Verifying Timed Reachability Properties

Lecture #17 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

June 30, 2014

 $\textcircled{C} \mathsf{JPK}$

Timelock, time-divergence and Zenoness

• A path is *time-divergent* if its execution time is infinite

$$ExecTime(s_0 \xrightarrow{d_0} s_1 \xrightarrow{d_1} \ldots) = \sum_{i=0}^{\infty} d_i = \infty$$

- *TA* is *timelock-free* if no state in *Reach*(*TS*(*TA*)) contains a timelock a state contains a timelock whenever no time-divergent paths emanate from it
- *TA* is *non-Zeno* if there does not exist an initial Zeno path in *TS*(*TA*) a path is Zeno if it is time-convergent and performs infinitely many actions

Some abbreviations

"Always" is obtained in the following way:

$$\exists \Box^J \Phi = \neg \forall \Diamond^J \neg \Phi \quad \text{and} \quad \forall \Box^J \Phi = \neg \exists \Diamond^J \neg \Phi$$

 $\exists \Box^J \Phi$ asserts that for some path during the interval J, Φ holds $\forall \Box^J \Phi$ requires this to hold for all paths Standard \Box and \diamond -operator are obtained as follows:

$$\Diamond \Phi = \Diamond^{[0,\infty)} \Phi$$
 and $\Box \Phi = \Box^{[0,\infty)} \Phi$

The \implies relation

For infinite path fragments in TS(TA) performing ∞ many actions let:

$$s_0 \xrightarrow{d_0} s_1 \xrightarrow{d_1} s_2 \xrightarrow{d_2} \dots$$
 with $d_0, d_1, d_2 \dots \ge 0$

denote the equivalence class containing all infinite path fragments induced by execution fragments of the form:

where $k_i \in \mathbb{N}$, $d_i \in \mathbb{R}_{\geq 0}$ and $\alpha_i \in Act$ such that $\sum_{j=1}^{k_i} d_i^j = d_i$.

For $\pi \in s_0 \xrightarrow{d_0} s_1 \xrightarrow{d_1} \ldots$ we have $ExecTime(\pi) = \sum_{i \ge 0} d_i$

Semantics of timed reachability

For time-divergent path $\pi \in s_0 \xrightarrow{d_0} s_1 \xrightarrow{d_1} \ldots$, we have:

$$\pi \models \diamondsuit^J \Psi$$
 iff $\exists i \ge 0. s_i + d \models \Psi$ for some $d \in [0, d_i]$ with
 $\sum_{k=0}^{i-1} d_k + d \in J$ and

where for $s_i = \langle \ell_i, \eta_i \rangle$ and $d \ge 0$ we have $s_i + d = \langle \ell_i, \eta_i + d \rangle$

Timed reachability for timed automata

- Let *TA* be a timed automaton with clocks *C* and locations *Loc*
- The satisfaction set $Sat(\forall \diamondsuit^{J} \Phi)$ is defined by:

$$Sat(\forall \diamond^{J} \Phi) = \{ s \in Loc \times Eval(C) \mid \forall \pi \in Paths_{div}(s), \pi \models \diamond^{J} \Phi \}$$

The satisfaction set for $\exists \diamondsuit^J \Phi$ is defined analogously

• TA satisfies $\forall \diamond^J \Phi$ iff $\forall \diamond^J \Phi$ holds in all initial states of TA:

 $TA \models \forall \diamond^J \Phi$ if and only if $\forall \ell_0 \in Loc_0. \langle \ell_0, \eta_0 \rangle \models \forall \diamond^J \Phi$

where $\eta_0(x) = 0$ for all $x \in C$

Characterizing timelock

- TCTL semantics is also well-defined for *TA* with timelock
- A state has a timelock if no time-divergent paths emanate from it
- A state is *timelock-free* if and only if it satisfies ∃□true
 - some time-divergent path satisfies \Box true, i.e., there is ≥ 1 time-divergent path
 - note: for fair CTL, the states in which a fair path starts also satisfy $\exists \Box$ true
- *TA* is timelock-free iff $\forall s \in Reach(TS(TA))$: $s \models \exists \Box true$
- Timelocks can thus be characterised by a timed reachability property

Verifying timed reachability

• Timed reachability problem: $TA \models \forall \Diamond^J \Phi$ for non-Zeno TA

$$TA \models \forall \diamond^J \Phi$$
 i

timed automaton

uncountable transition system

- Zeno paths are excluded as they could be false alarms
- Idea: take a finite quotient of TS(TA) wrt. a tailored bisimulation
 - $TS(TA) / \cong$ is a *region* transition system and denoted RTS(TA)
- Transform $\forall \diamondsuit^J \Phi$ into an "equivalent" reachability property $\forall \diamondsuit \widehat{\Phi}$
- Then: $TA \models \forall \diamondsuit^J \Phi$ iff

Eliminating timing parameters

- Eliminate all intervals $J \neq [0, \infty)$ from timed reachability
 - introduce a fresh clock, z say, that does not occur in TA
- Formally: for any state s of TS(TA) it holds:

$$s \models \exists \diamondsuit^J \Phi \quad \text{iff} \quad \underbrace{s\{z := 0\}}_{\text{state in } TS(TA \oplus z)} \models \exists \diamondsuit \left((z \in J) \land \Phi \right)$$

- where $TA \oplus z$ is TA (over C) extended with $z \not\in C$

atomic clock constraints are atomic propositions, i.e., a CTL formula results

Correctness

Let $TA = (Loc, Act, C, \hookrightarrow, Loc_0, Inv, AP, L)$. For clock $z \notin C$, let

$$TA \oplus z = (Loc, Act, C \cup \{z\}, \hookrightarrow, Loc_0, Inv, AP, L).$$

For any state s of TS(TA) it holds that:

1.
$$s \models \exists \diamondsuit^J \Psi$$
 iff $\underbrace{s\{z := 0\}}_{\text{state in } TS(TA \oplus z)} \models \exists \diamondsuit ((z \in J) \land \Psi)$

2.
$$s \models \forall \diamondsuit^{J} \Psi$$
 iff $\underbrace{s\{z := 0\}}_{\text{state in } TS(TA \oplus z)} \models \forall \diamondsuit ((z \in J) \land \Psi)$

Constraints on clock equivalence \cong

(A) Equivalent clock valuations satisfy the same clock constraints g:

$$\eta \cong \eta' \Rightarrow (\eta \models g \text{ iff } \eta' \models g)$$

(B) Time-divergent paths of equivalent states are "equivalent"

- this property guarantees that equivalent states satisfy the same path formulas
- (C) The number of equivalence classes under \cong is finite

Clock equivalence

- Correctness criteria (A) and (B) are ensured if equivalent states:
 - agree on the integer parts of all clock values, and
 - agree on the ordering of the fractional parts of all clocks
- \Rightarrow This yields a denumerable infinite set of equivalence classes
 - Observe that:
 - if clocks exceed the maximal constant with which they are compared their precise value is not of interest
- \Rightarrow The number of equivalence classes is then finite (C)

Clock equivalence: definition

Clock valuations $\eta, \eta' \in Eval(C)$ are *equivalent*, denoted $\eta \cong \eta'$, if either:

- for all $x \in C$: $\eta(x) > c_x$ iff $\eta'(x) > c_x$, or
- for any $x, y \in C$ with $\eta(x), \eta'(x) \leq c_x$ and $\eta(y), \eta'(y) \leq c_y$ it holds:
 - $-\lfloor \eta(x) \rfloor = \lfloor \eta'(x) \rfloor$ and $frac(\eta(x)) = 0$ iff $frac(\eta'(x)) = 0$, and

 $-\operatorname{frac}(\eta(x)) \leqslant \operatorname{frac}(\eta(y)) \quad \text{iff} \quad \operatorname{frac}(\eta'(x)) \leqslant \operatorname{frac}(\eta'(y)).$

$$s\cong s'$$
 iff $\ell=\ell'$ and $\eta\cong\eta'$

Regions

• The *clock region* of $\eta \in Eval(C)$, denoted $[\eta]$, is defined by:

$$[\eta] = \{ \eta' \in \textit{Eval}(C) \mid \eta \cong \eta' \}$$

• The state region of $s = \langle \ell, \eta \rangle \in TS(TA)$ is defined by:

$$[s] = \langle \ell, [\eta] \rangle = \{ \langle \ell, \eta' \rangle \mid \eta' \in [\eta] \}$$

Example $c_x=2$, $c_y=1$

Bounds on the number of regions

The *number of clock regions* is bounded from below and above by:

$$|C|! * \prod_{x \in C} c_x \leqslant | \underbrace{\text{Eval}(C)/\cong}_{\text{number of regions}} | \leqslant |C|! * 2^{|C|-1} * \prod_{x \in C} (2c_x + 2)$$

where for the upper bound it is assumed that $c_x \ge 1$ for any $x \in C$

the number of state regions is |Loc| times larger

Proof

Preservation of atomic properties

1. For $\eta, \eta' \in Eval(C)$ such that $\eta \cong \eta'$:

 $\eta \models g$ if and only if $\eta' \models g$ for any $g \in ACC(TA \cup \Phi)$

2. For $s, s' \in TS(TA)$ such that $s \cong s'$:

$$s \models a$$
 if and only if $s' \models a$ for any $a \in AP'$

where AP' includes all propositions in $T\!A$ and atomic clock constraints in $T\!A$ and Φ

Clock equivalence is a bisimulation

Clock equivalence is a bisimulation equivalence over AP'

Proof

Region automaton: intuition

- Region automaton = quotient of TS(TA) under \cong
- State regions are states in quotient transition system under \cong
- Transitions in region automaton "mimic" those in TS(TA)
- Delays are abstract
 - the exact delay is not recorded, only that some delay took place
 - if any clock x exceeds c_x , delays are self-loops
- Discrete transitions correspond to actions

A simple example

Unbounded and successor regions

- Clock region $r_{\infty} = \{ \eta \in \textit{Eval}(C) \mid \forall x \in C. \ \eta(x) > c_x \}$ is *unbounded*
- r' is the successor (clock) region of r, denoted r' = succ(r), if either:

1.
$$r = r_{\infty}$$
 and $r = r'$, or

2.
$$r \neq r_{\infty}$$
, $r \neq r'$ and $\forall \eta \in r$:

 $\exists d \in \mathbb{R}_{>0}. \ (\eta + d \in r' \text{ and } \forall 0 \leqslant d' \leqslant d. \eta + d' \in r \cup r')$

- The successor region: $succ(\langle \ell, r \rangle) = \langle \ell, succ(r) \rangle$
- Note: the location invariants are ignored so far!

Characterizing time convergence

For non-zero *TA* and $\pi = s_0 s_1 s_2 \dots$ a path in *TS*(*TA*):

(a) π is *time-convergent* $\Rightarrow \exists$ state region $\langle \ell, r \rangle$ such that for some *j*:

 $s_i \in \langle \ell, r \rangle \; \text{ for all } i \geqslant j$

(b) If \exists state region $\langle \ell, r \rangle$ with $r \neq r_{\infty}$ and an index j such that:

 $s_i \in \langle \ell, r \rangle$ for all $i \ge j$

then π is *time-convergent*

time-convergent paths are paths that only perform delays from some time instant on

Region automaton

For non-zero *TA* with $TS(TA) = (S, Act, \rightarrow, I, AP, L)$ let:

$$RTS(TA, \Phi) = (S', Act \cup \{\tau\}, \rightarrow', I, AP', L')$$
 with

• $S' = S/\cong = \{ [s] \mid s \in S \}$ and $I' = \{ [s] \mid s \in I \}$, the state regions

•
$$L'(\langle \ell, r \rangle) = L(\ell) \cup \{ g \in AP' \setminus AP \mid r \models g \}$$

•
$$\rightarrow'$$
 is defined by: $\xrightarrow{\ell \xrightarrow{g:\alpha,D}} \ell' \quad r \models g \quad \text{reset } D \text{ in } r \models Inv(\ell')$
 $\langle \ell, r \rangle \xrightarrow{\alpha} \langle \ell', \text{ reset } D \text{ in } r \rangle$

and
$$\frac{r \models \mathit{Inv}(\ell) \quad \mathit{succ}(r) \models \mathit{Inv}(\ell)}{\langle \ell, r \rangle \stackrel{\tau}{\longrightarrow}' \langle \ell, \mathit{succ}(r) \rangle}$$

Example: simple light switch

Correctness theorem [Alur and Dill, 1989]

Characterizing timelock freedom

Non-Zeno TA is timelock-free

iff RTS(TA) has no reachable terminal states

timelocks can thus be checked by a reachability analysis of RTS(TA)

Example

Time complexity

Model checking timed reachability on TA is **PSPACE-complete**

Other verification problems

- 1. The timed CTL model-checking problem is **PSPACE-complete**
- 2. Model checking safety, or ω -regular properties on TA is PSPACE-complete
- 3. Model checking LTL and CTL against TA is **PSPACE-complete**
- 4. The model-checking problem for timed LTL is undecidable
- 5. The satisfaction problem for timed CTL is undecidable

all facts without proof