### 4 conditions for ample sets LTL3.4-A4

(A1) 
$$\emptyset \neq \mathsf{ample}(\mathsf{s}) \subseteq \mathsf{Act}(\mathsf{s})$$

(A2) for each execution fragment in 
$$\mathcal{T}$$

$$\stackrel{\boldsymbol{\beta}_1 \ \boldsymbol{\beta}_2}{\overset{\boldsymbol{\beta}_1 \ \boldsymbol{\beta}_2}{\overset{\boldsymbol{\beta}_{i-1} \ \boldsymbol{\beta}_i \ \boldsymbol{\beta}_{i+1}}{\overset{\boldsymbol{\beta}_{n-1} \ \boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1} \ \boldsymbol{\beta}_{n}}{\overset{\boldsymbol{\beta}_{n-1} \ \boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1} \ \boldsymbol{\beta}_{n}}{\overset{\boldsymbol{\beta}_{n-1} \ \boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1} \ \boldsymbol{\beta}_{n-1}}}{\overset{\boldsymbol{\beta}_{n-1} \ \boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1} \ \boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1} \ \boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1} \ \boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}}{\overset{\boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}}{\overset{\boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}}{\overset{\boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}}{\overset{\boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}}{\overset{\boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}}{\overset{\boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}}{\overset{\boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}}{\overset{\boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}}{\overset{\boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}}{\overset{\boldsymbol{\beta}_{n-1}}}{\overset{\boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}}{\overset{\boldsymbol{\beta}_{n-1}}}{\overset{\boldsymbol{\beta}_{n-1}}}{\overset{\boldsymbol{\beta}_{n$$

such that  $\beta_n$  is dependent from ample(s) there is some i < n with  $\beta_i \in \text{ample(s)}$ 

- (A3) if  $ample(s) \neq Act(s)$  then all actions in ample(s) are stutter actions
- (A4) for each *cycle*  $s_0 \Rightarrow s_1 \Rightarrow \ldots \Rightarrow s_n$  in  $\mathcal{T}_{red}$  and each action

$${\color{blue} {\color{blue} {\beta}}} \in \bigcup_{0 \leq i < n} \textit{Act}(s_i)$$

there is some  $i \in \{1, \dots, n\}$  with  $\beta \in ample(s_i)$ 

### 4 conditions for ample sets LTL3.4-34

(A1) 
$$\emptyset \neq \mathsf{ample}(\mathsf{s}) \subseteq \mathsf{Act}(\mathsf{s})$$

(A2) for each execution fragment in 
$$\mathcal{T}$$

$$\stackrel{\boldsymbol{\beta}_1 \ \boldsymbol{\beta}_2}{\overset{\boldsymbol{\beta}_1 \ \boldsymbol{\beta}_2}{\overset{\boldsymbol{\beta}_{i-1} \ \boldsymbol{\beta}_i \ \boldsymbol{\beta}_{i+1}}{\overset{\boldsymbol{\beta}_{n-1} \ \boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1} \ \boldsymbol{\beta}_{n-1}}}{\overset{\boldsymbol{\beta}_{n-1} \ \boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1} \ \boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1} \ \boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1} \ \boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1} \ \boldsymbol{\beta}_{n-1}}}{\overset{\boldsymbol{\beta}_{n-1} \ \boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1} \ \boldsymbol{\beta}_{n-1}}}{\overset{\boldsymbol{\beta}_{n-1} \ \boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1} \ \boldsymbol{\beta}_{n-1}}}{\overset{\boldsymbol{\beta}_{n-1} \ \boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1} \ \boldsymbol{\beta}_{n-1}}}{\overset{\boldsymbol{\beta}_{n-1} \ \boldsymbol{\beta}_{n-1}}}{\overset{\boldsymbol{\beta}_{n-1} \ \boldsymbol{\beta}_{n-1}}}}}}}}}}}}$$

such that  $\beta_n$  is dependent from ample(s) there is some i < n with  $\beta_i \in \text{ample(s)}$ 

- (A3) if  $ample(s) \neq Act(s)$  then all actions in ample(s) are stutter actions
- (A4) for each *cycle*  $s_0 \Rightarrow s_1 \Rightarrow \ldots \Rightarrow s_n$  in  $\mathcal{T}_{red}$  and each action

$${\color{blue} \boldsymbol{\beta}} \in \bigcup_{0 \leq i < n} \textit{Act}(s_i)$$

there is some  $i \in \{1, \dots, n\}$  with  $\beta \in \mathsf{ample}(s_i)$ 

### 4 conditions for ample sets LTL3.4-34

(A1) 
$$\emptyset \neq \mathsf{ample}(\mathsf{s}) \subseteq \mathsf{Act}(\mathsf{s})$$

(A2) for each execution fragment in 
$$T$$

$$s \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{i-1}} \xrightarrow{\beta_i} \xrightarrow{\beta_{i+1}} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_n}$$

such that  $\beta_n$  is dependent from ample(s) there is some i < n with  $\beta_i \in \text{ample}(s)$ 

- (A3) if  $ample(s) \neq Act(s)$  then all actions in ample(s) are stutter actions
- (A4) for each *cycle*  $s_0 \Rightarrow s_1 \Rightarrow \ldots \Rightarrow s_n$  in  $\mathcal{T}_{red}$  and each action

$${\color{blue} {\color{blue} {\beta}}} \in \bigcup_{0 \leq i < n} \textit{Act}(s_i)$$

there is some  $i \in \{1, \dots, n\}$  with  ${\color{blue} \beta} \in \mathsf{ample}(s_i)$ 

LTL3.4-35

LTL3.4-35

Let  ${m T}$  be a finite, action-deterministic transition system.

LTL3.4-35

Let  ${\mathcal T}$  be a finite, action-deterministic transition system.

If the ample sets ample(s) satisfy conditions (A1), (A2), (A3), (A4) then

$$\mathcal{T} \stackrel{\Delta}{=} \mathcal{T}_{\text{red}}$$

remind:  $\stackrel{\triangle}{=}$  stutter trace equivalence

Let  ${m T}$  be a finite, action-deterministic transition system.

If the ample sets ample(s) satisfy conditions (A1), (A2), (A3), (A4) then

$$\mathcal{T} \stackrel{\Delta}{=} \mathcal{T}_{\text{red}}$$

hence: for all LTL $_{\setminus \bigcirc}$  formulas  $\varphi$ :

LTL3.4-35

$$\mathcal{T} \models \varphi$$
 iff  $\mathcal{T}_{\mathsf{red}} \models \varphi$ 

Let T be a finite, action-deterministic transition system. If the ample sets ample(s) satisfy conditions (A1), (A2), (A3), (A4) then

$$T \stackrel{\Delta}{=} T_{\text{red}}$$

Proof: show that

LTL3.4-35

$$T riangleq T_{red}$$
 and  $T_{red} riangleq T$ 

where  $\leq$  = stutter trace inclusion

Let T be a finite, action-deterministic transition system. If the ample sets ample(s) satisfy conditions (A1), (A2), (A3), (A4) then

$$T \stackrel{\Delta}{=} T_{\text{red}}$$

#### **Proof:**

LTL3.4-35

•  $T_{\text{red}} \leq T$ :  $\sqrt{}$ 

Let  $\mathcal{T}$  be a finite, action-deterministic transition system. If the ample sets ample(s) satisfy conditions (A1), (A2), (A3), (A4) then

$$T \stackrel{\Delta}{=} T_{\text{red}}$$

#### **Proof:**

LTL3.4-35

- $T_{\text{red}} \leq T$ :  $\sqrt{\phantom{a}}$
- $T ext{ } ext{!} ext{ } T_{\text{red}}$ : show that each execution ho of T can be transformed into a stutter equivalent execution ho' of  $T_{\text{red}}$

# Proof of $T \subseteq T_{red}$

LTL3.4-35A

given: infinite execution fragment  $\rho$  of T goal: construction of a stutter equivalent execution fragment  $\rho'$  of  $T_{red}$ 

### Proof of $T \subseteq T_{red}$

LTL3.4-35A

given: infinite execution fragment  $\rho$  of T

goal: construction of a stutter equivalent execution fragment ho' of  $m{\mathcal{T}}_{\text{red}}$ 

idea:  $\rho'$  results from the "limit" of transformations

$$\rho = \rho_0 \rightsquigarrow \rho_1 \rightsquigarrow \rho_2 \rightsquigarrow \rho_3 \rightsquigarrow$$

# Proof of $T \subseteq T_{red}$

LTL3.4-35A

given: infinite execution fragment  $\rho$  of T

goal: construction of a stutter equivalent execution fragment ho' of  $m{\mathcal{T}}_{\text{red}}$ 

*idea*:  $\rho'$  results from the "limit" of transformations

$$\rho = \rho_0 \rightsquigarrow \rho_1 \rightsquigarrow \rho_2 \rightsquigarrow \rho_3 \rightsquigarrow$$

where, for  $i>j\geq 0$ , the execution fragments  $\rho_i$  and  $\rho_j$  have a common prefix

- of length j
- ullet consisting of transitions in  ${m T}_{\rm red}$

### Stepwise transformation $\rho_0 \rightsquigarrow \rho_1$

LTL3.4-35A

case 0: 
$$\rho_0 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$$
 with  $\alpha \in ample(s_0)$ 

case 0: 
$$\rho_0 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$$
 with  $\alpha \in ample(s_0)$ 

$$\rho_1 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots = \rho_0$$

case 0: 
$$\rho_0 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$$
 with  $\alpha \in ample(s_0)$ 

$$\rho_1 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots = \rho_0$$
case 1:  $\rho_0 = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\alpha} \xrightarrow{\beta_{n+1}} \xrightarrow{\beta_{n+2}} \dots$ 
where  $\beta_1, \dots, \beta_{n-1} \notin ample(s_0), \alpha \in ample(s_0)$ 

case 0: 
$$\rho_0 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$$
 with  $\alpha \in ample(s_0)$ 

$$\rho_1 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots = \rho_0$$
case 1:  $\rho_0 = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\alpha} \xrightarrow{\beta_{n+1}} \xrightarrow{\beta_{n+2}} \dots$ 
where  $\beta_1, \dots, \beta_{n-1} \notin ample(s_0), \alpha \in ample(s_0)$ 

$$\rho_1 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \dots \xrightarrow{\beta_{n-2}} \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_{n+1}} \xrightarrow{\beta_{n+2}} \dots$$

case 0: 
$$\rho_0 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$$
 with  $\alpha \in ample(s_0)$ 

$$\rho_1 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots = \rho_0$$
case 1:  $\rho_0 = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\alpha} \xrightarrow{\beta_{n+1}} \xrightarrow{\beta_{n+2}} \dots$ 
where  $\beta_1, \dots, \beta_{n-1} \notin ample(s_0), \alpha \in ample(s_0)$ 

$$\rho_1 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \dots \xrightarrow{\beta_{n-2}} \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_{n+1}} \xrightarrow{\beta_{n+2}} \dots$$
case 2:  $\rho_0 = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ 
where  $\beta_i \notin ample(s_0), i = 1, 2, \dots$ 

case 0: 
$$\rho_0 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$$
 with  $\alpha \in ample(s_0)$ 

$$\rho_1 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots = \rho_0$$
case 1:  $\rho_0 = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\alpha} \xrightarrow{\alpha} \xrightarrow{\beta_{n+1}} \xrightarrow{\beta_{n+2}} \dots$ 
where  $\beta_1, \dots, \beta_{n-1} \notin ample(s_0), \alpha \in ample(s_0)$ 

$$\rho_1 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \dots \xrightarrow{\beta_{n-2}} \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_{n+1}} \xrightarrow{\beta_{n+2}} \dots$$
case 2:  $\rho_0 = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ 
where  $\beta_i \notin ample(s_0), i = 1, 2, \dots$ 

$$\rho_1 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$$

case 0: 
$$\rho_0 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$$
 with  $\alpha \in ample(s_0)$ 

$$\rho_1 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots = \rho_0$$
case 1:  $\rho_0 = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\alpha} \xrightarrow{\alpha} \xrightarrow{\beta_{n+1}} \xrightarrow{\beta_{n+2}} \dots$ 
where  $\beta_1, \dots, \beta_{n-1} \notin ample(s_0), \alpha \in ample(s_0)$ 

$$\rho_1 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \dots \xrightarrow{\beta_{n-2}} \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_{n+1}} \xrightarrow{\beta_{n+2}} \dots$$
case 2:  $\rho_0 = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ 
where  $\beta_i \notin ample(s_0), i = 1, 2, \dots$ 

by (A3):  $\alpha$  is a stutter action in cases 1 and 2

 $ho_1 = s_0 \xrightarrow{lpha} \xrightarrow{eta_1} \xrightarrow{eta_2} \xrightarrow{eta_3} \dots$ 

case 0: 
$$\rho_0 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$$
 with  $\alpha \in ample(s_0)$ 

$$\rho_1 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots = \rho_0$$
case 1:  $\rho_0 = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\alpha} \xrightarrow{\beta_{n+1}} \xrightarrow{\beta_{n+2}} \dots$ 
where  $\beta_1, \dots, \beta_{n-1} \notin ample(s_0), \alpha \in ample(s_0)$ 

$$\rho_1 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \dots \xrightarrow{\beta_{n-2}} \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_{n+1}} \xrightarrow{\beta_{n+2}} \dots \xrightarrow{\Delta} \rho_0$$
case 2:  $\rho_0 = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ 

$$\rho_1 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots \stackrel{\Delta}{=} \rho_0$$

by (A3):  $\alpha$  is a stutter action in cases 1 and 2

where  $\beta_i \notin \text{ample}(s_0), i = 1, 2, \dots$ 

$$oldsymbol{
ho}_1 = oldsymbol{s}_0 \xrightarrow{oldsymbol{lpha}} \xrightarrow{oldsymbol{eta}_1} \xrightarrow{oldsymbol{eta}_2} \xrightarrow{oldsymbol{eta}_3} \ldots = oldsymbol{
ho}_0$$

$$case 1: oldsymbol{
ho}_0 = oldsymbol{s}_0 \xrightarrow{eta_1} \xrightarrow{eta_2} \ldots \xrightarrow{eta_{n-1}} \xrightarrow{oldsymbol{lpha}} \xrightarrow{oldsymbol{eta}_{n+1}} \xrightarrow{eta_{n+2}} \ldots$$

$$\text{where } oldsymbol{eta}_1, \ldots, oldsymbol{eta}_{n-1} \notin \mathsf{ample}(oldsymbol{s}_0), \oldsymbol{lpha} \in \mathsf{ample}(oldsymbol{s}_0)$$

 $\rho_1 = S_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \dots \xrightarrow{\beta_{n-2}} \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_{n+1}} \xrightarrow{\beta_{n+2}} \dots \stackrel{\Delta}{=} \rho_0$ 

case 0:  $\rho_0 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$  with  $\alpha \in ample(s_0)$ 

case 2:  $\rho_0 = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$ where  $\beta_i \not\in \operatorname{ample}(s_0)$ ,  $i = 1, 2, \dots$  $\rho_1 = s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots \stackrel{\Delta}{=} \rho_0$ 

 $ho_1 \leadsto 
ho_2$ :
repeat the same procedure from the 2nd state on

## Stutter trace equivalence of ${\mathcal T}$ and ${\mathcal T}_{\text{red}}$

LTL3.4-21

idea: the conditions for the ample sets should ensure that for each execution  $\rho$  in  $\mathcal{T}$ , a stutter trace equivalent execution  $\rho_{\rm red}$  in  $\mathcal{T}_{\rm red}$  can be constructed

## Stutter trace equivalence of ${\mathcal T}$ and ${\mathcal T}_{\text{red}}$

LTL3.4-21

idea: the conditions for the ample sets should ensure that for each execution  $\rho$  in  $\mathcal{T}$ , a stutter trace equivalent execution  $\rho_{\text{red}}$  in  $\mathcal{T}_{\text{red}}$  can be constructed by successively

permutating the order independent actions

## Stutter trace equivalence of ${\mathcal T}$ and ${\mathcal T}_{\text{red}}$

LTL3.4-21

idea: the conditions for the ample sets should ensure that for each execution  $\rho$  in  $\mathcal{T}$ , a stutter trace equivalent execution  $\rho_{\text{red}}$  in  $\mathcal{T}_{\text{red}}$  can be constructed by successively

- permutating the order independent actions
- adding independent stutter actions

### Stutter trace equivalence of ${\mathcal T}$ and ${\mathcal T}_{\mathsf{red}}$

LTL3.4-21

idea: the conditions for the ample sets should ensure that for each execution  $\rho$  in  $\mathcal{T}$ , a stutter trace equivalent execution  $\rho_{\text{red}}$  in  $\mathcal{T}_{\text{red}}$  can be constructed by successively

- permutating the order independent actions
- adding independent stutter actions

execution ho in ho in ho in ho s.t.  $ho \stackrel{\Delta}{=} 
ho_{\text{red}}$ 

execution 
$$\rho$$
 in  $\mathcal{T}$   $\rightsquigarrow$  execution  $\rho_{\text{red}}$  in  $\mathcal{T}_{\text{red}}$  s.t.  $\rho \stackrel{\Delta}{=} \rho_{\text{red}}$ 

execution 
$$\rho$$
 in  $\mathcal{T}$   $\rightsquigarrow$  execution  $\rho_{\text{red}}$  in  $\mathcal{T}_{\text{red}}$  s.t.  $\rho \stackrel{\Delta}{=} \rho_{\text{red}}$ 

by successively applying the following transformations:

execution 
$$ho$$
 in  $ho$  in  $ho$  in  $ho$  s.t.  $ho \stackrel{\triangle}{=} 
ho_{\text{red}}$ 

case 0: 
$$\rho = s_0 \xrightarrow{\alpha} s_0' \rightarrow \dots$$
 with  $\alpha \in ample(s_0)$ 

case 1: 
$$\rho = s_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \xrightarrow{\alpha} \dots$$
 with  $\alpha \in \mathsf{ample}(s_0)$   $\beta_i \not\in \mathsf{ample}(s_0)$ 

case 2: 
$$\rho = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$$
 with  $\beta_i \notin ample(s_0)$ 

execution 
$$ho$$
 in  $ho$  in  $ho$  in  $ho$  execution  $ho_{
m red}$  in  $ho_{
m red}$  s.t.  $ho \stackrel{\Delta}{=} 
ho_{
m red}$ 

case 0: 
$$\rho = s_0 \xrightarrow{\alpha} s_0' \rightarrow \dots$$
 with  $\alpha \in ample(s_0)$ 

$$s_0 \xrightarrow{\alpha} s_0' \rightarrow \dots$$

case 1: 
$$\rho = s_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \xrightarrow{\alpha} \dots$$
 with  $\alpha \in ample(s_0)$   $\beta_i \notin ample(s_0)$ 

case 2: 
$$\rho = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$$
 with  $\beta_i \notin ample(s_0)$ 

execution 
$$ho$$
 in  $ho$  in  $ho$  in  $ho$  execution  $ho_{
m red}$  in  $ho_{
m red}$  s.t.  $ho \stackrel{\Delta}{=} 
ho_{
m red}$ 

case 0: 
$$\rho = s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$$
 with  $\alpha \in ample(s_0)$ 

$$s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$$
case 1:  $\rho = s_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \xrightarrow{\alpha} \rightarrow \dots$  with  $\alpha \in ample(s_0)$ 

$$\beta_i \notin ample(s_0)$$

$$s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \rightarrow \dots$$
case 2:  $\rho = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$  with  $\beta_i \notin ample(s_0)$ 

execution 
$$ho$$
 in  $ho$  in  $ho$  in  $ho$  execution  $ho_{
m red}$  in  $ho_{
m red}$  s.t.  $ho \stackrel{\Delta}{=} 
ho_{
m red}$ 

case 0: 
$$\rho = s_0 \xrightarrow{\alpha} s_0' \rightarrow \dots$$
 with  $\alpha \in ample(s_0)$ 

$$s_0 \xrightarrow{\alpha} s_0' \rightarrow \dots$$
case 1:  $\rho = s_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \xrightarrow{\alpha} \rightarrow \dots$  with  $\alpha \in ample(s_0)$ 

$$\beta_i \notin ample(s_0)$$

$$s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \rightarrow \dots$$
case 2:  $\rho = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$  with  $\beta_i \notin ample(s_0)$ 

$$s_0 \xrightarrow{\alpha} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$$
 for some  $\alpha \in ample(s_0)$ 

execution 
$$ho$$
 in  $m{\mathcal{T}}$   $\;\; \leadsto \;\;$  execution  $m{
ho}_{\mathsf{red}}$  in  $m{\mathcal{T}}_{\mathsf{red}}$  s.t.  $m{
ho} \stackrel{\Delta}{=} m{
ho}_{\mathsf{red}}$ 

 $\rho_{\text{red}}$  results by an infinite sequence application of cases 0, 1 and 2, i.e.,

$$\rho \rightsquigarrow \rho_1 \rightsquigarrow \rho_2 \rightsquigarrow \rho_3 \rightsquigarrow \dots$$

execution 
$$ho$$
 in  $ho$  in  $ho$  in  $ho$  execution  $ho_{
m red}$  in  $ho_{
m red}$  s.t.  $ho \stackrel{\triangle}{=} 
ho_{
m red}$ 

 $\rho_{\text{red}}$  results by an infinite sequence application of cases 0, 1 and 2, i.e.,

$$\rho \rightsquigarrow \rho_1 \rightsquigarrow \rho_2 \rightsquigarrow \rho_3 \rightsquigarrow \dots$$

where for i < j the executions  $\rho_{\rm j}$  and  $\rho_{\rm i}$  have a common prefix of length i which is a path fragment in  $T_{\rm red}$ 

execution 
$$ho$$
 in  $ho$  in  $ho$  in  $ho$  execution  $ho_{
m red}$  in  $ho$  red s.t.  $ho \stackrel{\Delta}{=} 
ho_{
m red}$ 

 $\rho_{\text{red}}$  results by an infinite sequence application of cases 0, 1 and 2, i.e.,

$$\rho \rightsquigarrow \rho_1 \rightsquigarrow \rho_2 \rightsquigarrow \rho_3 \rightsquigarrow \dots$$

where for i < j the executions  $\rho_j$  and  $\rho_i$  have a common prefix of length i which is a path fragment in  $T_{red}$ , i.e.,  $\rho_i$  has the form

$$\rho_{\mathsf{i}} = \underbrace{\mathsf{s}_0 \Rightarrow \mathsf{s}_1 \Rightarrow \ldots \Rightarrow \mathsf{s}_{\mathsf{i}}}_{\mathsf{in} \ \boldsymbol{\mathcal{T}}_\mathsf{red}} \underbrace{\to \mathsf{s}_{\mathsf{i}+1} \to \mathsf{s}_{\mathsf{i}+2} \to \ldots}_{\mathsf{in} \ \boldsymbol{\mathcal{T}}}$$

execution 
$$ho$$
 in  $ho$  in  $ho$  in  $ho$  execution  $ho_{
m red}$  in  $ho$  red s.t.  $ho \stackrel{\Delta}{=} 
ho_{
m red}$ 

 $\rho_{\text{red}}$  results by an infinite sequence application of cases 0, 1 and 2, i.e.,

$$\rho \rightsquigarrow \rho_1 \rightsquigarrow \rho_2 \rightsquigarrow \rho_3 \rightsquigarrow \dots$$

where

$$\rho_{i} = s_{0} \Rightarrow s_{1} \Rightarrow \ldots \Rightarrow s_{i} \to s_{i+1} \to s_{i+2} \to s_{i+3} \to \ldots$$

$$\rho_{i+1} = s_{0} \Rightarrow s_{1} \Rightarrow \ldots \Rightarrow s_{i} \Rightarrow s_{i+1} \to s_{i+2} \to s_{i+3} \to \ldots$$

 $\rho_{i+2} = s_0 \Rightarrow s_1 \Rightarrow \ldots \Rightarrow s_i \Rightarrow s_{i+1} \Rightarrow s_{i+2} \rightarrow s_{i+3} \rightarrow \ldots$ 

case 0: 
$$\rho = s_0 \xrightarrow{\alpha} s_0' \rightarrow \dots$$
 with  $\alpha \in ample(s_0)$ 

case 1: 
$$\rho = s_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \xrightarrow{\alpha} \dots$$
 with  $\alpha \in ample(s_0)$   $\beta_i \notin ample(s_0)$ 

case 2: 
$$\rho = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$$
 with  $\beta_i \notin ample(s_0)$ 

case 0: 
$$\rho = s_0 \xrightarrow{\alpha} s_0' \rightarrow \dots$$
 with  $\alpha \in \mathsf{ample}(s_0)$ 

$$\rho_1 = s_0 \xrightarrow{\alpha} s_0' \rightarrow \dots$$

case 1: 
$$\rho = s_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \xrightarrow{\alpha} \dots$$
 with  $\alpha \in \mathsf{ample}(s_0)$   $\beta_i \not\in \mathsf{ample}(s_0)$ 

case 2: 
$$\rho = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$$
 with  $\beta_i \notin ample(s_0)$ 

case 0: 
$$\rho = s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$$
 with  $\alpha \in ample(s_0)$ 

$$\rho_1 = s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$$

$$case 1: \rho = s_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \xrightarrow{\alpha} \rightarrow \dots$$
 with  $\alpha \in ample(s_0)$ 

$$\beta_i \notin ample(s_0)$$

$$\rho_1 = s_0 \xrightarrow{\alpha} s'_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \rightarrow \dots$$

case 2:  $\rho = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$  with  $\beta_i \notin ample(s_0)$ 

121 / 275

case 0: 
$$\rho = s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$$
 with  $\alpha \in ample(s_0)$ 

$$\rho_1 = s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$$
case 1:  $\rho = s_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \xrightarrow{\alpha} \rightarrow \dots$  with  $\alpha \in ample(s_0)$ 

$$\beta_i \notin ample(s_0)$$

$$\rho_1 = s_0 \xrightarrow{\alpha} s'_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \rightarrow \dots$$
case 2:  $\rho = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$  with  $\beta_i \notin ample(s_0)$ 

$$\rho_1 = s_0 \xrightarrow{\alpha} s'_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$$
 for some  $\alpha \in ample(s_0)$ 

case 0: 
$$\rho = s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$$
 with  $\alpha \in ample(s_0)$ 

$$\rho_1 = s_0 \xrightarrow{\alpha} s'_0 \rightarrow \dots$$

case 1: 
$$\rho = s_0 \xrightarrow{\beta_1} \dots \xrightarrow{\beta_n} \xrightarrow{\alpha} \dots$$
 with  $\alpha \in \text{ample}(s_0)$ 

$$\beta_i \notin \text{ample}(s_0)$$

$$\rho_1 = \mathbf{s}_0 \stackrel{\boldsymbol{\alpha}}{\Rightarrow} \mathbf{s}_0' \stackrel{\boldsymbol{\beta}_1}{\rightarrow} \dots \stackrel{\boldsymbol{\beta}_n}{\rightarrow} \dots$$

case 2: 
$$\rho = s_0 \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots$$
 with  $\beta_i \notin ample(s_0)$ 

$$\rho_1 = s_0 \xrightarrow{\alpha} s_0' \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_3} \dots \text{ for some } \alpha \in \mathsf{ample}(s_0)$$

for the transformation  $\rho_1 \rightsquigarrow \rho_2$ :

apply case 0,1 or 2 to the suffix starting in state  $s_0^\prime$ 

LTL3.4-36

$$\rho_{0} = s_{0} \xrightarrow{\beta_{1}} \dots \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_{k}} \xrightarrow{\beta_{k+1}} \dots 
\rho_{1} = s_{0} \xrightarrow{\alpha_{1}} s_{1} \xrightarrow{\beta_{1}} \dots \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_{k}} \xrightarrow{\beta_{k+1}} \dots 
\rho_{2} = s_{0} \xrightarrow{\alpha_{1}} \xrightarrow{\alpha_{2}} s_{2} \xrightarrow{\beta_{1}} \dots \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_{k}} \xrightarrow{\beta_{k+1}} \dots 
\vdots 
\rho_{m} = s_{0} \xrightarrow{\alpha_{1}} \xrightarrow{\alpha_{2}} \dots \xrightarrow{\alpha_{m}} s_{m} \xrightarrow{\beta_{1}} \dots \xrightarrow{\beta_{k}} \xrightarrow{\beta_{k+1}} \dots$$

LTL3.4-36

$$\rho_{0} = s_{0} \xrightarrow{\beta_{1}} \dots \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_{k}} \xrightarrow{\beta_{k+1}} \dots 
\rho_{1} = s_{0} \xrightarrow{\alpha_{1}} s_{1} \xrightarrow{\beta_{1}} \dots \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_{k}} \xrightarrow{\beta_{k+1}} \dots 
\rho_{2} = s_{0} \xrightarrow{\alpha_{1}} \xrightarrow{\alpha_{2}} s_{2} \xrightarrow{\beta_{1}} \dots \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_{k}} \xrightarrow{\beta_{k+1}} \dots 
\vdots 
\rho_{m} = s_{0} \xrightarrow{\alpha_{1}} \xrightarrow{\alpha_{2}} \dots \xrightarrow{\alpha_{m}} s_{m} \xrightarrow{\beta_{1}} \dots \xrightarrow{\beta_{k}} \xrightarrow{\beta_{k+1}} \dots$$

 $\alpha_i$  stutter action

LTL3.4-36

$$\alpha_i$$
 stutter action  $\rightsquigarrow \rho_0 \stackrel{\Delta}{=} \rho_1 \stackrel{\Delta}{=} \rho_2 \stackrel{\Delta}{=} \dots$ 

LTL3.4-36

$$\rho_{0} = s_{0} \xrightarrow{\beta_{1}} \dots \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_{k}} \xrightarrow{\beta_{k+1}} \dots 
\rho_{1} = s_{0} \xrightarrow{\alpha_{1}} s_{1} \xrightarrow{\beta_{1}} \dots \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_{k}} \xrightarrow{\beta_{k+1}} \dots 
\rho_{2} = s_{0} \xrightarrow{\alpha_{1}} \xrightarrow{\alpha_{2}} s_{2} \xrightarrow{\beta_{1}} \dots \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_{k}} \xrightarrow{\beta_{k+1}} \dots 
\vdots 
\rho_{m} = s_{0} \xrightarrow{\alpha_{1}} \xrightarrow{\alpha_{2}} \dots \xrightarrow{\alpha_{m}} s_{m} \xrightarrow{\beta_{1}} \dots \xrightarrow{\beta_{k}} \xrightarrow{\beta_{k+1}} \dots$$

by the cycle condition (A4):

"action  $\beta_1$  will *not* be postponed forever"

$$\rho_{0} = s_{0} \xrightarrow{\beta_{1}} \dots \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_{k}} \xrightarrow{\beta_{k+1}} \dots$$

$$\rho_{1} = s_{0} \xrightarrow{\alpha_{1}} s_{1} \xrightarrow{\beta_{1}} \dots \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_{k}} \xrightarrow{\beta_{k+1}} \dots$$

$$\rho_{2} = s_{0} \xrightarrow{\alpha_{1}} \xrightarrow{\alpha_{2}} s_{2} \xrightarrow{\beta_{1}} \dots \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_{k}} \xrightarrow{\beta_{k+1}} \dots$$

$$\vdots$$

$$\rho_{m} = s_{0} \xrightarrow{\alpha_{1}} \xrightarrow{\alpha_{2}} \dots \xrightarrow{\alpha_{m}} s_{m} \xrightarrow{\beta_{1}} \dots \xrightarrow{\beta_{k}} \xrightarrow{\beta_{k+1}} \dots$$

by the cycle condition (A4):

"action  $m{eta}_1$  will *not* be postponed forever" i.e., there exists some m such that case 0 applies and  $m{
ho}_m = m{
ho}_{m+1}$ 

$$\rho_{0} = s_{0} \xrightarrow{\beta_{1}} \dots \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_{k}} \xrightarrow{\beta_{k+1}} \dots$$

$$\rho_{1} = s_{0} \xrightarrow{\alpha_{1}} s_{1} \xrightarrow{\beta_{1}} \dots \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_{k}} \xrightarrow{\beta_{k+1}} \dots$$

$$\rho_{2} = s_{0} \xrightarrow{\alpha_{1}} \xrightarrow{\alpha_{2}} s_{2} \xrightarrow{\beta_{1}} \dots \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_{k}} \xrightarrow{\beta_{k+1}} \dots$$

$$\vdots$$

$$\rho_{m} = s_{0} \xrightarrow{\alpha_{1}} \xrightarrow{\alpha_{2}} \dots \xrightarrow{\alpha_{m}} s_{m} \xrightarrow{\beta_{1}} \dots \xrightarrow{\beta_{k}} \xrightarrow{\beta_{k+1}} \dots$$

by the cycle condition (A4):

"action  $m{eta}_1$  will *not* be postponed forever" i.e., there exists some m such that case 0 applies and  $m{
ho}_m = m{
ho}_{m+1}$ 

$$\rho_{0} = s_{0} \xrightarrow{\beta_{1}} \dots \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_{k}} \xrightarrow{\beta_{k+1}} \dots \\
\rho_{1} = s_{0} \xrightarrow{\alpha_{1}} s_{1} \xrightarrow{\beta_{1}} \dots \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_{k}} \xrightarrow{\beta_{k+1}} \dots \\
\rho_{2} = s_{0} \xrightarrow{\alpha_{1}} \xrightarrow{\alpha_{2}} s_{2} \xrightarrow{\beta_{1}} \dots \xrightarrow{\beta_{k-1}} \xrightarrow{\beta_{k}} \xrightarrow{\beta_{k+1}} \dots \\
\vdots \\
\rho_{m} = s_{0} \xrightarrow{\alpha_{1}} \xrightarrow{\alpha_{2}} \dots \xrightarrow{\alpha_{m}} s_{m} \xrightarrow{\beta_{1}} \dots \xrightarrow{\beta_{k}} \xrightarrow{\beta_{k+1}} \dots \\
\rho_{m+1} = s_{0} \xrightarrow{\alpha_{1}} \xrightarrow{\alpha_{2}} \dots \xrightarrow{\alpha_{m}} s_{m} \xrightarrow{\beta_{1}} \dots \xrightarrow{\beta_{k}} \xrightarrow{\beta_{k+1}} \dots$$

by the cycle condition (A4):

"action  $m{eta}_1$  will *not* be postponed forever" i.e., there exists some m such that case 0 applies and  $m{
ho}_m = m{
ho}_{m+1}$ 

(A1) 
$$\emptyset \neq \mathsf{ample}(\mathsf{s}) \subseteq \mathsf{Act}(\mathsf{s})$$

(A2) for each execution fragment in 
$$\mathcal{T}$$

$$\stackrel{\boldsymbol{\beta}_1 \ \boldsymbol{\beta}_2}{\overset{\boldsymbol{\beta}_1 \ \boldsymbol{\beta}_2}{\overset{\boldsymbol{\beta}_{i-1} \ \boldsymbol{\beta}_i \ \boldsymbol{\beta}_{i+1}}{\overset{\boldsymbol{\beta}_{n-1} \ \boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1} \ \boldsymbol{\beta}_{n-1}}}{\overset{\boldsymbol{\beta}_{n-1} \ \boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1} \ \boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1} \ \boldsymbol{\beta}_{n-1}}}{\overset{\boldsymbol{\beta}_{n-1} \ \boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}}{\overset{\boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}}{\overset{\boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}}{\overset{\boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}}{\overset{\boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}}{\overset{\boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}}{\overset{\boldsymbol{\beta}_{n-1}}{\overset{\boldsymbol{\beta}_{n-1}}}{\overset{\boldsymbol$$

such that  $\beta_n$  is dependent from ample(s) there is some i < n with  $\beta_i \in \text{ample}(s)$ 

- (A3) if  $ample(s) \neq Act(s)$  then all actions in ample(s) are stutter actions
- (A4) for each *cycle*  $s_0 \Rightarrow s_1 \Rightarrow \ldots \Rightarrow s_n$  in  $\mathcal{T}_{red}$  and each action

$${\color{blue} {\color{blue} {\beta}}} \in \bigcup_{0 \leq i < n} \textit{Act}(s_i)$$

there is some  $i \in \{1, \dots, n\}$  with  $\beta \in ample(s_i)$ 

LTL3.4-37

132 / 275

# The ample set method for LTL $_{\bigcirc}$ model checking LTL $_{3.4-37}$

ullet on-the-fly DFS-based generatation of  $oldsymbol{\mathcal{T}}_{red}$ 

LTL3.4-37

- ullet on-the-fly DFS-based generatation of  $oldsymbol{\mathcal{T}}_{red}$
- exploration of state s: create the states  $\alpha(s)$  for  $\alpha \in \mathsf{ample}(s)$ ,

LTL3.4-37

- ullet on-the-fly DFS-based generatation of  $oldsymbol{\mathcal{T}}_{red}$
- exploration of state s:

```
create the states \alpha(s) for \alpha \in ample(s), but ignore the \beta-successors of s for \beta \notin ample(s)
```

• on-the-fly DFS-based generatation of  $T_{red}$ 

LTL3.4-37

- exploration of state s: create the states  $\alpha(s)$  for  $\alpha \in ample(s)$ , but ignore the  $\beta$ -successors of s for  $\beta \notin ample(s)$
- interleave the generation of  $\mathcal{T}_{\text{red}}$  with the product construction  $\mathcal{T}_{\text{red}} \otimes \mathcal{A}$

where  $\mathcal{A}$  is an NBA for the negation of the formula to be checked

LTL3.4-37

- ullet on-the-fly DFS-based generatation of  $oldsymbol{\mathcal{T}}_{red}$
- exploration of state s: create the states  $\alpha(s)$  for  $\alpha \in ample(s)$ , but ignore the  $\beta$ -successors of s for  $\beta \notin ample(s)$
- interleave the generation of  $\mathcal{T}_{\text{red}}$  with the product construction  $\mathcal{T}_{\text{red}} \otimes \mathcal{A}$  and nested DFS

where  $\mathcal{A}$  is an NBA for the negation of the formula to be checked

ullet on-the-fly DFS-based generatation of  ${m T}_{red}$ 

LTL3.4-37

- exploration of state s: create the states  $\alpha(s)$  for  $\alpha \in ample(s)$ , but ignore the  $\beta$ -successors of s for  $\beta \notin ample(s)$
- interleave the generation of  $\mathcal{T}_{\text{red}}$  with the product construction  $\mathcal{T}_{\text{red}} \otimes \mathcal{A}$  and nested DFS

where  $\mathcal{A}$  is an NBA for the negation of the formula to be checked

here: only explanations for reachability analysis

LTL3.4-37

given: finite transition system *T* atomic proposition a

goal: on-the-fly construction of  $\mathcal{T}_{red}$  abort as soon as a state s with  $s \not\models a$  has been generated

LTL3.4-37

```
given: finite transition system T atomic proposition a
```

goal: on-the-fly construction of  $T_{red}$  abort as soon as a state s with  $s \not\models a$  has been generated

uses

 V = set of states that have been generated so far (organized as a hash table)

LTL3.4-37

```
given: finite transition system T atomic proposition a
```

goal: on-the-fly construction of  $T_{red}$  abort as soon as a state s with  $s \not\models a$  has been generated

#### uses

- V = set of states that have been generated so far (organized as a hash table)
- DFS-stack  $\pi$

LTL3.4-37

given: finite transition system T for  $P_1 \| ... \| P_n$  atomic proposition a

goal: on-the-fly construction of  $\mathcal{T}_{red}$  abort as soon as a state s with  $s \not\models a$  has been generated

#### uses

- **V** = set of states that have been generated so far (organized as a hash table)
- DFS-stack  $\pi$
- "local" criteria to compute ample(s) from a syntactic representation of the processes P<sub>i</sub>

```
\pi := \emptyset; \mathbf{V} := \emptyset
WHILE \mathbf{S}_0 \not\subseteq \mathbf{V} DO
select an initial state \mathbf{s} \in \mathbf{S}_0 \setminus \mathbf{V}; add \mathbf{s} to \mathbf{V}; Push(\pi, \mathbf{s});
```

```
\pi := \emptyset; \mathbf{V} := \emptyset

WHILE \mathbf{S}_0 \not\subseteq \mathbf{V} DO

select an initial state \mathbf{s} \in \mathbf{S}_0 \setminus \mathbf{V}; add \mathbf{s} to \mathbf{V};

Push(\pi, \mathbf{s}); compute ample(\mathbf{s});
```

```
\pi := \emptyset; \mathbf{V} := \emptyset

WHILE \mathbf{S}_0 \not\subseteq \mathbf{V} DO

select an initial state \mathbf{s} \in \mathbf{S}_0 \setminus \mathbf{V}; add \mathbf{s} to \mathbf{V};

Push(\pi, \mathbf{s}); compute ample(\mathbf{s});

WHILE \pi \neq \emptyset DO

\mathbf{s} := \mathsf{Top}(\pi);
```

```
\pi := \emptyset; \ \mathbf{V} := \emptyset

WHILE \mathbf{S}_0 \not\subseteq \mathbf{V} DO

select an initial state \mathbf{s} \in \mathbf{S}_0 \setminus \mathbf{V}; add \mathbf{s} to \mathbf{V};

Push(\pi, \mathbf{s}); compute \mathrm{ample}(\mathbf{s});

WHILE \pi \neq \emptyset DO

\mathbf{s} := \mathrm{Top}(\pi);

IF \exists \alpha \in \mathrm{ample}(\mathbf{s}) with \alpha(\mathbf{s}) \notin \mathbf{V}
```

<u>FI</u> <u>OD</u> OD

```
\pi := \emptyset: \mathbf{V} := \emptyset
WHILE S_0 \not\subset V DO
    select an initial state \mathbf{s} \in \mathbf{S}_0 \setminus \mathbf{V}; add \mathbf{s} to \mathbf{V};
     Push(\pi, s); compute ample(s);
    WHILE \pi \neq \emptyset DO
         s := Top(\pi);
         IF \exists \alpha \in \mathsf{ample}(\mathsf{s}) with \alpha(\mathsf{s}) \notin \mathsf{V}
            THEN select such \alpha; add s' := \alpha(s) to V;
                          Push(\pi, \mathbf{s}');
```

<u>FI</u> <u>OD</u> OD

```
\pi := \emptyset: \mathbf{V} := \emptyset
WHILE S_0 \not\subset V DO
    select an initial state \mathbf{s} \in \mathbf{S}_0 \setminus \mathbf{V}; add \mathbf{s} to \mathbf{V};
     Push(\pi, s); compute ample(s);
    WHILE \pi \neq \emptyset DO
         s := Top(\pi);
         IF \exists \alpha \in \mathsf{ample}(\mathsf{s}) with \alpha(\mathsf{s}) \notin \mathsf{V}
            THEN select such \alpha; add s' := \alpha(s) to V;
                          Push(\pi, \mathbf{s}'); compute ample(\mathbf{s}');
```

<u>D</u> OD OD

```
\pi := \emptyset: \mathbf{V} := \emptyset
WHILE S_0 \not\subset V DO
    select an initial state \mathbf{s} \in \mathbf{S}_0 \setminus \mathbf{V}; add \mathbf{s} to \mathbf{V};
    Push(\pi, s); compute ample(s);
    WHILE \pi \neq \emptyset DO
         s := Top(\pi);
         IF \exists \alpha \in \mathsf{ample}(\mathsf{s}) with \alpha(\mathsf{s}) \notin \mathsf{V}
           THEN select such \alpha; add s' := \alpha(s) to V;
                         Push(\pi, \mathbf{s}'); compute ample(\mathbf{s}');
            ELSE Pop(\pi)
         FI
```

```
\pi := \emptyset : \mathbf{V} := \emptyset
WHILE S_0 \not\subset V DO
  select an initial state \mathbf{s} \in \mathbf{S}_0 \setminus \mathbf{V}; add \mathbf{s} to \mathbf{V};
  Push(\pi, s); compute ample(s);
  WHILE \pi \neq \emptyset DO
     s := Top(\pi);
     IF \exists \alpha \in \mathsf{ample}(\mathsf{s}) with \alpha(\mathsf{s}) \notin \mathsf{V}
       THEN select such \alpha; add s' := \alpha(s) to V;
                     Push(\pi, \mathbf{s}'); compute ample(\mathbf{s}');
       ELSE Pop(\pi)
     FI
   OD
```

### Does $T \models \Box a$ hold?

```
\pi := \emptyset : \mathbf{V} := \emptyset
WHILE S_0 \not\subset V DO
  select an initial state \mathbf{s} \in \mathbf{S}_0 \setminus \mathbf{V}; add \mathbf{s} to \mathbf{V};
  Push(\pi, s); compute ample(s);
  WHILE \pi \neq \emptyset DO
     s := Top(\pi);
     IF \exists \alpha \in \mathsf{ample}(\mathsf{s}) with \alpha(\mathsf{s}) \notin \mathsf{V}
       THEN select such \alpha; add s' := \alpha(s) to V;
                     Push(\pi, \mathbf{s}'); compute ample(\mathbf{s}');
       ELSE Pop(\pi)
     FI
  OD
```

## Does $T \models \Box a$ hold?

```
\boldsymbol{\pi} := \emptyset : \mathbf{V} := \emptyset
WHILE S_0 \not\subseteq V DO
   select an initial state \mathbf{s} \in \mathbf{S}_0 \setminus \mathbf{V}; add \mathbf{s} to \mathbf{V};
   Push(\pi, s); compute ample(s);
   WHILE \pi \neq \emptyset DO
     s := Top(\pi);
     IF \mathbf{s} \not\models \mathbf{a} \ \mathbf{THEN} return "NO"
     IF \exists \alpha \in \mathsf{ample}(\mathsf{s}) with \alpha(\mathsf{s}) \notin \mathsf{V}
        THEN ....
        ELSE Pop(\pi)
     FI
   OD
```

FI:

## Does $T \models \Box a$ hold?

```
\boldsymbol{\pi} := \emptyset: \mathbf{V} := \emptyset
WHILE S_0 \not\subset V DO
   select an initial state \mathbf{s} \in \mathbf{S}_0 \setminus \mathbf{V}; add \mathbf{s} to \mathbf{V};
   Push(\pi, s); compute ample(s);
   WHILE \pi \neq \emptyset DO
     s := Top(\pi);
     <u>IF</u> \mathbf{s} \not\models \mathbf{a} \ \underline{\mathbf{THEN}} return "NO" + counterexample FI;
     IF \exists \alpha \in \mathsf{ample}(\mathsf{s}) with \alpha(\mathsf{s}) \notin \mathsf{V}
        THEN ....
        ELSE Pop(\pi)
     FI
   OD
```

full generation of  $\mathcal{T}_{\text{red}}$  for  $\mathcal{T} = \mathcal{T}_{P_1 ||| P_2}$  where

 $\bullet$   $\mathsf{P}_1,\,\mathsf{P}_2$  are program graphs with shared variable  $b\in\{0,1\}$ 

full generation of  $oldsymbol{\mathcal{T}}_{\mathsf{red}}$  for  $oldsymbol{\mathcal{T}} = oldsymbol{\mathcal{T}}_{\mathsf{P}_1 \mid\mid\mid \mathsf{P}_2}$  where

•  $P_1$ ,  $P_2$  are program graphs with shared variable  $b \in \{0,1\}$ 



full generation of  $T_{\text{red}}$  for  $T = T_{P_1 |||P_2}$  where

- $P_1$ ,  $P_2$  are program graphs with shared variable  $b \in \{0,1\}$
- $AP = \{n_0, n_1\}$



full generation of  $oldsymbol{\mathcal{T}}_{\mathsf{red}}$  for  $oldsymbol{\mathcal{T}} = oldsymbol{\mathcal{T}}_{\mathsf{P}_1 \mid\mid\mid \mathsf{P}_2}$  where

- $P_1$ ,  $P_2$  are program graphs with shared variable  $b \in \{0,1\}$
- $\bullet \ \mathsf{AP} = \{\mathsf{n}_0,\mathsf{n}_1\}$





$$\delta_0 \ \delta_1 \qquad \delta_0 \ \alpha_1 \qquad \delta_0 \ \beta_1 \qquad \delta_0 \ \gamma_1$$



$$egin{array}{llll} oldsymbol{\delta}_0 & oldsymbol{\delta}_1 & & oldsymbol{\delta}_0 & oldsymbol{lpha}_1 & & oldsymbol{\delta}_0 & oldsymbol{\gamma}_1 \ oldsymbol{lpha}_0 & oldsymbol{\delta}_1 & & & oldsymbol{lpha}_0 & oldsymbol{eta}_1 \end{array}$$





 $\beta_0$  and  $\beta_1$  are never enabled simultaneously











## Example: on-the-fly generation of $T_{\text{red}}$

LTL3.4-40





$$\mathsf{ample}(\boldsymbol{\ell}_0\boldsymbol{\ell}_1\neg\mathsf{b}) =$$



$$\mathsf{ample}(\boldsymbol{\ell}_0\boldsymbol{\ell}_1\neg\mathsf{b}) =$$







$$\mathsf{ample}(\boldsymbol{\ell}_0\boldsymbol{\ell}_1\neg\mathsf{b}) = \{\boldsymbol{\delta}_0\}, \quad \mathsf{ample}(\mathsf{m}_0\boldsymbol{\ell}_1\neg\mathsf{b}) = \{\boldsymbol{\delta}_1\}$$



$$\begin{split} &\mathsf{ample}(\boldsymbol{\ell}_0\boldsymbol{\ell}_1\neg \mathsf{b}) = \ \{\boldsymbol{\delta}_0\}, \quad \mathsf{ample}(\mathsf{m}_0\boldsymbol{\ell}_1\neg \mathsf{b}) = \{\boldsymbol{\delta}_1\} \\ &\mathsf{ample}(\mathsf{m}_0\mathsf{m}_1\neg \mathsf{b}) = \end{split}$$



$$\begin{split} &\mathsf{ample}(\boldsymbol{\ell}_0\boldsymbol{\ell}_1\neg \mathsf{b}) = \ \{\boldsymbol{\delta}_0\}, \quad \mathsf{ample}(\mathsf{m}_0\boldsymbol{\ell}_1\neg \mathsf{b}) = \{\boldsymbol{\delta}_1\} \\ &\mathsf{ample}(\mathsf{m}_0\mathsf{m}_1\neg \mathsf{b}) = \end{split}$$



$$\begin{split} \text{ample}(\boldsymbol{\ell}_0\boldsymbol{\ell}_1\neg b) &= \; \{\boldsymbol{\delta}_0\}, \quad \text{ample}(m_0\boldsymbol{\ell}_1\neg b) = \{\boldsymbol{\delta}_1\} \\ \text{ample}(m_0m_1\neg b) &= \; \{\boldsymbol{\alpha}_1, \boldsymbol{\beta}_0\} \end{split}$$



$$\begin{split} & \mathsf{ample}(\boldsymbol{\ell}_0\boldsymbol{\ell}_1\neg \mathsf{b}) = ~\{\boldsymbol{\delta}_0\}, \quad \mathsf{ample}(\mathsf{m}_0\boldsymbol{\ell}_1\neg \mathsf{b}) = \{\boldsymbol{\delta}_1\} \\ & \mathsf{ample}(\mathsf{m}_0\mathsf{m}_1\neg \mathsf{b}) = ~\{\boldsymbol{\alpha}_1,\boldsymbol{\beta}_0\} \\ & \mathsf{note} : \end{split}$$

 $\alpha_1$  closes cycle (A4),



ample
$$(\ell_0\ell_1\neg b)=\{\delta_0\}$$
, ample $(m_0\ell_1\neg b)=\{\delta_1\}$  ample $(m_0m_1\neg b)=\{\alpha_1,\beta_0\}$  note:

 $\alpha_1$  closes cycle (A4),

 $\beta_0$  no stutter action (A3)



$$\begin{split} & \mathsf{ample}(\boldsymbol{\ell}_0\boldsymbol{\ell}_1\neg b) = \ \{\boldsymbol{\delta}_0\}, \quad \mathsf{ample}(\mathsf{m}_0\boldsymbol{\ell}_1\neg b) = \{\boldsymbol{\delta}_1\} \\ & \mathsf{ample}(\mathsf{m}_0\mathsf{m}_1\neg b) = \ \{\boldsymbol{\alpha}_1,\boldsymbol{\beta}_0\} \\ & \mathsf{ample}(\mathsf{n}_0\mathsf{m}_1\neg b) = \end{split}$$



$$\begin{split} & \mathsf{ample}(\boldsymbol{\ell}_0\boldsymbol{\ell}_1\neg \mathsf{b}) = \ \{\boldsymbol{\delta}_0\}, \quad \mathsf{ample}(\mathsf{m}_0\boldsymbol{\ell}_1\neg \mathsf{b}) = \{\boldsymbol{\delta}_1\} \\ & \mathsf{ample}(\mathsf{m}_0\mathsf{m}_1\neg \mathsf{b}) = \ \{\boldsymbol{\alpha}_1, \boldsymbol{\beta}_0\} \\ & \mathsf{ample}(\mathsf{n}_0\mathsf{m}_1\neg \mathsf{b}) = \end{split}$$



$$\begin{split} & \mathsf{ample}(\boldsymbol{\ell}_0\boldsymbol{\ell}_1\neg \mathsf{b}) = \ \{\boldsymbol{\delta}_0\}, \quad \mathsf{ample}(\mathsf{m}_0\boldsymbol{\ell}_1\neg \mathsf{b}) = \{\boldsymbol{\delta}_1\} \\ & \mathsf{ample}(\mathsf{m}_0\mathsf{m}_1\neg \mathsf{b}) = \ \{\boldsymbol{\alpha}_1, \boldsymbol{\beta}_0\} \\ & \mathsf{ample}(\mathsf{n}_0\mathsf{m}_1\neg \mathsf{b}) = \ \{\boldsymbol{\alpha}_1, \boldsymbol{\gamma}_0\} \end{split}$$



ample
$$(\boldsymbol{\ell}_0\boldsymbol{\ell}_1\neg b)=\{\boldsymbol{\delta}_0\}$$
, ample $(m_0\boldsymbol{\ell}_1\neg b)=\{\boldsymbol{\delta}_1\}$   
ample $(m_0m_1\neg b)=\{\boldsymbol{\alpha}_1,\boldsymbol{\beta}_0\}$   
ample $(n_0m_1\neg b)=\{\boldsymbol{\alpha}_1,\boldsymbol{\gamma}_0\}$   
note:  $\boldsymbol{\alpha}_1$ ,  $\boldsymbol{\gamma}_0$  are dependent  $(A2)$ 



ample
$$(\boldsymbol{\ell}_0\boldsymbol{\ell}_1\neg b)=\{\boldsymbol{\delta}_0\}$$
, ample $(m_0\boldsymbol{\ell}_1\neg b)=\{\boldsymbol{\delta}_1\}$  ample $(m_0m_1\neg b)=\{\boldsymbol{\alpha}_1,\boldsymbol{\beta}_0\}$  ample $(n_0m_1\neg b)=\{\boldsymbol{\alpha}_1,\boldsymbol{\gamma}_0\}$  note:  $\boldsymbol{\alpha}_1,\boldsymbol{\gamma}_0$  are dependent  $(A2)$ 



ample
$$(\boldsymbol{\ell}_0\boldsymbol{\ell}_1\neg b)=\{\boldsymbol{\delta}_0\}$$
, ample $(m_0\boldsymbol{\ell}_1\neg b)=\{\boldsymbol{\delta}_1\}$  ample $(m_0m_1\neg b)=\{\boldsymbol{\alpha}_1,\boldsymbol{\beta}_0\}$  ample $(n_0m_1\neg b)=\{\boldsymbol{\alpha}_1,\boldsymbol{\gamma}_0\}$  note:  $\boldsymbol{\alpha}_1$ ,  $\boldsymbol{\gamma}_0$  are dependent  $(A2)$ 



ample
$$(\boldsymbol{\ell}_0\boldsymbol{\ell}_1\neg b)=\{\boldsymbol{\delta}_0\}$$
, ample $(m_0\boldsymbol{\ell}_1\neg b)=\{\boldsymbol{\delta}_1\}$  ample $(m_0m_1\neg b)=\{\boldsymbol{\alpha}_1,\boldsymbol{\beta}_0\}$  ample $(n_0m_1\neg b)=\{\boldsymbol{\alpha}_1,\boldsymbol{\gamma}_0\}$  note:  $\boldsymbol{\alpha}_1$ ,  $\boldsymbol{\gamma}_0$  are dependent  $(A2)$ 



$$\begin{split} & \mathsf{ample}(\boldsymbol{\ell}_0\boldsymbol{\ell}_1\neg b) = \ \{\boldsymbol{\delta}_0\}, \quad \mathsf{ample}(\mathsf{m}_0\boldsymbol{\ell}_1\neg b) = \{\boldsymbol{\delta}_1\} \\ & \mathsf{ample}(\mathsf{m}_0\mathsf{m}_1\neg b) = \ \{\boldsymbol{\alpha}_1,\boldsymbol{\beta}_0\} \\ & \mathsf{ample}(\mathsf{n}_0\mathsf{m}_1\neg b) = \ \{\boldsymbol{\alpha}_1,\boldsymbol{\gamma}_0\} \\ & \mathsf{ample}(\mathsf{m}_0\mathsf{n}_1b) = \end{split}$$

$$\begin{split} & \mathsf{ample}(\boldsymbol{\ell}_0\boldsymbol{\ell}_1\neg \mathsf{b}) = ~\{\boldsymbol{\delta}_0\}, \quad \mathsf{ample}(\mathsf{m}_0\boldsymbol{\ell}_1\neg \mathsf{b}) = \{\boldsymbol{\delta}_1\} \\ & \mathsf{ample}(\mathsf{m}_0\mathsf{m}_1\neg \mathsf{b}) = ~\{\boldsymbol{\alpha}_1,\boldsymbol{\beta}_0\} \\ & \mathsf{ample}(\mathsf{n}_0\mathsf{m}_1\neg \mathsf{b}) = ~\{\boldsymbol{\alpha}_1,\boldsymbol{\gamma}_0\} \\ & \mathsf{ample}(\mathsf{m}_0\mathsf{n}_1\mathsf{b}) = \{\boldsymbol{\alpha}_0,\boldsymbol{\gamma}_1\} \colon \mathsf{cycle} \; \mathsf{condition} \; (\mathrm{A4}) \end{split}$$

$$\begin{split} & \mathsf{ample}(\boldsymbol{\ell}_0\boldsymbol{\ell}_1\neg \mathsf{b}) = ~\{\boldsymbol{\delta}_0\}, \quad \mathsf{ample}(\mathsf{m}_0\boldsymbol{\ell}_1\neg \mathsf{b}) = \{\boldsymbol{\delta}_1\} \\ & \mathsf{ample}(\mathsf{m}_0\mathsf{m}_1\neg \mathsf{b}) = ~\{\boldsymbol{\alpha}_1,\boldsymbol{\beta}_0\} \\ & \mathsf{ample}(\mathsf{n}_0\mathsf{m}_1\neg \mathsf{b}) = ~\{\boldsymbol{\alpha}_1,\boldsymbol{\gamma}_0\} \\ & \mathsf{ample}(\mathsf{m}_0\mathsf{n}_1\mathsf{b}) = \{\boldsymbol{\alpha}_0,\boldsymbol{\gamma}_1\} \colon \mathsf{cycle} \; \mathsf{condition} \; (\mathrm{A4}) \end{split}$$



$$\begin{split} & \mathsf{ample}(\boldsymbol{\ell}_0\boldsymbol{\ell}_1\neg \mathsf{b}) = ~\{\boldsymbol{\delta}_0\}, \quad \mathsf{ample}(\mathsf{m}_0\boldsymbol{\ell}_1\neg \mathsf{b}) = \{\boldsymbol{\delta}_1\} \\ & \mathsf{ample}(\mathsf{m}_0\mathsf{m}_1\neg \mathsf{b}) = ~\{\boldsymbol{\alpha}_1,\boldsymbol{\beta}_0\} \\ & \mathsf{ample}(\mathsf{n}_0\mathsf{m}_1\neg \mathsf{b}) = ~\{\boldsymbol{\alpha}_1,\boldsymbol{\gamma}_0\} \\ & \mathsf{ample}(\mathsf{m}_0\mathsf{n}_1\mathsf{b}) = \{\boldsymbol{\alpha}_0,\boldsymbol{\gamma}_1\} \colon \mathsf{cycle} \; \mathsf{condition} \; (\mathrm{A4}) \end{split}$$

## **Nested DFS with POR**

LTL3.4-41

## Nested DFS (standard approach)

LTL3.4-41

*remind:* nested DFS for checking " $\mathcal{T} \models \Diamond \Box a$ ?" uses:

outer DFS: visits all reachable states

inner DFS: CYCLE\_CHECK(s) searches for a

backward edge  $s' \rightarrow s$ 

## Nested DFS (standard approach)

LTL3.4-41

*remind:* nested DFS for checking " $\mathcal{T} \models \Diamond \Box a$ ?" uses:

outer DFS: visits all reachable states

inner DFS: CYCLE\_CHECK(s) searches for a backward edge  $s' \rightarrow s$ 

## CYCLE\_CHECK(s)

 is called for each state s that violates the persistence condition a

## Nested DFS (standard approach)

LTL3.4-41

*remind:* nested DFS for checking " $T \models \Diamond \Box a$ ?" uses:

outer DFS: visits all reachable states

inner DFS: CYCLE\_CHECK(s) searches for a backward edge  $s' \rightarrow s$ 

## CYCLE\_CHECK(s)

- is called for each state s that violates the persistence condition a
- must not be started before the outer DFS is finished for s

outer DFS: visits all reachable states

inner DFS: CYCLE\_CHECK(s) searches for a backward edge  $s' \rightarrow s$ 

## CYCLE\_CHECK(s)

- is called for each state s that violates the persistence condition a
- must not be started before the outer DFS is finished for s
- early termination

outer DFS: visits all reachable states

DES-stack of the outer DES

inner DFS: CYCLE\_CHECK(s) searches for a backward edge  $s' \rightarrow s$ 

## CYCLE\_CHECK(s)

- is called for each state s that violates the persistence condition a
- must not be started before the outer DFS is finished for s
- early termination, e.g., abort with the answer CYCLE\_CHECK(s) = true
   as soon as the inner DFS visits a state in the

### **Nested DFS with POR**

LTL3.4-41

requirement for the nested DFS in the ample set approach:

### **Nested DFS with POR**

LTL3.4-41

requirement for the nested DFS in the ample set approach:

outer DFS and inner DFS must use the same ample-sets

### Nested DFS with POR

LTL3.4-41

requirement for the nested DFS in the ample set approach:

outer DFS and inner DFS must use the same ample-sets

*implementation*: uses a hash-table for the set of states that have been visited in the outer DFS

LTL3.4-41

use *hash-table* for the set of states that have been visited in the outer DFS

LTL3.4-41

use *hash-table* for the set of states that have been visited in the outer DFS

entries in the hash-table have the form

$$\langle s, b, c, a_1, \ldots, a_k \rangle$$

where s is a state and b, c,  $a_1, \ldots, a_k$  are bits

LTL3.4-41

use *hash-table* for the set of states that have been visited in the outer DFS

entries in the hash-table have the form

$$\langle s, b, c, a_1, \ldots, a_k \rangle$$

where s is a state and b, c,  $a_1, \ldots, a_k$  are bits

• b = 1 iff s has been visited in inner DFS

LTL3.4-41

use *hash-table* for the set of states that have been visited in the outer DFS

entries in the hash-table have the form

$$\langle s, b, c, a_1, \ldots, a_k \rangle$$

where s is a state and b, c,  $a_1, \ldots, a_k$  are bits

- b = 1 iff s has been visited in inner DFS
- c = 1 iff s is in the DFS stack

LTL3.4-41

use *hash-table* for the set of states that have been visited in the outer DFS

entries in the hash-table have the form

$$\langle s, b, c, a_1, \ldots, a_k \rangle$$

where s is a state and b, c,  $a_1, \ldots, a_k$  are bits

- b = 1 iff s has been visited in inner DFS
- c = 1 iff s is in the DFS stack

$$ullet$$
 for  $Act(\mathbf{s}) = \{oldsymbol{lpha}_1, \dots, oldsymbol{lpha}_k\}$ :  $\mathbf{a}_{\mathsf{i}} = 1 \ \mathsf{iff} \ oldsymbol{lpha}_{\mathsf{i}} \in \mathsf{ample}(\mathbf{s})$ 

# On-the-fly construction of $\mathcal{T}_{\text{red}}$

LTL3.4-42

# On-the-fly construction of $\boldsymbol{\mathcal{T}}_{\text{red}}$

LTL3.4-42

starting point: syntactic description of the processes  $P_1, \ldots, P_n$  of a parallel system

# On-the-fly construction of $\boldsymbol{\mathcal{T}}_{\text{red}}$

LTL3.4-42

starting point: syntactic description of the processes  $P_1, \ldots, P_n$  of a parallel system e.g., PROMELA-specification

# On-the-fly construction of $\mathcal{T}_{\text{red}}$ in DFS-manner

LTL3.4-42

starting point: syntactic description of the processes  $P_1, \ldots, P_n$  of a parallel system e.g., PROMELA-specification

*method*: generate the reachable fragment of  $\boldsymbol{\mathcal{T}}_{\text{red}}$  in DFS-manner by generating ample sets by means of local conditions that ensure (A1)-(A4)

# On-the-fly construction of $\mathcal{T}_{\text{red}}$ in DFS-manner

starting point: syntactic description of the processes  $P_1, \ldots, P_n$  of a parallel system e.g., PROMELA-specification

*method*: generate the reachable fragment of  $\mathcal{T}_{\text{red}}$  in DFS-manner by generating ample sets by means of local conditions that ensure (A1)-(A4)

idea: check whether

LTL3.4-42

ample(s) = set of enabled actions of process P<sub>i</sub> fulfills (A1), (A2), (A3)

## On-the-fly construction of $\mathcal{T}_{red}$ in DFS-manner

LTL3.4-42

starting point: syntactic description of the processes  $P_1, \ldots, P_n$  of a parallel system e.g., PROMELA-specification

method: generate the reachable fragment of  $\mathcal{T}_{\text{red}}$  in DFS-manner by generating ample sets by means of local conditions that ensure (A1)-(A4)

idea: check whether

ample(s) = set of enabled actions of process  $P_i$  fulfills (A1), (A2), (A3) and ensure (A4) by searching for backward edges in  $\mathcal{T}_{red}$ 

select a process P<sub>i</sub> not considered before

select a process  $P_i$  not considered before  $A := action set of <math>P_i \cap Act(s)$ 

select a process P<sub>i</sub> not considered before

 $A := action set of P_i \cap Act(s)$ 

 $\underline{\textbf{IF}} \ \mathsf{A} \neq \emptyset$  and (A2) is not violated

```
select a process P_i not considered before A := action set of <math>P_i \cap Act(s)

IF A \neq \emptyset and (A2) is not violated and all actions of A are stutter actions
```

```
select a process P_i not considered before A := action set of <math>P_i \cap Act(s)

IF A \neq \emptyset and (A2) is not violated and all actions of A are stutter actions

THEN ample(s) := A

FI
```

```
select a process P_i not considered before A := action set of <math>P_i \cap Act(s)

IF A \neq \emptyset and (A2) is not violated and all actions of A are stutter actions

THEN ample(s) := A

FI

UNTIL all processes have been considered or ample(s) is defined;
```

```
select a process P<sub>i</sub> not considered before
  A := action set of P_i \cap Act(s)
  IF A \neq \emptyset and (A2) is not violated
          and all actions of A are stutter actions
    THEN ample(s) := A FI
UNTIL all processes have been considered
           or ample(s) is defined;
IF ample(s) is not yet defined
  THEN ample(s) := Act(s) FI
```

```
select a process P<sub>i</sub> not considered before
   A := action set of P_i \cap Act(s)
   IF (A1), (A2), (A3) hold THEN ample(s) := A FI
UNTIL all processes have been considered
            or ample(s) is defined;
IF ample(s) is not yet defined
   THEN ample(s) := Act(s) FI
   ... consider state \alpha(s) for some \alpha \in ample(s) ...
```

```
select a process P<sub>i</sub> not considered before
  A := action set of P_i \cap Act(s)
   IF (A1), (A2), (A3) hold THEN ample(s) := A FI
UNTIL all processes have been considered
            or ample(s) is defined;
IF ample(s) is not yet defined
  THEN ample(s) := Act(s) FI
   ... consider state \alpha(s) for some \alpha \in ample(s) ...
IF the expansion of s finds a backwards edge s' \Longrightarrow s
```

**THEN** ample(s) := Act(s) **FI** 

```
select a process P<sub>i</sub> not considered before
  A := action set of P_i \cap Act(s)
   IF (A1), (A2), (A3) hold THEN ample(s) := A FI
UNTIL all processes have been considered
            or ample(s) is defined;
IF ample(s) is not yet defined
  THEN ample(s) := Act(s) FI
   ... consider state \alpha(s) for some \alpha \in ample(s) ...
IF the expansion of s finds a backwards edge s' \Longrightarrow s
```

process 1 process 2



























DFS(s)

process 1

process 2







$$\mathsf{DFS}(\mathsf{s}) \\ \mathsf{ample}(\mathsf{s}) = \{ \boldsymbol{\alpha}_1 \}$$



process 2





$$\mathcal{T}=\operatorname{process}\ 1\ |||\operatorname{process}\ 2$$
  $\alpha_1$   $\alpha_2$   $\beta$   $\alpha_1$   $\alpha_2$   $\beta$   $\alpha_3$   $\alpha_4$   $\alpha_5$   $\beta$ 

$$\mathsf{DFS}(\mathsf{s})$$
  $\mathsf{ample}(\mathsf{s}) = \{oldsymbol{lpha}_1\}$   $\mathsf{DFS}(\mathsf{t})$   $\mathsf{ample}(\mathsf{t}) = \{oldsymbol{lpha}_2\}$ 



process 1

process 2







$$\mathsf{DFS}(\mathsf{s})$$
  $\mathsf{ample}(\mathsf{s}) = \{oldsymbol{lpha}_1\}$   $\mathsf{DFS}(\mathsf{t})$   $\mathsf{ample}(\mathsf{t}) = \{oldsymbol{lpha}_2\}$   $\mathsf{backward}$  edge  $\mathsf{t} o \mathsf{s}$ 



process 2





$$\mathcal{T} = \operatorname{process} 1 ||| \operatorname{process} 2$$

$$\alpha_1 \qquad \alpha_2 \qquad \beta \qquad \alpha_1 \qquad \alpha_2$$

$$\beta \qquad \beta \qquad \beta$$

$$\mathsf{DFS}(\mathsf{s})$$
  $\mathsf{ample}(\mathsf{s}) = \{m{lpha}_1\} \cup \{m{eta}\}$   $\mathsf{DFS}(\mathsf{t})$   $\mathsf{ample}(\mathsf{t}) = \{m{lpha}_2\}$   $\mathsf{backward}$  edge  $\mathsf{t} \to \mathsf{s}$ 







$$\mathcal{T} = \operatorname{process} 1 ||| \operatorname{process} 2$$

$$\alpha_1 \qquad \beta \qquad \alpha_2 \qquad \beta \qquad \alpha_2 \qquad \beta$$

$$\begin{aligned} \mathsf{DFS}(\mathsf{s}) \\ \mathsf{ample}(\mathsf{s}) &= \{ \pmb{\alpha}_1 \} \cup \{ \pmb{\beta} \} \\ \mathsf{DFS}(\mathsf{t}) \\ \mathsf{ample}(\mathsf{t}) &= \{ \pmb{\alpha}_2 \} \\ \mathsf{backward\ edge}\ \mathsf{t} \to \mathsf{s} \\ \mathsf{DFS}(\mathsf{u}) \dots \end{aligned}$$





backward edge  $t \rightarrow s$ 

DFS(u) ...





#### **REPEAT**

```
select a process P<sub>i</sub> not considered before
  A := action set of P_i \cap Act(s)
  IF A \neq \emptyset and (A2) holds
           and all actions of A are stutter actions
     THEN ample(s) := A FI
UNTIL all processes have been considered
            or ample(s) is defined;
IF ample(s) is not yet defined
  THEN ample(s) := Act(s) FI
```

#### **REPEAT**

```
select a process P<sub>i</sub> not considered before
  A := action set of P_i \cap Act(s)
  IF A \neq \emptyset and (A2) holds
           and all actions of A are stutter actions
     THEN ample(s) := A FI
UNTIL all processes have been considered
            or ample(s) is defined;
IF ample(s) is not yet defined
  THEN ample(s) := Act(s) FI
```

- (A1) nonemptiness condition
- (A2) dependence condition:

for each execution fragment in  ${m \mathcal{T}}$ 

$$S \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{i-1}} \xrightarrow{\beta_i} \xrightarrow{\beta_{i+1}} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_n}$$

such that  $\beta_n$  is dependent from ample(s) there is some i < n with  $\beta_i \in \text{ample}(s)$ 

- (A3) stutter condition
- (A4) cycle condition

- (A1) nonemptiness condition
- (A2) dependence condition:

for each execution fragment in  ${\cal T}$ 

$$S \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{i-1}} \xrightarrow{\beta_i} \xrightarrow{\beta_{i+1}} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_n}$$

such that  $\beta_n$  is dependent from ample(s) there is some i < n with  $\beta_i \in ample(s)$ 

- (A3) stutter condition
- (A4) cycle condition

checking (A2) is as hard as the reachability problem

(A1) nonemptiness condition (A2) dependence condition:

for each execution fragment in 
$$\mathcal{T}$$
  
 $s \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{i-1}} \xrightarrow{\beta_i} \xrightarrow{\beta_{i+1}} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_n}$   
such that  $\beta_n$  is dependent from ample(s) there is

some i < n with  $\beta_i \in ample(s)$ 

(A3) stutter condition (A4) cycle condition

checking (A2) is as hard as the unreachability problem given: finite transition system  $\mathcal{T}$ ,  $\mathbf{a} \in \mathsf{AP}$  question: does  $\mathcal{T} \not\models \exists \Diamond \mathbf{a}$  hold?

(A1) nonemptiness condition (A2) dependence condition:  $\longleftarrow$  global condition for each execution fragment in  $\mathcal{T}$   $s \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{i-1}} \xrightarrow{\beta_i} \xrightarrow{\beta_{i+1}} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_n}$ such that  $\beta_n$  is dependent from ample(s) there is some i < n with  $\beta_i \in \text{ample}(s)$ 

(A3) stutter condition (A4) cycle condition

checking (A2) is as hard as the unreachability problem given: finite transition system  $\mathcal{T}$ ,  $\mathbf{a} \in \mathsf{AP}$  question: does  $\mathcal{T} \not\models \exists \Diamond \mathbf{a}$  hold?

show that the unreachability problem

given: finite transition system T

 $a \in AP$ 

*question*: does  $T \not\models \exists \Diamond a$  hold?

is polynomially reducible to the problem of checking (A2)

show that the unreachability problem

given: finite transition system T

 $a \in AP$ 

*question*: does  $T \not\models \exists \Diamond a$  hold?

is polynomially reducible to the problem of checking (A2)

given: finite transition system T', ample sets for T'

question: does (A2) hold?

i.e., does for each execution fragment in T'

 $s \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{i-1}} \xrightarrow{\beta_i} \xrightarrow{\beta_{i+1}} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_n}$ 

such that  $\beta_n$  is dependent from ample(s) there is some i < n with  $\beta_i \in ample(s)$ ?

show that the unreachability problem

given: finite transition system T and initial state  $s_0$  $a \in AP$ 

question: does  $s_0 \not\models \exists \Diamond a$  hold?

is polynomially reducible to the problem of checking (A2)

given: finite transition system T', ample sets for T' question: does (A2) hold?

uoes (A2) noid!

i.e., does for each execution fragment in  $\mathcal{T}'$   $s \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_{i-1}} \xrightarrow{\beta_i} \xrightarrow{\beta_{i+1}} \dots \xrightarrow{\beta_{n-1}} \xrightarrow{\beta_n}$ 

such that  $\beta_n$  is dependent from ample(s) there is some i < n with  $\beta_i \in \text{ample}(s)$ ?

# Algorithmic difficulty of checking (A2)

LTL3.4-44

| unreachability | $\leq_{poly}$ | problem of      |
|----------------|---------------|-----------------|
| problem        |               | checking $(A2)$ |

## Algorithmic difficulty of checking (A2)

LTL3.4-44

| unreachability | $\leq_{poly}$ | problem of      |
|----------------|---------------|-----------------|
| problem        |               | checking $(A2)$ |

finite TS 
$$\mathcal{T}$$
 + state  $s_0$  finite TS  $\mathcal{T}'$  + atomic prop.  $a$   $\longleftrightarrow$  + ample sets

## Algorithmic difficulty of checking (A2)

LTL3.4-44

| unreachability | $\leq_{poly}$ | problem of      |
|----------------|---------------|-----------------|
| problem        |               | checking $(A2)$ |

finite TS 
$$\mathcal{T}$$
 + state  $s_0$  finite TS  $\mathcal{T}'$  + atomic prop.  $a$   $\leadsto$  + ample sets s.t.  $s_0 \not\models \exists \Diamond a$  iff (A2) holds

$$\begin{array}{ccc} & \text{unreachability} & \leq_{\text{poly}} & \text{problem of} \\ & \text{problem} & \text{checking } (A2) \end{array}$$

finite TS 
$$\mathcal{T}$$
 + state  $s_0$  finite TS  $\mathcal{T}'$  + atomic prop.  $a$   $\leadsto$  + ample sets s.t.  $s_0 \not\models \exists \Diamond a$  iff (A2) holds

$$\begin{array}{ccc} & \text{unreachability} & \leq_{\text{poly}} & \text{problem of} \\ & \text{problem} & \text{checking } (A2) \end{array}$$

finite TS 
$$\mathcal{T}$$
 + state  $s_0$  finite TS  $\mathcal{T}'$  + atomic prop.  $a$   $\leadsto$  + ample sets s.t.  $s_0 \not\models \exists \Diamond a$  iff (A2) holds

 $\bullet \alpha$  are  $\beta$  are dependent

$$\begin{array}{ccc} \text{unreachability} & \leq_{\text{poly}} & \text{problem of} \\ & \text{problem} & \text{checking } (A2) \end{array}$$

finite TS 
$$\mathcal{T}$$
 + state  $s_0$  finite TS  $\mathcal{T}'$  + atomic prop.  $a$   $\leadsto$  + ample sets s.t.  $s_0 \not\models \exists \Diamond a$  iff (A2) holds

- $\alpha$  are  $\beta$  are dependent
- ullet  $\alpha$  is independent from all actions in  ${\mathcal T}$

$$\begin{array}{ccc} & \text{unreachability} & \leq_{\text{poly}} & \text{problem of} \\ & & \text{problem} & & \text{checking } (A2) \end{array}$$

finite TS 
$$\mathcal{T}$$
 + state  $s_0$  finite TS  $\mathcal{T}'$  + atomic prop.  $a$   $\leadsto$  + ample sets s.t.  $s_0 \not\models \exists \Diamond a$  iff (A2) holds

- $\alpha$  are  $\beta$  are dependent
- ullet lpha is independent from all actions in  ${\mathcal T}$
- ullet is enabled exactly in the states  ${f t}$  with  ${f t}\models{f a}$

finite TS  $\mathcal{T}$  + state  $s_0$  finite TS  $\mathcal{T}'$  + atomic prop.  $\mathbf{a}$   $\leadsto$  + ample sets s.t.  $s_0 \not\models \exists \Diamond \mathbf{a}$  iff (A2) holds

finite TS  $\mathcal{T}$  + state  $s_0$  finite TS  $\mathcal{T}'$  + atomic prop.  $\mathbf{a}$   $\leadsto$  + ample sets s.t.  $s_0 \not\models \exists \Diamond \mathbf{a}$  iff (A2) holds



finite TS 
$$\mathcal{T}$$
 + state  $s_0$  finite TS  $\mathcal{T}'$  + atomic prop.  $\mathbf{a}$   $\leadsto$  + ample sets s.t.  $s_0 \not\models \exists \Diamond \mathbf{a}$  iff (A2) holds



finite TS  $\mathcal{T}$  + state  $s_0$  finite TS  $\mathcal{T}'$  + atomic prop. a  $\leadsto$  + ample sets s.t.  $s_0 \not\models \exists \Diamond a$  iff (A2) holds



finite TS 
$$\mathcal{T}$$
 + state  $s_0$  finite TS  $\mathcal{T}'$  + atomic prop. a  $\leadsto$  + ample sets s.t.  $s_0 \not\models \exists \Diamond a$  iff (A2) holds



 $\alpha$ ,  $\beta$  dependent  $\alpha$  independent from all other actions

finite TS 
$$\mathcal{T}$$
 + state  $s_0$  finite TS  $\mathcal{T}'$  + atomic prop. a  $\leadsto$  + ample sets s.t.  $s_0 \not\models \exists \Diamond a$  iff (A2) holds



 $\alpha, \beta$  dependent  $\alpha$  independent from all other actions

$$ample(s_0) = {\alpha}$$

$$ample(u) = Act(u)$$
for all other states u

LTL3.4-45

idea: replace the global dependency condition (A2) by a stronger local condition

LTL3.4-45

idea: replace the global dependency condition (A2) by a stronger local condition that can be derived from the syntactic description for the processes  $P_i$  of the given parallel system

$$P_1\|\ldots\|P_n$$

LTL3.4-45

idea: replace the global dependency condition (A2) by a stronger local condition that can be derived from the syntactic description for the processes  $P_i$  of the given parallel system

$$\mathsf{P}_1\|\ldots\|\mathsf{P}_n$$

e.g., the P<sub>i</sub>'s are given as program graphs of a channel system.

LTL3.4-45

idea: replace the global dependency condition (A2) by a stronger local condition that can be derived from the syntactic description for the processes  $P_i$  of the given parallel system

$$P_1 \| \dots \| P_n$$

e.g., the  $P_i$ 's are given as program graphs of a channel system. Then: each state s has the form

$$s = \langle \boldsymbol{\ell}_1, ..., \boldsymbol{\ell}_{\mathsf{n}}, \boldsymbol{\eta}, \boldsymbol{\xi} \rangle$$

where  $\ell_i$  is a location of process  $P_i$ ,  $\eta$  a variable evaluation,  $\xi$  a channel evaluation

LTL3.4-45

Let  $Act_i$  denote the set of actions of process  $P_i$ .

LTL3.4-45

Let  $Act_i$  denote the set of actions of process  $P_i$ . For state s:

```
Act_i(s) = Act_i \cap Act(s)
= set of actions of process P_i
that are enabled in s
```

LTL3.4-45

Let  $Act_i$  denote the set of actions of process  $P_i$ . For state s:

$$Act_i(s) = Act_i \cap Act(s)$$
  
= set of actions of process  $P_i$   
that are enabled in s

Provide local criteria such that ample(s) =  $Act_i(s)$  fulfills the dependency condition (A2)

Let  $s = \langle \boldsymbol{\ell}_1, \dots, \boldsymbol{\ell}_{i-1}, \boldsymbol{\ell}_i, \boldsymbol{\ell}_{i+1}, \dots, \boldsymbol{\ell}_n, \dots \rangle$ . Suppose that

Let  $\mathbf{s} = \langle \boldsymbol{\ell}_1, \dots, \boldsymbol{\ell}_{i-1}, \boldsymbol{\ell}_i, \boldsymbol{\ell}_{i+1}, \dots, \boldsymbol{\ell}_n, \dots \rangle$ . Suppose that (A2.1) all actions of  $P_j$ ,  $j \neq i$ , are independent from  $Act_i(\mathbf{s})$ 

```
Let s = \langle \boldsymbol{\ell}_1, \dots, \boldsymbol{\ell}_{i-1}, \boldsymbol{\ell}_i, \boldsymbol{\ell}_{i+1}, \dots, \boldsymbol{\ell}_n, \dots \rangle. Suppose that
```

(A2.1) all actions of  $P_j$ ,  $j \neq i$ , are independent from  $Act_i(s)$ , i.e., if  $\gamma \in Act_j$  for some  $j \neq i$ , and  $\alpha \in Act_i(s)$  then  $\alpha$  and  $\gamma$  are independent

Let  $s = \langle \boldsymbol{\ell}_1, \dots, \boldsymbol{\ell}_{i-1}, \boldsymbol{\ell}_i, \boldsymbol{\ell}_{i+1}, \dots, \boldsymbol{\ell}_n, \dots \rangle$ . Suppose that

- (A2.1) all actions of  $P_j$ ,  $j \neq i$ , are independent from  $Act_i(s)$ , i.e., if  $\gamma \in Act_j$  for some  $j \neq i$ , and  $\alpha \in Act_i(s)$  then  $\alpha$  and  $\gamma$  are independent
- (A2.2) there is <u>no</u> action  $\gamma$  of a process  $P_j$  where  $j \neq i$  s.t.

```
Let s = \langle \boldsymbol{\ell}_1, \dots, \boldsymbol{\ell}_{i-1}, \boldsymbol{\ell}_i, \boldsymbol{\ell}_{i+1}, \dots, \boldsymbol{\ell}_n, \dots \rangle. Suppose that
```

- (A2.1) all actions of  $P_j$ ,  $j \neq i$ , are independent from  $Act_i(s)$ , i.e., if  $\gamma \in Act_j$  for some  $j \neq i$ , and  $\alpha \in Act_i(s)$  then  $\alpha$  and  $\gamma$  are independent
- (A2.2) there is <u>no</u> action  $\gamma$  of a process  $P_j$  where  $j \neq i$  s.t.  $\gamma$  can enable an action  $\beta \in Act_i \setminus Act(s)$  from some state s' with location  $\ell_i$  for process  $P_i$

Let  $s = \langle \dots, \boldsymbol{\ell}_j, \dots, \boldsymbol{\ell}_i, \dots, \boldsymbol{\ell}_n, \dots \rangle$ . Suppose that

- (A2.1) all actions of  $P_j$ ,  $j \neq i$ , are independent from  $Act_i(s)$ , i.e., if  $\gamma \in Act_j$  for some  $j \neq i$ , and  $\alpha \in Act_i(s)$  then  $\alpha$  and  $\gamma$  are independent
- $\begin{array}{c} (\mathrm{A2.2}) \text{ there is } \underline{\mathrm{no}} \text{ action } \pmb{\gamma} \text{ of a process } \mathsf{P_j} \text{ where } \mathbf{j} \neq \mathbf{i} \\ \mathrm{s.t.} \\ \langle \ldots \mathsf{h_j} \ldots \pmb{\ell_i} \ldots \rangle \xrightarrow{\pmb{\gamma}} \langle \ldots \mathsf{k_j} \ldots \pmb{\ell_i} \ldots \rangle \xrightarrow{\pmb{\beta}} \\ \pmb{\beta} \not \downarrow \\ \mathrm{for some } \pmb{\beta} \in \mathit{Act_i} \setminus \mathit{Act}(\mathbf{s}) \end{array}$

Let  $s = \langle \dots, \boldsymbol{\ell}_j, \dots, \boldsymbol{\ell}_i, \dots, \boldsymbol{\ell}_n, \dots \rangle$ . Suppose that

- (A2.1) all actions of  $P_j$ ,  $j \neq i$ , are independent from  $Act_i(s)$ , i.e., if  $\gamma \in Act_j$  for some  $j \neq i$ , and  $\alpha \in Act_i(s)$  then  $\alpha$  and  $\gamma$  are independent
- (A2.2) there is <u>no</u> action  $\gamma$  of a process  $P_j$  where  $j \neq i$  s.t.  $\langle \dots h_j \dots \ell_i \dots \rangle \xrightarrow{\gamma} \langle \dots k_j \dots \ell_i \dots \rangle \xrightarrow{\beta}$  for some  $\beta \in Act_i \setminus Act(s)$

Then (A2) holds for ample(s) =  $Act_i(s)$ .

LTL3.4-45

 $\vdots$  expansion of state  $\mathbf{s} = \langle \dots \boldsymbol{\ell}_1 \dots \boldsymbol{\ell}_1 \dots \rangle$ 

LTL3.4-45

 $\vdots$  expansion of state  $\mathbf{s} = \langle \dots \boldsymbol{\ell}_1 \dots \boldsymbol{\ell}_i \dots \rangle$ 

 $A := Act_{i}(s)$ 

LTL3.4-45

check if for all other processes P<sub>i</sub> the following holds:

LTL3.4-45

LTL3.4-45

LTL3.4-45

```
expansion of state s = \langle \dots \ell_i \dots \ell_i \dots \rangle
A := Act_i(s)
check if for all other processes P<sub>i</sub> the following holds:
(A2.1) all actions of P_i are independent from A
(A2.2) there is no action \gamma of P_i such that
              \langle \dots \mathsf{h}_{\mathsf{i}} \dots \mathsf{\ell}_{\mathsf{i}} \dots \rangle \xrightarrow{\gamma} \langle \dots \mathsf{k}_{\mathsf{i}} \dots \mathsf{\ell}_{\mathsf{i}} \dots \rangle \xrightarrow{\beta}
              for some \beta \in Act_i \setminus A
```

LTL3.4-45

```
A := Act_i(s)
check if for all other processes P<sub>i</sub> the following holds:
(A2.1) all actions of P_i are independent from A
(A2.2) there is <u>no</u> action \gamma of P_i such that
              \langle \dots \mathsf{h}_{\mathsf{i}} \dots \mathsf{\ell}_{\mathsf{i}} \dots \rangle \xrightarrow{\gamma} \langle \dots \mathsf{k}_{\mathsf{i}} \dots \mathsf{\ell}_{\mathsf{i}} \dots \rangle \xrightarrow{\beta}
              for some \beta \in Act_i \setminus A
if yes then set ample(s) := A
```

expansion of state  $s = \langle \dots \ell_i \dots \ell_i \dots \rangle$ 

LTL3.4-46

Let  $T_1$ ,  $T_2$  be transition systems with  $T_1 \stackrel{\triangle}{=} T_2$ , and let fair be an LTL fairness assumption.

Remind:  $\stackrel{\triangle}{=}$  denotes stutter trace equivalence.

E.g., 
$${m T}_1={m T}$$
,  ${m T}_2={m T}_{\rm red}$ 

Then, for all LTL $_{\bigcirc}$  formulas  $\varphi$ :

$${m \mathcal{T}}_1 \models_{\mathsf{fair}} {m arphi} \quad \mathsf{iff} \quad {m \mathcal{T}}_2 \models_{\mathsf{fair}} {m arphi}$$

LTL3.4-46

Let  $\mathcal{T}_1$ ,  $\mathcal{T}_2$  be transition systems with  $\mathcal{T}_1 \stackrel{\triangle}{=} \mathcal{T}_2$ , and let fair be an LTL fairness assumption.

Remind:  $\stackrel{\triangle}{=}$  denotes stutter trace equivalence.

E.g., 
$${m T}_1={m T}$$
,  ${m T}_2={m T}_{\rm red}$ 

Then, for all LTL $_{\bigcirc}$  formulas  $\varphi$ :

$${m \mathcal{T}}_1 \models_{\mathsf{fair}} {m arphi} \quad \mathsf{iff} \quad {m \mathcal{T}}_2 \models_{\mathsf{fair}} {m arphi}$$

#### correct

LTL3.4-46

Let  $\mathcal{T}_1$ ,  $\mathcal{T}_2$  be transition systems with  $\mathcal{T}_1 \stackrel{\triangle}{=} \mathcal{T}_2$ , and let fair be an LTL fairness assumption.

Remind:  $\stackrel{\triangle}{=}$  denotes stutter trace equivalence.

E.g., 
$${m T}_1={m T}$$
,  ${m T}_2={m T}_{\rm red}$ 

Then, for all LTL $_{\bigcirc}$  formulas  $\varphi$ :

$${\mathcal T}_1 \models_{\mathsf{fair}} {\pmb arphi} \quad \mathsf{iff} \quad {\mathcal T}_2 \models_{\mathsf{fair}} {\pmb arphi}$$

correct, as we have:

$${\mathcal T}_{\mathsf{i}} \models_{\mathsf{fair}} \varphi \quad \mathsf{iff} \quad {\mathcal T}_{\mathsf{i}} \models \mathsf{fair} o \varphi$$

LTL3.4-46

Let  $\mathcal{T}_1$ ,  $\mathcal{T}_2$  be transition systems with  $\mathcal{T}_1 \stackrel{\triangle}{=} \mathcal{T}_2$ , and let fair be an LTL fairness assumption.

Remind:  $\stackrel{\triangle}{=}$  denotes stutter trace equivalence.

E.g., 
$${m T}_1={m T}$$
,  ${m T}_2={m T}_{\sf red}$ 

Then, for all LTL $_{\bigcirc}$  formulas  $\varphi$ :

$${m \mathcal{T}}_1 \models_{\mathsf{fair}} {m arphi} \quad \mathsf{iff} \quad {m \mathcal{T}}_2 \models_{\mathsf{fair}} {m arphi}$$

correct, as we have:

$${\mathcal T}_{\mathsf{i}} \models_{\mathsf{fair}} {\pmb arphi} \; \; \mathsf{iff} \; \; {\mathcal T}_{\mathsf{i}} \models \underbrace{\mathsf{fair} 
ightarrow {\pmb arphi}}_{\mathsf{LTL}_{\setminus \bigcirc} \; \mathsf{formula}}$$