Difference Bound Matrices

Lecture #19 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

July 14, 2014

 $\textcircled{C} \mathsf{JPK}$

Symbolic reachability analysis

- Use a symbolic representation of timed automata configurations
 - needed as there are infinitely many configurations
 - example: state regions $\langle \ell, [\eta] \rangle$
- For set z of clock valuations and edge $e = \ell \stackrel{g:\alpha,D}{\longrightarrow} \ell'$ let:

 $\begin{aligned} \textit{Post}_{e}(z) &= \{ \eta' \in \mathbb{R}^{n}_{\geq 0} \mid \exists \eta \in z, \ d \in \mathbb{R}_{\geq 0}. \ \eta + d \models g \land \eta' = \texttt{reset } D \texttt{ in } (\eta + d) \} \\ \textit{Pre}_{e}(z) &= \{ \eta \in \mathbb{R}^{n}_{\geq 0} \mid \exists \eta' \in z, \ d \in \mathbb{R}_{\geq 0}. \ \eta + d \models g \land \eta' = \texttt{reset } D \texttt{ in } (\eta + d) \} \end{aligned}$

• Intuition:

-
$$\eta' \in Post_e(z)$$
 if for some $\eta \in z$ and delay $d, (\ell, \eta) \stackrel{d}{\Longrightarrow} \dots \stackrel{e}{\to} (\ell', \eta')$
- $\eta \in Pre_e(z)$ if for some $\eta' \in z$ and delay $d, (\ell, \eta) \stackrel{d}{\Longrightarrow} \dots \stackrel{e}{\to} (\ell', \eta')$

Zones

• Clock constraints are *conjunctions* of constraints of the form:

- $x \prec c \text{ and } x - y \prec c \text{ for } \prec \in \{ <, \leqslant, =, \geqslant, > \}, \text{ and } c \in \mathbb{Z}$

- A zone is a set of clock valuations satisfying a clock constraint
 - a clock zone for g is the maximal set of clock valuations satisfying g
- Clock zone of g: $\llbracket g \rrbracket = \{ \eta \in \textit{Eval}(C) \mid \eta \models g \}$
- The state zone of $s=\langle \ell,\eta\rangle$ is $\langle \ell,z\rangle$ with $\eta\in z$
- For zone z and edge e, $Post_e(z)$ and $Pre_e(z)$ are zones

state zones will be used as symbolic representations for configurations

Operations on zones

- Future of *z*:
 - $\textbf{-} \ \overrightarrow{z} = \{ \ \eta{+}d \ | \ \eta \in z \land d \in \mathbb{R}_{\geqslant 0} \}$
- Past of z:
 - $\textbf{-} \overleftarrow{z} = \{ \, \eta {-}d \mid \eta \in z \land d \in \mathbb{R}_{\geqslant 0} \, \}$
- Intersection of two zones:

 $\textbf{-} \hspace{0.1 cm} z \hspace{0.1 cm} \cap \hspace{0.1 cm} z' \hspace{0.1 cm} = \hspace{0.1 cm} \{ \hspace{0.1 cm} \eta \hspace{0.1 cm} \mid \hspace{0.1 cm} \eta \in z \wedge \eta \in z' \hspace{0.1 cm} \}$

- Clock reset in a zone:
 - reset D in $z = \{ reset D in \eta \mid \eta \in z \}$
- Inverse clock reset of a zone:
 - reset⁻¹ D in $z = \{ \eta \mid \text{reset } D \text{ in } \eta \in z \}$

Symbolic successors and predecessors

Recall that for edge $e = \ell \stackrel{g:\alpha,D}{\longrightarrow} \ell'$ we have:

 $\textit{Post}_{e}(z) \ = \ \{ \ \eta' \in \mathbb{R}^{n}_{\geqslant 0} \ | \ \exists \eta \in z, \ d \in \mathbb{R}_{\geqslant 0}. \ \eta + d \models \textbf{g} \land \eta' = \texttt{reset } \textbf{D} \ \texttt{in} \ (\eta + d) \ \}$

$$\textit{Pre}_{e}(z) \ = \ \{ \ \eta \in \mathbb{R}^{n}_{\geqslant 0} \ | \ \exists \eta' \in z, \ d \in \mathbb{R}_{\geqslant 0}. \ \eta + d \models \textbf{g} \land \eta' = \text{reset } \textbf{D} \text{ in } (\eta + d) \ \}$$

This can also be expressed symbolically using operations on zones:

$$Post_e(z) = reset D in (\overrightarrow{z} \cap \llbracket g \rrbracket)$$

and

$$Pre_{e}(z) = \overleftarrow{\operatorname{reset}^{-1} D} \operatorname{in} (z \cap \llbracket D = 0 \rrbracket) \cap \llbracket g \rrbracket$$

Zone successor: example

Zone predecessor: example

Abstract forward reachability

Let γ associate sets of valuations to sets of valuations

Abstract forward symbolic transition system of *TA* is defined by:

$$rac{(\ell,z) \Rightarrow (\ell',z') \qquad z = \gamma(z)}{(\ell,z) \Rightarrow_{\gamma} (\ell',\gamma(z'))}$$

Iterative forward reachability analysis computation schemata:

$$T_{0} = \{ (\ell_{0}, \gamma(z_{0})) \mid \forall x \in C. \ z_{0}(x) = 0 \}$$

$$T_{1} = T_{0} \cup \{ (\ell', z') \mid \exists (\ell, z) \in T_{0} \text{ such that } (\ell, z) \Rightarrow_{\gamma} (\ell', z') \}$$

$$\dots$$

$$T_{k+1} = T_{k} \cup \{ (\ell', z') \mid \exists (\ell, z) \in T_{k} \text{ such that } (\ell, z) \Rightarrow_{\gamma} (\ell', z') \}$$

$$\dots$$

with inclusion check and termination criteria as before

Criteria on the abstraction operator

- Finiteness: $\{ \gamma(z) \mid \gamma \text{ defined on } z \}$ is finite
- Correctness: γ is sound wrt. reachability
- Completeness: γ is complete wrt. reachability
- Effectiveness: γ is defined on zones, and $\gamma(z)$ is a zone

k-Normalization [Daws & Yovine, 1998]

Let $k \in \mathbb{N}$.

- A *k*-bounded zone is described by a *k*-bounded clock constraint
 - e.g., zone $z = (x \ge 3) \land (y \le 5) \land (x y \le 4)$ is not 2-bounded
 - but zone $z' \ = \ (x \geqslant 2) \land (y x \leqslant 2)$ is 2-bounded
 - note that: $z \subseteq z'$
- Let $norm_k(z)$ be the smallest k-bounded zone containing zone z

Example of *k***-normalization**

Facts about k-normalization [Bouyer, 2003]

- Finiteness: $norm_k(\cdot)$ is a finite abstraction operator
- Correctness: $norm_k(\cdot)$ is sound wrt. reachability provided k is the maximal constant appearing in the constraints of TA
- Completeness: $norm_k(\cdot)$ is complete wrt. reachability

since $z \subseteq norm_k(z)$, so $norm_k(\cdot)$ is an over-approximation

• Effectiveness: $norm_k(z)$ is a zone

this will be made clear in the sequel when considering zone representations

Representing zones

- Let 0 be a clock with constant value 0; let $C_0 = C \cup \{0\}$
- Any zone *z* over *C* can be written as:
 - conjunction of constraints x y < n or $x y \leqslant n$ for $n \in \mathbb{Z}$, $x, y \in C_0$
 - when $x y \leq n$ and $x y \leq m$ take only $x y \leq \min(n, m)$
 - \Rightarrow this yields at most $|C_0| \cdot |C_0|$ constraints
- Example:

 $x - \mathbf{0} < 20 \land y - \mathbf{0} \leq 20 \land y - x \leq 10 \land x - y \leq -10$

- Store each such constraint in a matrix
 - this yields a *difference bound matrix*

[Berthomieu & Menasche, 1983]

Difference bound matrices

• Zone z over C is represented by DBM Z of cardinality $|C+1| \cdot |C+1|$

- for
$$C = \{x_1, \ldots, x_n\}$$
, let $C_0 = \{x_0\} \cup C$ with $x_0 = 0$, and:

 $\mathbf{Z}(i,j) = (c,\prec)$ if and only if $x_i - x_j \prec c$

- so, rows are used for lower, and columns for upper bounds on clock differences

- Definition of DBM **Z** for zone *z*:
 - $\mathbf{Z}(i, j) := (c, \prec)$ for each bound $x_i x_j \prec c$ in z
 - $\mathbf{Z}(i, j) := \infty$ (= no bound) if clock difference $x_i x_j$ is unbounded in z
 - $\mathbf{Z}(0, i) := (0, \leq)$, i.e., $0 x_i \leq 0$, or: all clocks are non-negative
 - $\mathbf{Z}(i, i) := (0, \leq)$, i.e., each clock is at most itself

Example

$$(x_1 \ge 3) \land (x_2 \le 5) \land (x_1 - x_2 \le 4) \qquad \begin{array}{cccc} x_0 & x_1 & x_2 \\ +\infty & -3 & +\infty \\ +\infty & +\infty & 4 \\ x_2 & 5 & +\infty & +\infty \end{array}$$

all clock constraints in the above DBM are of the form (c,\leqslant)

 x_2

 x_1

The need for canonicity

$$(x_1 \ge 3) \land (x_2 \le 5) \land (x_1 - x_2 \le 4) \qquad \begin{array}{ccc} x_0 & x_1 & x_2 \\ x_0 & \left(+\infty & -3 & +\infty \right) \\ +\infty & +\infty & 4 \\ x_2 & \left(\begin{array}{ccc} +\infty & -3 & +\infty \\ +\infty & +\infty & 4 \\ 5 & +\infty & +\infty \end{array} \right) \end{array}$$

Existence of a normal form 6

Canonical DBMs

- A zone *z* is in *canonical form* if and only if:
 - no constraint in z can be strengthened without reducing $[\![z]\!] = \{ \eta \mid \eta \in z \}$
- For each zone *z*:
 - there exists a zone z' such that $[\![z]\!] = [\![z']\!]$, and z' is in canonical form
 - moreover, z' is unique

how to obtain the canonical form of a zone?

Turning a DBM into canonical form

- Represent zone z by a weighted digraph $G_z = (V, E, w)$ where
 - $V = C_0$ is the set of vertices
 - $(x_i, x_j) \in E$ whenever $x_j x_i \preceq c$ is a constraint in z
 - $w(x_i, x_j) = (c, \preceq)$ whenever $x_j x_i \preceq c$ is a constraint in z
- DBMs are thus (transposed) adjacency matrices of the weighted digraph
- Observe: deriving bounds = adding weights along paths
- Zone *z* is in *canonical form* if and only if DBM **Z** satisfies:

- $\mathbf{Z}(i,j) \leqslant \mathbf{Z}(i,k) + \mathbf{Z}(k,j)$ for any $x_i, x_j, x_k \in C_0$

Operations on DBM entries

Let $\leq \in \{<,\leqslant\}$.

• Comparison of DBM entries:

-
$$(c, \preceq) < \infty$$

- $(c, \preceq) < (c', \preceq')$ if $c < c'$
- $(c, <) < (c, \leqslant)$ but $(c, \leqslant) \not < (c, <)$

• Addition of DBM entries:

-
$$c + \infty = \infty$$

- $(c, \leq) + (c', \leq) = (c+c', \leq)$
- $(c, <) + (c', \leq) = (c+c', <)$

Example

Computing canonical DBMs

Deriving the tightest constraint on a pair of clocks in a zone is equivalent to finding the shortest path between their vertices

- apply Floyd-Warshall's all-pairs shortest-path algorithm
- its worst-case time complexity lies in $\mathcal{O}(|C_0|^3)$
- efficiency improvement:
 - let all frequently used operations preserve canonicity

Minimal constraint systems

- A (canonical) zone may contain many *redundant* constraints
 - e.g., in x-y < 2, y-z < 5, and x-z < 7, constraint x-z < 7 is redundant
- Reduce memory usage \Rightarrow consider *minimal* constraint systems
 - e.g., $x-y \le 0$, $y-z \le 0$, $z-x \le 0$, $x-0 \le 3$, and 0-x < -2is a minimal representation of a zone in canonical form with 12 constraints
- For each zone: \exists a unique and equivalent minimal constraint system
- Determining minimal representations of canonical zones:
 - $x_i \xrightarrow{(n, \preceq)} x_j$ is redundant if a path from x_i to x_j has weight at most (n, \preceq)
 - fact: it suffices to consider alternative paths of length two only

complexity in $\mathcal{O}(|C_0|^3)$; zero cycles require a special treatment

Example

DBM operations: checking properties

- Nonemptiness: is $\llbracket \mathbf{Z} \rrbracket \neq \varnothing$?
 - $\mathbf{Z} = \emptyset$ if $x_i x_j \preceq c$ and $x_j x_i \preceq' c'$ and $(c, \preceq) < (c', \preceq')$
 - search for negative cycles in the graph representation of ${\bf Z},$ or
 - mark **Z** when upper bound is set to value < its corresponding lower bound
- Inclusion test: is $\llbracket \mathbf{Z} \rrbracket \subseteq \llbracket \mathbf{Z}' \rrbracket$?
 - for DBMs in canonical form, test whether $\mathbf{Z}(i, j) \leq \mathbf{Z}'(i, j)$, for all $i, j \in C_0$
- Satisfaction: does $\mathbf{Z} \models g$?
 - check whether $[\![\, \mathbf{Z} \wedge g \,]\!] = [\![\, \mathbf{Z} \,]\!] \cap [\![\, g \,]\!] = \varnothing$

DBM operations: delays

- *Future*: determine $\overrightarrow{\mathbf{Z}}$
 - remove the upper bounds on any clock, i.e.,

$$\overrightarrow{\mathbf{Z}}(i,0) = \infty$$
 and $\overrightarrow{\mathbf{Z}}(i,j) = \mathbf{Z}(i,j)$ for $j \neq 0$

– \mathbf{Z} is canonical implies $\overrightarrow{\mathbf{Z}}$ is canonical

- **Past**: determine $\overleftarrow{\mathbf{Z}}$
 - set the lower bounds on all individual clocks to $(0, \preceq)$

$$\overleftarrow{\mathbf{Z}}(0,i) = (0, \preceq) \text{ and } \overleftarrow{\mathbf{Z}}(i,j) = \mathbf{Z}(i,j) \text{ for } j \neq 0$$

– ${\bf Z}$ is canonical does not imply $\overleftarrow{{\bf Z}}$ is canonical

Final DBM operations

- Conjunction: $\llbracket \mathbf{Z} \rrbracket \land (x_i x_j \preceq n)$
 - if $(n, \preceq) < \mathbf{Z}(i, j)$ then $\mathbf{Z}(i, j) := (n, \preceq)$ else do nothing
 - put Z into canonical form (in time $\mathcal{O}(|C_0|^2)$ using that only Z(i, j) changed)
- Clock reset: $x_i := d$ in Z

- $\mathbf{Z}(i,j) := (d,\leqslant) + \mathbf{Z}(0,j)$ and $\mathbf{Z}(j,i) := \mathbf{Z}(j,0) + (-d,\leqslant)$

- *k*-Normalization: $norm_k(\mathbf{Z})$
 - remove all bounds $x-y \preceq m$ for which $(m, \preceq) > (k, \leqslant)$, and
 - set all bounds $x-y \preceq m$ with $(m, \preceq) < (-k, <)$ to (-k, <)
 - put the DBM back into canonical form (Floyd-Warshall)

k-Normalization of DBMs

Fix an integer k (* represents an integer between -k and +k)

6 "intuitively", erase non-relevant constraints

remove all upper bounds higher than k and lower all lower bounds exceeding -k to -k