On-The-Fly Partial Order Reduction

Lecture #11 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

May, 2014

 $\textcircled{C} \mathsf{JPK}$

Outline of partial-order reduction

- During state space generation obtain \widehat{TS}
 - a *reduced version* of transition system *TS* such that $\widehat{TS} \triangleq TS$
 - $\Rightarrow~$ this preserves all stutter sensitive LT properties, such as LTL $_{\backslash \bigcirc}$
 - at state \boldsymbol{s} select a (small) subset of enabled actions in \boldsymbol{s}
 - different approaches on how to select such set: consider Peled's ample sets
- Static partial-order reduction
 - obtain a high-level description of \widehat{TS} (without generating TS)
 - \Rightarrow POR is preprocessing phase of model checking
- Dynamic (or: on-the-fly) partial-order reduction
 - construct \widehat{TS} during LTL_{\O} model checking
 - if accept cycle is found, there is no need to generate entire \widehat{TS}

Ample-set conditions for LTL

(A1) Nonemptiness condition

 $\varnothing \neq \textit{ample}(s) \subseteq \textit{Act}(s)$

(A2) **Dependency condition**

Let $s \xrightarrow{\beta_1} \ldots \xrightarrow{\beta_n} s_n \xrightarrow{\alpha} t$ be a finite execution fragment in *TS* such that α depends on *ample*(*s*). Then: $\beta_i \in ample(s)$ for some $0 < i \leq n$.

(A3) Stutter condition

If $ample(s) \neq Act(s)$ then any $\alpha \in ample(s)$ is a stutter action.

(A4) Cycle condition

For any cycle $s_0 s_1 \ldots s_n$ in \widehat{TS} and $\alpha \in Act(s_i)$, for any $0 < i \leq n$, there exists $j \in \{1, \ldots, n\}$ such that $\alpha \in ample(s_j)$.

Correctness theorem

For action-deterministic, finite *TS* without terminal states:

if conditions (A1) through (A4) are satisfied, then $\widehat{TS} \triangleq TS$.

Strong cycle condition

(A4') Strong cycle condition

On any cycle $s_0 s_1 \ldots s_n$ in \widehat{TS} ,

there exists $j \in \{1, \ldots, n\}$ such that $ample(s_j) = Act(s_j)$.

- If (A1) through (A3) hold: (A4') implies the cycle condition (A4)
- (A4') can be checked easily in DFS when backward edge is found

The branching-time ample approach

- Linear-time ample approach:
 - during state space generation obtain \widehat{TS} such that $\widehat{TS} \triangleq TS$
 - $\Rightarrow~$ this preserves all stutter sensitive LT properties, such as LTL $_{\backslash \bigcirc}$
 - static partial order reduction: generate \widehat{TS} prior to verification
 - on-the-fly partial order reduction: generate \widehat{TS} during the verification
 - generation of \widehat{TS} by means of static analysis of program graphs

• Branching-time ample approach

- during state space generation obtain \widehat{TS} such that $\widehat{TS} \approx^{div} TS$
- $\Rightarrow\,$ this preserves all CTL $_{\backslash \bigcirc}\,$ and CTL $_{\backslash \bigcirc}^{*}\,$ formulas
 - static partial order reduction only

as
$$pprox^{\textit{div}}$$
 is strictly finer than $riangleq$, try (A1) through (A4)

Example

transition system TS

Conditions (A1)-(A4) are insufficient

$$\widehat{TS} \models \forall \Box \left(a \rightarrow \left(\forall \diamondsuit b \lor \forall \diamondsuit c \right) \right) \text{ but } TS \text{ does not and thus } \widehat{TS} \not\approx^{div} TS$$

Branching condition

(A5)

If $ample(s) \neq Act(s)$ then |ample(s)| = 1

A sound reduction for $\text{CTL}^*_{\backslash \bigcirc}$

$$\widehat{TS} \not\models \forall \Box \left(a \rightarrow \left(\forall \diamondsuit b \lor \forall \diamondsuit c \right) \right) \text{ and } TS \text{ does not } ; \text{in fact } \widehat{TS} \approx^{div} TS$$

Correctness theorem

For action-deterministic, finite *TS* without terminal states:

if conditions (A1) through (A5) are satisfied, then $\widehat{TS} \approx^{div} TS$.

recall that this implies that \widehat{TS} and TS are $CTL^*_{\setminus \bigcirc}$ -equivalent

Ample-set conditions for $\ensuremath{\mathsf{CTL}}^*$

(A1) Nonemptiness condition

 $\varnothing \neq \textit{ample}(s) \subseteq \textit{Act}(s)$

(A2) Dependency condition

Let $s \xrightarrow{\beta_1} \ldots \xrightarrow{\beta_n} s_n \xrightarrow{\alpha} t$ be a finite execution fragment in *TS* such that α depends on *ample*(*s*). Then: $\beta_i \in ample(s)$ for some $0 < i \leq n$.

(A3) Stutter condition

If $ample(s) \neq Act(s)$ then any $\alpha \in ample(s)$ is a stutter action.

(A4) Cycle condition

For any cycle $s_0 s_1 \ldots s_n$ in \widehat{TS} and $\alpha \in Act(s_i)$, for some $0 < i \leq n$, there exists $j \in \{1, \ldots, n\}$ such that $\alpha \in ample(s_j)$.

(A5) Branching condition

```
If ample(s) \neq Act(s) then |ample(s)| = 1
```