Symbolic Model Checking with ROBDDs

Lecture #14 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

June 23, 2014

 $\textcircled{C} \mathsf{JPK}$

Symbolic representation of transition systems

- let $TS = (S, \rightarrow, I, AP, L)$ be a "large" finite transition system
 - the set of actions is irrelevant here and has been omitted, i.e., $\rightarrow \subseteq S \times S$
- For $n \ge \lceil \log |S| \rceil$, let injective function $enc: S \to \{0, 1\}^n$
 - note: $enc(S) = \{0, 1\}^n$ is no restriction, as all elements $\{0, 1\}^n \setminus enc(S)$ can be treated as the encoding of pseudo states that are unreachable
- Identify the states $s \in S = enc^{-1}(\{0,1\}^n)$ with $enc(s) \in \{0,1\}^n$
- And $T \subseteq S$ by its characteristic function $\chi_T : \{0, 1\}^n \to \{0, 1\}$
 - that is $\chi_T(enc(s)) = 1$ if and only if $s \in T$
- And $\rightarrow \subseteq S \times S$ by the Boolean function $\Delta : \{0, 1\}^{2n} \rightarrow \{0, 1\}$
 - such that $\Delta\left(\mathit{enc}(s), \mathit{enc}(s')\right) = 1$ if and only if $s \to s'$

Switching functions

- Let $Var = \{z_1, \ldots, z_m\}$ be a finite set of Boolean variables
- An evaluation is a function η : $Var \rightarrow \{0, 1\}$
 - let $Eval(z_1, \ldots, z_m)$ denote the set of evaluations for z_1, \ldots, z_m
 - shorthand $[z_1 = b_1, ..., z_m = b_m]$ for $\eta(z_1) = b_1, ..., \eta(z_m) = b_m$
- $f : Eval(Var) \rightarrow \{0, 1\}$ is a *switching function* for $Var = \{z_1, \dots, z_m\}$
- Logical operations and quantification are defined by:

$$\begin{array}{rcl} f_1(\cdot) \wedge f_2(\cdot) &=& \min\{f_1(\cdot), f_2(\cdot)\}\\ f_1(\cdot) \vee f_2(\cdot) &=& \max\{f_1(\cdot), f_2(\cdot)\}\\ \exists z. f(\cdot) &=& f(\cdot)|_{z=0} \vee f(\cdot)|_{z=1}, \text{ and}\\ \forall z. f(\cdot) &=& f(\cdot)|_{z=0} \wedge f(\cdot)|_{z=1} \end{array}$$

Symbolic model checking

- Take a symbolic representation of a transition system (Δ and χ_B)
- Backward reachability $Pre^*(B) = \{ s \in S \mid s \models \exists \Diamond B \}$
- Initially: $f_0 = \chi_B$ characterizes the set $T_0 = B$
- Then, successively compute the functions $f_{j+1} = \chi_{T_{j+1}}$ for:

$$T_{j+1} = T_j \cup \{s \in S \mid \exists s' \in S. \ s' \in \textit{Post}(s) \land s' \in T_j \}$$

• Second set is given by: $\exists \overline{x}'. (\underbrace{\Delta(\overline{x}, \overline{x}')}_{s' \in \mathit{Post}(s)} \land \underbrace{f_j(\overline{x}')}_{s' \in T_j})$

- $f_j(\overline{x}')$ arises from f_j by renaming the variables x_i into their primed copies x'_i

Symbolic computation of $Sat(\exists (C \cup B))$

$$\begin{split} f_0(\overline{x}) &:= \chi_B(\overline{x});\\ j &:= 0;\\ \text{repeat}\\ f_{j+1}(\overline{x}) &:= f_j(\overline{x}) \lor \left(\chi_C(\overline{x}) \land \exists \overline{x}'. \left(\Delta(\overline{x}, \overline{x}') \land f_j(\overline{x}') \right) \right);\\ j &:= j + 1\\ \text{until } f_j(\overline{x}) &= f_{j-1}(\overline{x});\\ \text{return } f_j(\overline{x}). \end{split}$$

Symbolic computation of $Sat(\exists \Box B)$

Compute the largest set $T \subseteq B$ with $Post(t) \cap T \neq \emptyset$ for all $t \in T$

Take $T_0 = B$ and $T_{j+1} = T_j \cap \{s \in S \mid \exists s' \in S. s' \in \textit{Post}(s) \land s' \in T_j \}$

Symbolically this amounts to:

$$f_0(\overline{x}) := \chi_B(\overline{x});$$

$$j := 0;$$

repeat

$$f_{j+1}(\overline{x}) := f_j(\overline{x}) \land \exists \overline{x}'. (\Delta(\overline{x}, \overline{x}') \land f_j(\overline{x}'));$$

$$j := j + 1$$

until $f_j(\overline{x}) = f_{j-1}(\overline{x});$
return $f_j(\overline{x}).$

Symbolic model checkers mostly use ROBDDs to represent switching functions

Ordered Binary Decision Diagram

Let \wp be a variable ordering for *Var* where $z_1 <_{\wp} \ldots <_{\wp} z_m$ An \wp -OBDD is a tuple $\mathfrak{B} = (V, V_I, V_T, succ_0, succ_1, var, val, v_0)$ with

- a finite set V of nodes, partitioned into V_I (inner) and V_T (terminals)
 - and a distinguished root $v_0 \in V$
- successor functions $succ_0$, $succ_1 : V_I \to V$
 - such that each node $v \in V \setminus \{v_0\}$ has at least one predecessor
- labeling functions var: $V_I \rightarrow Var$ and val: $V_T \rightarrow \{0, 1\}$ satisfying

 $v \in V_I \land w \in \{ \mathit{succ}_0(v), \mathit{succ}_1(v) \} \cap V_I \Rightarrow \mathit{var}(v) <_{\wp} \mathit{var}(w)$

Reduced OBDDs

A \wp -OBDD \mathfrak{B} is *reduced* if for every pair (v, w) of nodes in \mathfrak{B} : $v \neq w$ implies $f_v \neq f_w$

 $\Rightarrow \wp$ -ROBDDs any \wp -consistent cofactor is represented by exactly one node

Universality and canonicity theorem

[Fortune, Hopcroft & Schmidt, 1978]

Let *Var* be a finite set of Boolean variables and \wp a variable ordering for *Var*. Then:

(a) For each switching function f for Var there exists a \wp -ROBDD \mathfrak{B} with $f_{\mathfrak{B}} = f$

(b) Any \wp -ROBDDs \mathfrak{B} and \mathfrak{C} with $f_{\mathfrak{B}} = f_{\mathfrak{C}}$ are isomorphic

Any \wp -OBDD \mathfrak{B} for f is reduced iff $size(\mathfrak{B}) \leq size(\mathfrak{C})$ for each \wp -OBDD \mathfrak{C} for f

Synthesis of ROBDDs

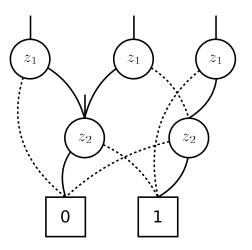
- Construct a \wp -ROBDD for $f_1 \text{ op } f_2$ given \wp -ROBDDs for f_1 and f_2
 - where op is a Boolean connective such as disjunction, implication, etc.
- This yields a shared OBDD, which is:

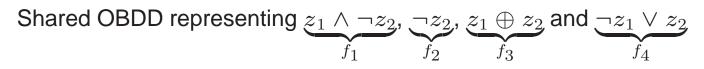
a combination of several ROBDDs with variable ordering \wp by sharing nodes for common \wp -consistent cofactors

• The size of \wp -SOBDD $\overline{\mathfrak{B}}$ for functions f_1, \ldots, f_k is at most $N_{f_1} + \ldots + N_{f_k}$ where N_f denotes the size of the \wp -ROBDD for f

Shared OBDDs

A shared p-OBDD is an OBDD with multiple roots





Main underlying idea: combine several OBDDs with same variable ordering such that common p-consistent co-factors are shared

Using shared OBDDs for model checking Φ

Use a single SOBDD for:

- $\Delta(\overline{x}, \overline{x}')$ for the transition relation
- $f_a(\overline{x})$, $a \in AP$, for the satisfaction sets of the atomic propositions
- The satisfaction sets $\textit{Sat}(\Psi)$ for the state subformulae Ψ of Φ

In practice, often the interleaved variable order for Δ is used.

Synthesizing shared ROBDDs

Relies on the use of two tables

- The unique table
 - keeps track of ROBDD nodes that already have been created
 - table entry $\langle var(v), succ_1(v), succ_0(v) \rangle$ for each inner node v
 - main operation: *find_or_add*(z, v_1, v_0) with $v_1 \neq v_0$
 - * return v if there exists a node $v = \langle z, v_1, v_0 \rangle$ in the ROBDD
 - * if not, create a new z-node v with $succ_0(v) = v_0$ and $succ_1(v) = v_1$
 - implemented using hash functions (expected access time is $\mathcal{O}(1)$)
- The computed table
 - keeps track of tuples for which ITE has been executed (memoization)
 - \Rightarrow realizes a kind of dynamic programming

ITE normal form

The ITE (if-then-else) operator: $ITE(g, f_1, f_2) = (g \wedge f_1) \vee (\neg g \wedge f_2)$

The ITE operator and the representation of the SOBDD nodes in the unique table:

$$f_v = ITE(z, f_{succ_1(v)}, f_{succ_0(v)})$$

Then:

$$\neg f = ITE(f, 0, 1)$$

$$f_1 \lor f_2 = ITE(f_1, 1, f_2)$$

$$f_1 \land f_2 = ITE(f_1, f_2, 0)$$

$$f_1 \oplus f_2 = ITE(f_1, \neg f_2, f_2) = ITE(f_1, ITE(f_2, 0, 1), f_2)$$

If g, f_1, f_2 are switching functions for Var, $z \in Var$ and $b \in \{0, 1\}$, then $ITE(g, f_1, f_2)|_{z=b} = ITE(g|_{z=b}, f_1|_{z=b}, f_2|_{z=b})$

ITE-operator on shared OBDDs

- A node in a \wp -SOBDD for representing $ITE(g, f_1, f_2)$ is a node w with $info\langle z, w_1, w_0 \rangle$ where:
 - z is the minimal (wrt. \wp) essential variable of $ITE(g, f_1, f_2)$
 - w_b is an SOBDD-node with $f_{w_b} = ITE(g|_{z=b}, f_1|_{z=b}, f_2|_{z=b})$
- This suggests a recursive algorithm:
 - determine z
 - recursively compute the nodes for ITE for the cofactors of g, f_1 and f_2

$ITE(u, v_1, v_2)$ on shared OBDDs (initial version) if u is terminal then if val(u) = 1 then $(* ITE(1, f_{v_1}, f_{v_2}) = f_{v_1} *)$ $w := v_1$ else $(* ITE(0, f_{v_1}, f_{v_2}) = f_{v_2} *)$ $w := v_2$ fi else $z := \min\{\operatorname{var}(u), \operatorname{var}(v_1), \operatorname{var}(v_2)\};$ (* minimal essential variable *) $w_1 := ITE(u|_{z=1}, v_1|_{z=1}, v_2|_{z=1});$ $w_0 := ITE(u|_{z=0}, v_1|_{z=0}, v_2|_{z=0});$ if $w_0 = w_1$ then (* elimination rule *) $w := w_1;$ else (* isomorphism rule *) $w := find_or_add(z, w_1, w_0);$ fi fi return w

ROBDD size under ITE

The size of the \wp -ROBDD for $\mathit{ITE}(g, f_1, f_2)$ is bounded by $N_g \cdot N_{f_1} \cdot N_{f_2}$ where N_f denotes the size of the \wp -ROBDD for f

for some ITE-functions optimisations are possible, e.g., $f\oplus g$

ROBDD size under ITE

The size of the \wp -ROBDD for $\mathit{ITE}(g, f_1, f_2)$ is bounded by $N_g \cdot N_{f_1} \cdot N_{f_2}$ where N_f denotes the size of the \wp -ROBDD for f

But how to avoid multiple invocations to ITE?

 \Rightarrow Store triples (u, v_1, v_2) for which ITE already has been computed

Efficiency improvement by memoization

if there is an entry for (u,v_1,v_2,w) in the computed table then

return node w

else

```
if u is terminal then

if val(u) = 1 then w := v_1 else w := v_2 fi

else

z := \min\{var(u), var(v_1), var(v_2)\};

w_1 := ITE(u|_{z=1}, v_1|_{z=1}, v_2|_{z=1});

w_0 := ITE(u|_{z=0}, v_1|_{z=0}, v_2|_{z=0});

if w_0 = w_1 then w := w_1 else w := find\_or\_add(z, w_1, w_0) fi;

insert (u, v_1, v_2, w) in the computed table;

return node w

fi
```

The number of recursive calls for the nodes u, v_1, v_2 equals the \wp -ROBDD size

```
of \textit{ITE}(f_u, f_{v_1}, f_{v_2}), which is bounded by N_u \cdot N_{v_1} \cdot N_{v_2}
```


Some experimental results

- Traffic alert and collision avoidance system (TCAS) (1998)
 - 277 boolean variables, reachable state space is about 9.610^{56} states
 - |B| = 124,618 vertices (about 7.1 MB), construction time 46.6 sec
 - checking $\forall \Box \; (p \rightarrow q)$ takes 290 sec and 717,000 BDD vertices
- Synchronous pipeline circuit (1992)
 - pipeline with 12 bits: reachable state space of 1.510^{29} states
 - checking safety property takes about $10^4 10^5$ sec
 - $|B_{\rightarrow}|$ is linear in data path width
 - verification of 32 bits (about 10^{120} states): 1h 25m
 - using partitioned transition relations

Some other types of BDDs

- Zero-suppressed BDDs
 - like ROBDDs, but non-terminals whose 1-child is leaf 0 are omitted
- Parity BDDs
 - like ROBDDs, but non-terminals may be labeled with \oplus ; no canonical form
- Edge-valued BDDs
- Multi-terminal BDDs (or: algebraic BDDs)
 - like ROBDDs, but terminals have values in $\mathbb R,$ or $\mathbb N,$ etc.
- Binary moment diagrams (BMD)
 - generalization of ROBDD to linear functions over bool, int and real
 - uses edge weights

Further reading

- R. Bryant: Graph-based algorithms for Boolean function manipulation, 1986
- R. Bryant: Symbolic boolean manipulation with OBDDs, Computing Surveys, 1992
- M. Huth and M. Ryan: Binary decision diagrams, Ch 6 of book on Logics, 1999
- H.R. Andersen: Introduction to BDDs, Tech Rep, 1994
- K. McMillan: Symbolic model checking, 1992
- Rudell: Dynamic variable reordering for OBDDs, 1993

Advanced reading: Ch. Meinel & Th. Theobald (Springer 1998)