
Verifying Timed Reachability Properties
Lecture #17 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

June 30, 2014

c© JPK

Advanced model checking

Timelock, time-divergence and Zenoness

• A path is time-divergent if its execution time is infinite

ExecTime(s0
d0−−→ s1

d1−−→ . . .) =
∑
i=0

di = ∞

• TA is timelock-free if no state in Reach(TS(TA)) contains a timelock

a state contains a timelock whenever no time-divergent paths emanate from it

• TA is non-Zeno if there does not exist an initial Zeno path in TS(TA)

a path is Zeno if it is time-convergent and performs infinitely many actions

c© JPK 1

Advanced model checking

Some abbreviations

“Always” is obtained in the following way:

∃�J Φ = ¬∀�J ¬Φ and ∀�J Φ = ¬∃�J ¬Φ

∃�J Φ asserts that for some path during the interval J , Φ holds

∀�J Φ requires this to hold for all paths

Standard � and �-operator are obtained as follows:

�Φ = �[0,∞)Φ and �Φ = �[0,∞)Φ

c© JPK 2

Advanced model checking

The ⇒ relation
For infinite path fragments in TS(TA) performing ∞ many actions let:

s0
d0⇒ s1

d1⇒ s2
d2⇒ . . . with d0, d1, d2 . . . � 0

denote the equivalence class containing all infinite path fragments
induced by execution fragments of the form:

s0
d10→ . . .

d
k0
0→︸ ︷︷ ︸

time passage of
d0 time-units

s0+d0
α1−→ s1

d11→ . . .
d
k1
1→︸ ︷︷ ︸

time passage of
d1 time-units

s1+d1
α2−→ s2

d12→ . . .
d
k2
2→︸ ︷︷ ︸

time passage of
d2 time-units

s2+d2
α3−→ . . .

where ki ∈ IN, di ∈ IR�0 and αi ∈ Act such that
∑ki

j=1 d
j
i = di.

For π ∈ s0
d0⇒ s1

d1⇒ . . . we have ExecTime(π) =
∑

i�0 di

c© JPK 3

Advanced model checking

Semantics of timed reachability

For time-divergent path π ∈ s0
d0⇒ s1

d1⇒ . . ., we have:

π |= �J Ψ iff ∃ i � 0. si+d |= Ψ for some d ∈ [0, di] with

i−1∑
k=0

dk + d ∈ J and

where for si = 〈�i, ηi〉 and d � 0 we have si+d = 〈�i, ηi+d〉

c© JPK 4

Advanced model checking

Timed reachability for timed automata

• Let TA be a timed automaton with clocks C and locations Loc

• The satisfaction set Sat(∀�JΦ) is defined by:

Sat(∀�JΦ) = { s ∈ Loc × Eval(C) | ∀π ∈ Pathsdiv(s). π |= �J Φ }

The satisfaction set for ∃�JΦ is defined analogously

• TA satisfies ∀�J Φ iff ∀�J Φ holds in all initial states of TA:

TA |= ∀�J Φ if and only if ∀�0 ∈ Loc0. 〈�0, η0〉 |= ∀�J Φ

where η0(x) = 0 for all x ∈ C

c© JPK 5

Advanced model checking

Characterizing timelock

• TCTL semantics is also well-defined for TA with timelock

• A state has a timelock if no time-divergent paths emanate from it

• A state is timelock-free if and only if it satisfies ∃�true

– some time-divergent path satisfies �true, i.e., there is � 1 time-divergent path
– note: for fair CTL, the states in which a fair path starts also satisfy ∃�true

• TA is timelock-free iff ∀s ∈ Reach(TS(TA)): s |= ∃�true

• Timelocks can thus be characterised by a timed reachability property

c© JPK 6

Advanced model checking

Verifying timed reachability

• Timed reachability problem: TA |= ∀�JΦ for non-Zeno TA

TA |= ∀�JΦ︸ ︷︷ ︸
timed automaton

iff TS(TA) |= ∀�JΦ︸ ︷︷ ︸
uncountable transition system

– Zeno paths are excluded as they could be false alarms

• Idea: take a finite quotient of TS(TA) wrt. a tailored bisimulation

– TS(TA)/∼= is a region transition system and denoted RTS(TA)

• Transform ∀�JΦ into an “equivalent” reachability property ∀�Φ̂

• Then: TA |= ∀�J Φ iff RTS(TA)︸ ︷︷ ︸
finite transition system

|= ∀� Φ̂︸ ︷︷ ︸
CTL formula

c© JPK 7

Advanced model checking

Eliminating timing parameters

• Eliminate all intervals J
= [0,∞) from timed reachability

– introduce a fresh clock, z say, that does not occur in TA

• Formally: for any state s of TS(TA) it holds:

s |= ∃�JΦ iff s{z := 0}︸ ︷︷ ︸
state in TS(TA ⊕ z)

|= ∃�(
(z ∈ J) ∧ Φ

)

– where TA ⊕ z is TA (over C) extended with z �∈ C

atomic clock constraints are atomic propositions, i.e., a CTL formula results

c© JPK 8

Advanced model checking

Correctness

Let TA = (Loc,Act, C, ↪→, Loc0, Inv,AP, L). For clock z
∈ C, let

TA ⊕ z = (Loc,Act, C ∪ { z }, ↪→, Loc0, Inv,AP, L).

For any state s of TS(TA) it holds that:

1. s |= ∃�JΨ iff s{z := 0}︸ ︷︷ ︸
state in TS(TA ⊕ z)

|= ∃�(
(z ∈ J) ∧Ψ

)

2. s |= ∀�JΨ iff s{z := 0}︸ ︷︷ ︸
state in TS(TA ⊕ z)

|= ∀�(
(z ∈ J) ∧Ψ

)

c© JPK 9

Advanced model checking

Constraints on clock equivalence ∼=

(A) Equivalent clock valuations satisfy the same clock constraints g:

η ∼= η′ ⇒ (η |= g iff η′ |= g)

(B) Time-divergent paths of equivalent states are “equivalent”

– this property guarantees that equivalent states satisfy the same path formulas

(C) The number of equivalence classes under ∼= is finite

c© JPK 10

Advanced model checking

Clock equivalence

• Correctness criteria (A) and (B) are ensured if equivalent states:

– agree on the integer parts of all clock values, and
– agree on the ordering of the fractional parts of all clocks

⇒ This yields a denumerable infinite set of equivalence classes

• Observe that:

– if clocks exceed the maximal constant with which they are compared
their precise value is not of interest

⇒ The number of equivalence classes is then finite (C)

c© JPK 11

Advanced model checking

Clock equivalence: definition

Clock valuations η, η′ ∈ Eval(C) are equivalent, denoted η ∼= η′, if either:

• for all x ∈ C: η(x) > cx iff η′(x) > cx, or

• for any x, y ∈ C with η(x), η′(x) � cx and η(y), η′(y) � cy it holds:

– �η(x)� = �η′(x)� and frac(η(x)) = 0 iff frac(η′(x)) = 0, and

– frac(η(x)) � frac(η(y)) iff frac(η′(x)) � frac(η′(y)).

s ∼= s′ iff � = �′ and η ∼= η′

c© JPK 12

Advanced model checking

Regions

• The clock region of η ∈ Eval(C), denoted [η], is defined by:

[η] = { η′ ∈ Eval(C) | η ∼= η′ }

• The state region of s = 〈�, η〉 ∈ TS(TA) is defined by:

[s] = 〈�, [η]〉 = { 〈�, η′〉 | η′ ∈ [η] }

c© JPK 13

Advanced model checking

Example cx=2, cy=1

c© JPK 14

Advanced model checking

Bounds on the number of regions

The number of clock regions is bounded from below and above by:

|C|! ∗
∏
x∈C

cx �
∣∣ Eval(C)/∼=︸ ︷︷ ︸

number of regions

∣∣ � |C|! ∗ 2|C|−1 ∗
∏
x∈C

(2cx + 2)

where for the upper bound it is assumed that cx � 1 for any x ∈ C

the number of state regions is |Loc| times larger

c© JPK 15

Advanced model checking

Proof

c© JPK 16

Advanced model checking

Preservation of atomic properties

1. For η, η′ ∈ Eval(C) such that η ∼= η′:

η |= g if and only if η′ |= g for any g ∈ ACC(TA ∪ Φ)

2. For s, s′ ∈ TS(TA) such that s ∼= s′:

s |= a if and only if s′ |= a for any a ∈ AP′

where AP′ includes all propositions in TA and atomic clock constraints in TA and Φ

c© JPK 17

Advanced model checking

Clock equivalence is a bisimulation

Clock equivalence is a bisimulation equivalence over AP′

c© JPK 18

Advanced model checking

Proof

c© JPK 19

Advanced model checking

Region automaton: intuition

• Region automaton = quotient of TS(TA) under ∼=

• State regions are states in quotient transition system under ∼=

• Transitions in region automaton “mimic” those in TS(TA)

• Delays are abstract

– the exact delay is not recorded, only that some delay took place
– if any clock x exceeds cx, delays are self-loops

• Discrete transitions correspond to actions

c© JPK 20

Advanced model checking

A simple example

� x � 2 : α
reset(x)

� � �

� � �τ

τ τ

τ

ττ

αα

x=0 0<x<1 x=1

x>2 x=2 1<x<2

c© JPK 21

Advanced model checking

Unbounded and successor regions

• Clock region r∞ =
{
η ∈ Eval(C) | ∀x ∈ C. η(x) > cx

}
is unbounded

• r′ is the successor (clock) region of r, denoted r′ = succ(r), if either:

1. r = r∞ and r = r′, or

2. r
= r∞, r
= r′ and ∀η ∈ r:

∃d ∈ IR>0. (η+d ∈ r′ and ∀0 � d′ � d. η+d′ ∈ r ∪ r′)

• The successor region: succ(〈�, r〉) = 〈�, succ(r)〉

• Note: the location invariants are ignored so far!

c© JPK 22

Advanced model checking

Characterizing time convergence

For non-zeno TA and π = s0 s1 s2 . . . a path in TS(TA):

(a) π is time-convergent ⇒ ∃ state region 〈�, r〉 such that for some j:

si ∈ 〈�, r〉 for all i � j

(b) If ∃ state region 〈�, r〉 with r
= r∞ and an index j such that:

si ∈ 〈�, r〉 for all i � j

then π is time-convergent

time-convergent paths are paths that only perform delays from some time instant on

c© JPK 23

Advanced model checking

Region automaton
For non-zeno TA with TS(TA) = (S,Act,→, I,AP, L) let:

RTS(TA,Φ) = (S′,Act ∪ { τ },→ ′, I,AP′, L′) with

• S′ = S/ ∼= = { [s] | s ∈ S } and I ′ = { [s] | s ∈ I }, the state regions

• L′(〈�, r〉) = L(�) ∪ { g ∈ AP′ \ AP | r |= g }

• →′ is defined by:
�

g:α,D
↪→ �′ r |= g reset D in r |= Inv(�′)

〈�, r〉 α−−→′ 〈�′, reset D in r〉

and
r |= Inv(�) succ(r) |= Inv(�)

〈�, r〉 τ−→′ 〈�, succ(r)〉

c© JPK 24

Advanced model checking

Example: simple light switch

off on

switch on
x � 2

reset(x)

x = 2 : switch off

x� 0 x� 1 x� 2

x� 1 x� 2

0� x� 1 1� x� 2 x� 2

x� 21� x� 20� x� 1

off off off off off off

on on on on on

x� 0
on

switch on

sw
itch

off

c© JPK 25

Advanced model checking

Correctness theorem [Alur and Dill, 1989]

For non-Zeno timed automaton TA and timed reachability property ∀�JΦ:

TA |= ∀�JΦ iff RTS(TA,Φ) |= ∀Φ̂

c© JPK 26

Advanced model checking

Characterizing timelock freedom

Non-Zeno TA is timelock-free

iff

RTS(TA) has no reachable terminal states

timelocks can thus be checked by a reachability analysis of RTS(TA)

c© JPK 27

Advanced model checking

Example

off on

switch on

switch off
x � 2

reset(x)

1 � x < 2

off
x=0

off
x=1

off
x=2

off
x>2

on
x=0

on
x=1

on
x=2

on
x>2

off
0<x<1

off
1<x<2

on
0<x<1

on
1<x<2

sw offsw offsw on
sw on sw on sw on sw on sw on

c© JPK 28

Advanced model checking

Time complexity

Model checking timed reachability on TA is PSPACE-complete

c© JPK 29

Advanced model checking

Other verification problems

1. The timed CTL model-checking problem is PSPACE-complete

2. Model checking safety, or ω-regular properties on TA is PSPACE-
complete

3. Model checking LTL and CTL against TA is PSPACE-complete

4. The model-checking problem for timed LTL is undecidable

5. The satisfaction problem for timed CTL is undecidable

all facts without proof

c© JPK 30

