
Symbolic Model Checking with ROBDDs
Lecture #14 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

June 23, 2014

c© JPK

Advanced model checking

Symbolic representation of transition systems

• let TS = (S,→, I,AP, L) be a “large” finite transition system

– the set of actions is irrelevant here and has been omitted, i.e., →⊆ S × S

• For n � �log |S|�, let injective function enc : S → { 0, 1 }n
– note: enc(S) = {0, 1}n is no restriction, as all elements { 0, 1 }n \ enc(S)

can be treated as the encoding of pseudo states that are unreachable

• Identify the states s ∈ S = enc−1({ 0, 1 }n) with enc(s) ∈ {0, 1}n

• And T ⊆ S by its characteristic function χT : { 0, 1 }n → { 0, 1 }
– that is χT(enc(s)) = 1 if and only if s ∈ T

• And →⊆ S × S by the Boolean function ∆ : { 0, 1 }2n → { 0, 1 }
– such that ∆

(
enc(s), enc(s′)

)
= 1 if and only if s → s′

c© JPK 1

Advanced model checking

Switching functions

• Let Var = {z1, . . . , zm} be a finite set of Boolean variables

• An evaluation is a function η : Var → { 0, 1 }
– let Eval(z1, . . . , zm) denote the set of evaluations for z1, . . . , zm
– shorthand [z1 = b1, . . . , zm = bm] for η(z1) = b1, . . . , η(zm) = bm

• f : Eval(Var) → { 0, 1 } is a switching function for Var = {z1, . . . , zm}

• Logical operations and quantification are defined by:

f1(·)∧ f2(·) = min{ f1(·), f2(·) }
f1(·) ∨ f2(·) = max{ f1(·), f2(·) }

∃z. f(·) = f(·)|z=0 ∨ f(·)|z=1, and
∀z. f(·) = f(·)|z=0 ∧ f(·)|z=1

c© JPK 2

Advanced model checking

Symbolic model checking

• Take a symbolic representation of a transition system (∆ and χB)

• Backward reachability Pre∗(B) = { s ∈ S | s |= ∃�B }

• Initially: f0 = χB characterizes the set T0 = B

• Then, successively compute the functions fj+1 = χTj+1
for:

Tj+1 = Tj ∪ {s ∈ S | ∃s′ ∈ S. s′ ∈ Post(s) ∧ s′ ∈ Tj }

• Second set is given by: ∃x ′. (∆(x , x ′)︸ ︷︷ ︸
s′ ∈ Post(s)

∧ fj(x
′)︸ ︷︷ ︸

s′∈Tj

)

– fj(x
′) arises from fj by renaming the variables xi into their primed copies x ′

i

c© JPK 3

Advanced model checking

Symbolic computation of Sat(∃(C UB))

f0(x) := χB(x);
j := 0;
repeat
fj+1(x) := fj(x) ∨ (

χC(x) ∧ ∃x ′. (∆(x , x ′) ∧ fj(x
′))

)
;

j := j + 1
until fj(x) = fj−1(x);
return fj(x).

c© JPK 4

Advanced model checking

Symbolic computation of Sat(∃�B)

Compute the largest set T ⊆ B withPost(t) ∩ T �= ∅ for all t ∈ T

Take T0 = B and Tj+1 = Tj ∩ {s ∈ S | ∃s′ ∈ S. s′ ∈ Post(s) ∧ s′ ∈ Tj }
Symbolically this amounts to:
f0(x) := χB(x);
j := 0;
repeat
fj+1(x) := fj(x) ∧ ∃x ′. (∆(x , x ′) ∧ fj(x

′));
j := j + 1

until fj(x) = fj−1(x);
return fj(x).

Symbolic model checkers mostly use ROBDDs to represent switching functions

c© JPK 5

Advanced model checking

Ordered Binary Decision Diagram

Let ℘ be a variable ordering for Var where z1 <℘ . . . <℘ zm

An ℘-OBDD is a tuple B = (V, VI, VT , succ0, succ1, var, val, v0) with

• a finite set V of nodes, partitioned into VI (inner) and VT (terminals)

– and a distinguished root v0 ∈ V

• successor functions succ0, succ1 : VI → V

– such that each node v ∈ V \ {v0} has at least one predecessor

• labeling functions var : VI → Var and val : VT → { 0, 1 } satisfying

v ∈ VI ∧ w ∈ { succ0(v), succ1(v) } ∩ VI ⇒ var(v) <℘ var(w)

c© JPK 6

Advanced model checking

Reduced OBDDs

A ℘-OBDD B is reduced if for every pair (v, w) of nodes in B:

v = w implies fv = fw

⇒ ℘-ROBDDs any ℘-consistent cofactor is represented by exactly one node

c© JPK 7

Advanced model checking

Universality and canonicity theorem

[Fortune, Hopcroft & Schmidt, 1978]

Let Var be a finite set of Boolean variables and ℘ a variable ordering for Var. Then:

(a) For each switching function f for Var there exists a ℘-ROBDD B with fB = f

(b) Any ℘-ROBDDs B and C with fB = fC are isomorphic

Any ℘-OBDD B for f is reduced iff size(B) � size(C) for each ℘-OBDD C for f

c© JPK 8

Advanced model checking

Synthesis of ROBDDs

• Construct a ℘-ROBDD for f1 op f2 given ℘-ROBDDs for f1 and f2

– where op is a Boolean connective such as disjunction, implication, etc.

• Idea: use a single ROBDD with (global) variable ordering ℘ to
represent several switching functions

• This yields a shared OBDD, which is:

a combination of several ROBDDs with variable ordering ℘

by sharing nodes for common ℘-consistent cofactors

• The size of ℘-SOBDD B for functions f1, . . . , fk is at most Nf1+ . . .+
Nfk where Nf denotes the size of the ℘-ROBDD for f

c© JPK 9

Advanced model checking

Shared OBDDs

A shared ℘-OBDD is an OBDD with multiple roots

10

Shared OBDD representing z1 ∧ ¬z2︸ ︷︷ ︸
f1

, ¬z2︸︷︷︸
f2

, z1 ⊕ z2︸ ︷︷ ︸
f3

and ¬z1 ∨ z2︸ ︷︷ ︸
f4

Main underlying idea: combine several OBDDs with same variable ordering
such that common ℘-consistent co-factors are shared

c© JPK 10

Advanced model checking

Using shared OBDDs for model checking Φ

Use a single SOBDD for:

• ∆(x , x ′) for the transition relation

• fa(x), a ∈ AP , for the satisfaction sets of the atomic propositions

• The satisfaction sets Sat(Ψ) for the state subformulae Ψ of Φ

In practice, often the interleaved variable order for ∆ is used.

c© JPK 11

Advanced model checking

Synthesizing shared ROBDDs

Relies on the use of two tables

• The unique table

– keeps track of ROBDD nodes that already have been created
– table entry 〈var(v), succ1(v), succ0(v)〉 for each inner node v

– main operation: find or add(z , v1, v0) with v1 �= v0

∗ return v if there exists a node v = 〈z , v1, v0〉 in the ROBDD
∗ if not, create a new z -node v with succ0(v) = v0 and succ1(v) = v1

– implemented using hash functions (expected access time is O(1))

• The computed table

– keeps track of tuples for which ITE has been executed (memoization)
⇒ realizes a kind of dynamic programming

c© JPK 12

Advanced model checking

ITE normal form

The ITE (if-then-else) operator: ITE(g, f1, f2) = (g ∧ f1) ∨ (¬ g ∧ f2)

The ITE operator and the representation of the SOBDD nodes in the unique table:

fv = ITE
(
z, fsucc1(v), fsucc0(v)

)

Then:

¬f = ITE(f, 0, 1)
f1 ∨ f2 = ITE(f1, 1, f2)

f1 ∧ f2 = ITE(f1, f2, 0)

f1 ⊕ f2 = ITE(f1,¬f2, f2) = ITE(f1, ITE(f2, 0, 1), f2)

If g, f1, f2 are switching functions for Var, z ∈ Var and b ∈ {0, 1}, then

ITE(g, f1, f2)|z=b = ITE(g|z=b, f1|z=b, f2|z=b)

c© JPK 13

Advanced model checking

ITE-operator on shared OBDDs

• A node in a ℘-SOBDD for representing ITE(g, f1, f2) is a node w with
info〈z, w1, w0〉 where:

– z is the minimal (wrt. ℘) essential variable of ITE(g, f1, f2)

– wb is an SOBDD-node with fwb
= ITE(g|z=b, f1|z=b, f2|z=b)

• This suggests a recursive algorithm:

– determine z

– recursively compute the nodes for ITE for the cofactors of g, f1 and f2

c© JPK 14

Advanced model checking

ITE(u, v1, v2) on shared OBDDs (initial version)
if u is terminal then

if val(u) = 1 then
w := v1 (* ITE(1, fv1, fv2) = fv1 *)

else
w := v2 (* ITE(0, fv1

, fv2) = fv2 *)
fi

else
z := min{var(u), var(v1), var(v2)}; (* minimal essential variable *)
w1 := ITE(u|z=1, v1|z=1, v2|z=1);
w0 := ITE(u|z=0, v1|z=0, v2|z=0);
if w0 = w1 then
w := w1; (* elimination rule *)

else
w := find or add(z, w1, w0); (* isomorphism rule *)

fi
fi
return w

c© JPK 15

Advanced model checking

ROBDD size under ITE

The size of the ℘-ROBDD for ITE(g, f1, f2) is bounded by Ng · Nf1 · Nf2

where Nf denotes the size of the ℘-ROBDD for f

for some ITE-functions optimisations are possible, e.g., f ⊕ g

c© JPK 16

Advanced model checking

ROBDD size under ITE

The size of the ℘-ROBDD for ITE(g, f1, f2) is bounded by Ng · Nf1
· Nf2

where Nf denotes the size of the ℘-ROBDD for f

But how to avoid multiple invocations to ITE?

⇒ Store triples (u, v1, v2) for which ITE already has been computed

c© JPK 17

Advanced model checking

Efficiency improvement by memoization
if there is an entry for (u, v1, v2, w) in the computed table then

return node w

else
if u is terminal then

if val(u) = 1 then w := v1 else w := v2 fi
else
z := min{var(u), var(v1), var(v2)};
w1 := ITE(u|z=1, v1|z=1, v2|z=1);
w0 := ITE(u|z=0, v1|z=0, v2|z=0);
if w0 = w1 then w := w1 else w := find or add(z, w1, w0) fi;
insert (u, v1, v2, w) in the computed table;
return node w

fi
fi

The number of recursive calls for the nodes u, v1, v2 equals the ℘-ROBDD size

of ITE(fu, fv1, fv2), which is bounded by Nu · Nv1 · Nv2

c© JPK 18

Advanced model checking

Some experimental results

• Traffic alert and collision avoidance system (TCAS) (1998)

– 277 boolean variables, reachable state space is about 9.61056 states
– |B| = 124, 618 vertices (about 7.1 MB), construction time 46.6 sec
– checking ∀� (p → q) takes 290 sec and 717,000 BDD vertices

• Synchronous pipeline circuit (1992)

– pipeline with 12 bits: reachable state space of 1.51029 states
– checking safety property takes about 104 − 105 sec
– |B→| is linear in data path width
– verification of 32 bits (about 10120 states): 1h 25m
– using partitioned transition relations

c© JPK 19

Advanced model checking

Some other types of BDDs

• Zero-suppressed BDDs

– like ROBDDs, but non-terminals whose 1-child is leaf 0 are omitted

• Parity BDDs

– like ROBDDs, but non-terminals may be labeled with ⊕; no canonical form

• Edge-valued BDDs

• Multi-terminal BDDs (or: algebraic BDDs)

– like ROBDDs, but terminals have values in R, or N, etc.

• Binary moment diagrams (BMD)

– generalization of ROBDD to linear functions over bool, int and real
– uses edge weights

c© JPK 20

Advanced model checking

Further reading

• R. Bryant: Graph-based algorithms for Boolean function manipulation, 1986

• R. Bryant: Symbolic boolean manipulation with OBDDs, Computing Surveys, 1992

• M. Huth and M. Ryan: Binary decision diagrams, Ch 6 of book on Logics, 1999

• H.R. Andersen: Introduction to BDDs, Tech Rep, 1994

• K. McMillan: Symbolic model checking, 1992

• Rudell: Dynamic variable reordering for OBDDs, 1993

Advanced reading: Ch. Meinel & Th. Theobald (Springer 1998)

c© JPK 21

