

LEHRSTUHL FÜR INFORMATIK 2

RWTH Aachen · D-52056 Aachen

http://moves.rwth-aachen.de/

2

Prof. Dr. Ir. J.-P. Katoen C. Dehnert & F. Sher

Advanced Model Checking Summer term 2014

- Series 7 -

Hand in on 4 June before the exercise class.

Exercise 1

(2 points)

Consider the following transitions system TS with the action set $Act = \{\alpha, \beta, \gamma, \delta, \tau\}$ in which all states are equally labeled. Determine for each pair of actions whether they are independent.

Exercise 2

(3 points)

Consider the following four pairs (TS_i, \widehat{TS}_i) of transition systems where \widehat{TS}_i results from reducing TS_i using the appropriate ample sets. Check for each pair (TS_i, \widehat{TS}_i) whether the two transitions systems are stutter trace equivalent and indicate **all** of the ample set conditions (A1)-(A4) that are violated.

Exercise 3

(2 points)

For $1 \leq i \leq n$, let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP, L_i)$ be an action-deterministic transition system such that $Act_i \cap Act_j \cap Act_k = \emptyset$ for $1 \leq i < j < k \leq n$. Consider the parallel composition with synchronization over common actions, i.e., the transition system

$$TS = TS_1 \parallel TS_2 \parallel \dots \parallel TS_n.$$

For each state $s = \langle s_1, ..., s_n \rangle$ of TS, let $Act_i(s) = Act_i \cap Act(s)$ be the set of actions of TS_i that are enabled in s. Show that the dependency condition (A2) holds for all sets $ample(\cdot)$ if for each state s of TS the following two conditions hold:

(i) If $ample(s) \neq Act(s)$, then $ample(s) = Act_i(s)$ for some $i \in \{1, ..., n\}$.

(ii) If
$$ample(s) = Act_i(s) \neq Act(s)$$
 for some $i \in \{1, \dots, n\}$, then $ample(s) \cap (\bigcup_{\substack{1 \le j \le n \\ j \ne i}} Act_j) = \emptyset$.

Exercise 4

(3 points)

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be an action-deterministic transition system and let \mathcal{I}_{st} be the set of all pairs $(\alpha, \beta) \in Act \times Act$ of independent actions α and β where α or β (or both) is (are) a stutter action. Let stutter permutation equivalence \cong_{perm} be the finest equivalence on Act^* such that

$$\overline{\gamma}\alpha\beta\overline{\delta}\cong_{\mathrm{perm}}\overline{\gamma}\beta\alpha\overline{\delta}$$
 if $\overline{\gamma},\overline{\delta}\in Act^*$ and $(\alpha,\beta)\in\mathcal{I}_{\mathrm{st}}$.

The extension of \cong_{perm} to an equivalence for infinite action sequences is defined as follows. If $\tilde{\alpha} = \alpha_1 \alpha_2 \alpha_3 \dots$ and $\tilde{\beta} = \beta_1 \beta_2 \beta_3 \dots$ are actions sequences in Act^{ω} , then $\tilde{\alpha} \sqsubseteq_{perm} \tilde{\beta}$ if for all finite prefixes $\alpha_1 \dots \alpha_n$ of $\tilde{\alpha}$ there exists a finite prefix $\beta_1 \dots \beta_m$ of $\tilde{\beta}$ with $m \ge n$ and a finite word $\overline{\gamma} \in Act^*$ such that

$$\alpha_1 \dots \alpha_n \overline{\gamma} \cong_{\operatorname{perm}} \beta_1 \dots \beta_m$$

We then define the binary relation $\cong_{\text{perm}}^{\omega}$ on Act^{ω} by

$$\widetilde{\alpha} \cong_{\mathrm{perm}}^{\omega} \widetilde{\beta} \quad \text{iff} \quad \widetilde{\alpha} \sqsubseteq_{\mathrm{perm}} \widetilde{\beta} \quad \text{and} \quad \widetilde{\beta} \sqsubseteq_{\mathrm{perm}} \widetilde{\alpha}.$$

(i) Show that $\cong_{\text{perm}}^{\omega}$ is an equivalence.