C E.

If 73 and 75 are TS over AP then the
following statements are equivalent:

(1) Traces(T) C Traces(7Ts)

(2) for all LT-properties E over AP:
whenever 7, |= E then T3 E E

73 /152

LT properties and trace inclusion 24T -rnace

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e EC (2AP)w.

If 7 is a TS over AP then T |= E iff Traces(T) C E.

If 73 and 75 are TS over AP then the
following statements are equivalent:

(1) Traces(T) C Traces(7Ts)

(2) for all LT-properties E over AP:
whenever 7, |= E then T3 E E

(1) = (2): v

74 /152

LT properties and trace inclusion 24T -rnace

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e EC (2AP)w.

If 7 is a TS over AP then T |= E iff Traces(T) C E.

If 73 and 75 are TS over AP then the
following statements are equivalent:

(1) Traces(T) C Traces(7Ts)

(2) for all LT-properties E over AP:
whenever 7, |= E then T3 E E

(2) = (1): consider E = Traces(T,)

75/152

Trace equivalence

76 /152

Trace equivalence

Transition systems 7; and 75 over the same set AP
of atomic propositions are called trace equivalent iff

Traces(T;) = Traces(T3)

77/152

Trace equivalence

Transition systems 7; and 75 over the same set AP
of atomic propositions are called trace equivalent iff

Traces(T;) = Traces(T3)

i.e., trace equivalence requires trace inclusion in
both directions

78 /152

Trace equivalence

Transition systems 7; and 75 over the same set AP
of atomic propositions are called trace equivalent iff

Traces(T;) = Traces(T3)

i.e., trace equivalence requires trace inclusion in
both directions

Trace equivalent TS satisfy the same LT properties

79/152

LT properties and trace relations S p—

Let 7; and 75 be TS over AP.

The following statements are equivalent:
(1) Traces(T1) C Traces(7T3)
(2) for all LT-properties E: ThE E= Th EFE

The following statements are equivalent:
(1) Traces(Ty) = Traces(73)
(2) for all LT-properties E: Ty EEiff Th | E

80 /152

Linear Temporal Logic (LTL) Urise. 1

81/152

Linear Temporal Logic (LTL) Urise. 1

p o= true| a |<p1/\<p2|ﬂ<p

where a € AP

82 /152

Linear Temporal Logic (LTL) Urise. 1

p = true| a |<p1/\902|ﬂ90| Op

where a € AP O = next

83 /152

Linear Temporal Logic (LTL) Urise. 1

p = true| a |<p1/\<,02|ﬂ<p| Og0|<,01U902

where a € AP O = next U= until

84 /152

Linear Temporal Logic (LTL) Urise. 1

p = true| a |<p1/\<,02|ﬂ<p| Og0|<,01U902

where a € AP O = next U= until

atomic
proposition a
ac AP @—0O—0O—0O—0—-0

85/152

Linear Temporal Logic (LTL) Urise. 1

p = true| a |<p1/\<,02|ﬂ<p| Og0|<,01U902

where a € AP O = next U= until
atomic

proposition a

ac AP @—0O—0O—0O—0—-0
next operator a

Oa O—@—0—0—0—0

86 /152

Linear Temporal Logic (LTL)

LTLSF3.1-2

p = true| a |<p1/\<,02|ﬂ<p| Og0|<,01U902

U= until

where a € AP O = next
atomic
proposition a
ac AP @—0O—0O—0O—0—-0
next operator a
Oa O—@—0—0—0—0
: a a a b
until operator ~ A
aub 00 0 OO

87 /152

Derived operators in LTL LTLSF3.1-2

Q n= true|a|<p1/\<p2|—-go| O<p|g01Ug02

derived operators:

V,—,... as usual

88 /152

Derived operators in LTL LTLSF3.1-2

p = true|a|<p1/\<p2|—-<p| O<p|<,01U902

def
derived operators: Op = trueUyp eventually

V,—,... as usual

89 /152

Derived operators in LTL LTLSF3.1-2

p = true|a|<p1/\<p2|—.<p| O‘Pl‘PlUSOz

def
derived operators: Op = trueUyp eventually

V,—,... as usual

until operator a a a b

alb @—0—8—@—0—O
eventually b
Ob O—0—0—0—0—0

90 /152

Derived operators in LTL

LTLSF3.1-2A

p = true|a|<p1/\<p2|—.<p| O‘Pl‘PlUSOz

def
derived operators: Op = trueUyp eventually

V,—,... as usual Op = —-0-¢ always

until operator a a a b
aUb 0 -0 -0 -0O—-0O

eventually b
Ob O—0—0—0—0—0
always a a a a a a

02 000000

91/152

Next O, until U and eventually ¢ Urise3. 13
O (try_to_send —) delivered)

try del

92/152

Next O, until U and eventually ¢ Urise3. 13

O (try_to_send —) delivered)

try del

O (try_to_send — try_to_send U delivered)

- ——0—0—0—0—0— -
try try ty del

93/152

Next O, until U and eventually ¢ Urise3. 13
O (try_to_send —) delivered)

try del

O (try_to_send — try_to_send U delivered)

- ——0—0—0—0—0— -
try try ty del

O (try_ to_send — ¢ delivered)

- —@ @ @ @ @ o— -
try del

94 /152

Examples for LTL formulas LTLSFS. 1-4A

p = true|a|<p1/\<p2|—-<p| O<p|<,01U<P2

eventually always

Qp *f true U @ O ef Q-

95 /152

Examples for LTL formulas LTLSFS. 1-4A

p = true|a|<p1/\<p2|—-<p| O<p|<,01U<P2

eventually always

Qp *f true U @ O ef Q-

Examples for LTL formulas:

mutual exclusion: D(—-crit1 \ —-critg)

96 /152

Examples for LTL formulas LTLSFS. 1-4A

p = true|a|<p1/\<p2|—-<p| O<p|<,01U<P2

eventually always

Qp *f true U @ O ef Q-

Examples for LTL formulas:
mutual exclusion: D(—-crit1 \ —-critg)

railroad-crossing: D(train_is_near — gate_is_closed)

97 /152

Examples for LTL formulas LTLSFS. 1-4A

p = true|a|<p1/\<p2|—-<p| O<p|<,01U<P2

eventually always

Qp *f true U @ O ef Q-

Examples for LTL formulas:
mutual exclusion: D(—-crit1 \ —-critg)
railroad-crossing: D(train_is_near — gate_is_closed)

progress property: [(request — {response)

98 /152

Examples for LTL formulas LTLSFS. 1-4A

p = true|a|<p1/\<p2|—-<p| O<p|<,01U<P2

eventually always

Qp *f true U @ O ef Q-

Examples for LTL formulas:
mutual exclusion: D(—-crit1 \ —-critg)

railroad-crossing: train_is_near — gate_is_closed)

O
progress property: [l

(
(request — Oresponse)
traffic light: |:|(

\% O—-red)

99 /152

Infinitely often and eventually forever LTLSFS. 14

p = true|a|<p1/\<p2|—-<p| O<p|<,01U<P2

eventually Q¢ dof true U ¢

always O def Q-

100 /152

Infinitely often and eventually forever

LTLSF3.1-4

p = true|a|<p1/\<p2|—-<p| O<p|<,01U<P2

eventually Q¢ ¢ trueU 7
always O def Q-
infinitely often 0o ¢

101 /152

Infinitely often and eventually forever

LTLSF3.1-4

p = true|a|<p1/\<p2|—-<p| O<p|<,01U<P2

eventually Q¢ ¢ trueU 7
always Op = -0
infinitely often 0o ¢

e.g., unconditional fairness [crit;

strong fairness OO wait; — OOcrit;

102 /152

Infinitely often and eventually forever

LTLSF3.1-4

p = true|a|<p1/\<p2|—-<p| O<p|<,01U<P2

eventually Q¢ ¢ trueU 7
always Op = -0
infinitely often 0o ¢
eventually forever OO

e.g., unconditional fairness [crit;
strong fairness OO wait; — OOcrit;

weak fairness O0wait; — Ocrit;

103 /152

LTL-semantics LTLSF3.1-6A

104 /152

LTL-semantics LTLSF3.1-6A

interpretation of LTL formulas over traces, i.e.,
infinite words over 24P

105 /152

LTL-semantics LTLSF3.1-6A

interpretation of LTL formulas over traces, i.e.,
infinite words over 24P

formalized by a satisfaction relation |= for

e LTL formulas and
e infinite words 0 = Ag A1 Ay ... € (2Ap)w

106 / 152

Semantics of LTL over infinite words

foro =ApA1 Ay ... € (2AP)w:

107 /152

Semantics of LTL over infinite words

foro =ApA1 Ay ... € (2AP)w:

o [true

108 /152

Semantics of LTL over infinite words

foro =ApA1 Ay ... € (2AP)w:

LTLSF3.1-6

o [true

olEa

iff Ap |= a.,.e., a€A

109 /152

Semantics of LTL over infinite words

foro =ApA1 Ay ... € (2AP)w:

o [true
a|=a iff A0|=a,i.e.,a€Ao
oclEpiNpy iff o ando = o

110 /152

Semantics of LTL over infinite words

foro =ApA1 Ay ... € (2AP)w:

olEa

oE—p

o [true

iff Ap |= a.,.e., a€A

oclEpiNpy iff o ando = o

iff o~

111/152

Semantics of LTL over infinite words

foro =ApA1 Ay ... € (2AP)w:

o [true

olEa

o
o= Oy

iff Ap |= a.,.e., a€A

oclEpiNpy iff o ando = o

iff o~
iff suffix(o,1)=A1AA;...Fp

112 /152

Semantics of LTL over infinite words

foro =ApA1Ay ... € (2AP)w:

o [true

olEa iff ApfEa.ie,a€A
oclEpiNpy iff o ando = o
oE—p iff o~

ok Qg iff suffix(o,1)=A1AA;...Fp

o p1Uyp,y iff there exists j > 0 such that
suffix(o,j) = AjAis1 Ajy2 - .. E 2 and
suffix(o,i) = Aj A1 Aisa ... E 1 for0<i<j

113 /152

LTL Semantics Over TS LTLSF3.1-LTL-WORDS-PATHS

114 /152

LT L Se m a n t i CS Ove r T S LTLSF3.1-LTL-WORDS-PATHS

given a TS T = (S, Act, —, Sp, AP, L)
define satisfaction relation |= for
e LTL formulas over AP

e the maximal path fragments and states of 7

115 /152

LT L Se m a n t i CS Ove r T S LTLSF3.1-LTL-WORDS-PATHS

given a TS T = (S, Act, —, Sp, AP, L)
define satisfaction relation |= for
e LTL formulas over AP

e the maximal path fragments and states of 7

assumption: T has no terminal states, i.e.,
all maximal path fragments in 7 are infinite

116 /152

LTL Semantics Over paths Of TS LTLSF3.1-LTL-WORDS-PATHS

117 /152

LTL Semantics Over paths Of TS LTLSF3.1-LTL-WORDS-PATHS

given: TS T = (S, Act,—,Sp, AP, L)
without terminal states
LTL formula ¢ over AP

118 /152

LTL Semantics Over paths Of TS LTLSF3.1-LTL-WORDS-PATHS

given: TS T = (S, Act,—,Sp, AP, L)
without terminal states
LTL formula ¢ over AP

interpretation of ¢ over infinite path fragments

T =55%...F¢ iff trace(r) ¢

119/152

LTL Semantics Over paths Of TS LTLSF3.1-LTL-WORDS-PATHS

given: TS T = (S, Act,—,Sp, AP, L)
without terminal states
LTL formula ¢ over AP

interpretation of ¢ over infinite path fragments

T=58%...F¢ iff trace(r) ¢
iff trace(mw) € Words(y)

120 /152

LTL Semantics Over paths Of TS LTLSF3.1-LTL-WORDS-PATHS

given: TS T = (S, Act,—,Sp, AP, L)
without terminal states
LTL formula ¢ over AP

interpretation of ¢ over infinite path fragments

T=58%...F¢ iff trace(r) ¢
iff trace(mw) € Words(y)

remind: LT property of an LTL formula:
Words(p) = {o € (2*F)" : o |= ¢}

121 /152

LTL semantics over the states of a TS

122 /152

LTL semantics over the states of a TS

given: TS T = (S, Act,—,Sp, AP, L)
without terminal states
LTL formula ¢ over AP

interpretation of ¢ over infinite path fragments

T =58%...F¢ iff trace(r) | ¢

interpretation of ¢ over states:

s ¢ iff trace(m) | ¢ for all m € Paths(s)

123 /152

LTL semantics over the states of a TS

given: TS T = (S, Act,—,Sp, AP, L)
without terminal states
LTL formula ¢ over AP

interpretation of ¢ over infinite path fragments

T =58%...F¢ iff trace(r) | ¢

interpretation of ¢ over states:

s ¢ iff trace(m) | ¢ for all m € Paths(s)
iff s = Words(yp)

124 /152

LTL semantics over the states of a TS

given: TS T = (S, Act,—,Sp, AP, L)
without terminal states
LTL formula ¢ over AP

interpretation of ¢ over infinite path fragments

T =58%...F¢ iff trace(r) | ¢

interpretation of ¢ over states:

s ¢ iff trace(m) | ¢ for all m € Paths(s)
iff s = Words(yp)
A

satisfaction relation for LT properties

125 /152

LTL semantics over the states of a TS

given: TS T = (S, Act,—,Sp, AP, L)
without terminal states
LTL formula ¢ over AP

interpretation of ¢ over infinite path fragments

T =58%...F¢ iff trace(r) | ¢

interpretation of ¢ over states:

s ¢ iff trace(m) | ¢ for all m € Paths(s)
iff s = Words(yp)
iff Traces(s) C Words(y)

126 /152

Interpretation of LTL formulas over TS imise3 LTS

127 /152

Interpretation of LTL formulas over TS imise3 LTS

given: TS T = (S, Act,—,Sp, AP, L)
without terminal states
LTL formula ¢ over AP

T Ee iff sl forall sp€ Sy

128 /152

Interpretation of LTL formulas over TS imise3 LTS

given: TS T = (S, Act,—,Sp, AP, L)
without terminal states
LTL formula ¢ over AP

T Ee iff sl forall sp€ Sy
iff trace(w) = ¢ for all m € Paths(T)

129 /152

Interpretation of LTL formulas over TS imise3 LTS

given: TS T = (S, Act,—,Sp, AP, L)
without terminal states
LTL formula ¢ over AP

T Ee iff sl forall sp€ Sy
iff trace(w) = ¢ for all m € Paths(T)
iff Traces(7T) C Words(yp)

130/152

Interpretation of LTL formulas over TS

given: TS T = (S, Act,—,Sp, AP, L)
without terminal states
LTL formula ¢ over AP

T Ee iff sl forall sp€ Sy
iff trace(w) = ¢ for all m € Paths(T)
iff Traces(7T) C Words(yp)
iff T = Words(y)

131/152

Interpretation of LTL formulas over TS imise3 LTS

given: TS T = (S, Act,—,Sp, AP, L)
without terminal states
LTL formula ¢ over AP

T Ee iff sl forall sp€ Sy
iff trace(w) = ¢ for all m € Paths(T)
iff Traces(7T) C Words(yp)
iff T = Words(y)

satisfaction relation for LT properties

132/152

Linear-time implementation relations BSEQORS.1-5

133 /152

Linear-time implementation relations BSEQORS.1-5

finite trace inclusion and equivalence:
e.g., Tracesfin(T;) C Tracesfin(T)

trace inclusion and trace equivalence:

e.g., Traces(T;) C Traces(Th)

134 /152

Linear-time implementation relations BSEQORS.1-5

finite trace inclusion and equivalence:
e.g., Tracesfin(T;) C Tracesfin(T)

preserves all linear-time safety properties

trace inclusion and trace equivalence:

e.g., Traces(T;) C Traces(Th)

135 /152

Linear-time implementation relations BSEQORS.1-5

finite trace inclusion and equivalence:
e.g., Tracesfin(T;) C Tracesfin(T)

preserves all linear-time safety properties

trace inclusion and trace equivalence:

e.g., Traces(T;) C Traces(Th)

preserves all LTL properties

136 /152

Linear-time implementation relations BSEQORS.1-5

finite trace inclusion and equivalence:
e.g., Tracesfin(T;) C Tracesfin(T)

preserves all linear-time safety properties
trace inclusion and trace equivalence:

e.g., Traces(T;) C Traces(Th)

preserves all LTL properties

* none of the LT relations is compatible with CTL

137 /152

Linear-time implementation relations BSEQORS.1-5

finite trace inclusion and equivalence:
e.g., Tracesfin(T;) C Tracesfin(T)

preserves all linear-time safety properties
trace inclusion and trace equivalence:

e.g., Traces(T;) C Traces(Th)

preserves all LTL properties

* none of the LT relations is compatible with CTL

* checking LT relations is computationally hard

138 /152

Linear-time implementation relations BSEQORS.1-5

finite trace inclusion and equivalence:
e.g., Tracesfin(T;) C Tracesfin(T)

preserves all linear-time safety properties

trace inclusion and trace equivalence:

e.g., Traces(T;) C Traces(Th)

preserves all LTL properties

* none of the LT relations is compatible with CTL
* checking LT relations is computationally hard

* minimization 7?77

139/152

Minimization w.r.t. trace equivalence? :soors Lt

Ti: Tr:

140 /152

Minimization w.r.t. trace equivalence? :soors Lt

Ti: Tr:

e Traces(T;) = Traces(Th)

141 /152

Minimization w.r.t. trace equivalence? :soors Lt

Ti: Tr:

e Traces(T;) = Traces(Th)

but 7; and 75 are not isomorphic

142 /152

Minimization w.r.t. trace equivalence? :soors Lt

Ti: Tr:

e Traces(T;) = Traces(Th)
but 7; and 75 are not isomorphic

e T;, T; have 5 states and 7 transitions each

143 /152

Minimization w.r.t. trace equivalence? :soors Lt

Ti: Tr:

e Traces(T;) = Traces(Th)
but 7; and 75 are not isomorphic
e T;, T; have 5 states and 7 transitions each

e there is no smaller TS that is trace-equivalent to 7;

144 /152

Classification of implementation relations sseoors.16

145 /152

Classification of implementation relations :suoors.16

e linear vs. branching time

* linear time: trace relations
* branching time: (bi)simulation relations

146 /152

Classification of implementation relations :suoors.16

e linear vs. branching time

* linear time: trace relations
* branching time: (bi)simulation relations

e (nonsymmetric) preorders vs. equivalences:

* preorders: trace inclusion, simulation
* equivalences: trace equivalence, bisimulation

147 /152

Classification of implementation relations :suoors.16

e linear vs. branching time

* linear time: trace relations
* branching time: (bi)simulation relations

e (nonsymmetric) preorders vs. equivalences:

* preorders: trace inclusion, simulation
* equivalences: trace equivalence, bisimulation

e strong vs. weak relations
* strong: reasoning about all transitions
* weak: abstraction from stutter steps

148 /152

Summary: equivalences CTLEGS.2-10

[LTL equivalence]
A

—
bisimulation CTL equivalence
equivalence CTL* equivalence

~—_

for finitely
branching TS

149 /152

Summary: equivalences

CTLEQ5.2-10

[trace equivalence}
7\

bisimulation
equivalence

for finitely

>{ LTL equivalence J
A

CTL equivalence
CTL* equivalence

branching TS

150 /152

Summary: equivalences

finite
trace equivalence

A

CTLEQ5.2-10

[trace equivalence}
7\

bisimulation
equivalence

for finitely

>{ LTL equivalence J
A

CTL equivalence
CTL* equivalence

branching TS

151 /152

Summary: equivalences

finite
trace equivalence J

|

CTLEQ5.2-10

S

equivalence w.r.t. }

’L LTL safety properties

\

LTL equivalence J

A

CTL equivalence
CTL* equivalence

7\
[trace equivalence} >{
7\
bisimulation
equivalence
~——0
for finitely

branching TS

152 /152

