

LEHRSTUHL FÜR INFORMATIK 2

RWTH Aachen · D-52056 Aachen

http://moves.rwth-aachen.de/

Advanced Model Checking Summer term 2014

Prof. Dr. Ir. J.-P. Katoen C. Dehnert & F. Sher

(3 points)

– Series 6 –

Hand in on 28 May before the exercise class.

Note: From now on, if you have questions regarding the lecture or the exercises, please contact Chris (dehnert@cs.rw...)

Exercise 1

Consider the following transition system TS. Compute the simulation preorder \leq_{TS} using (the first version of) the HHK algorithm presented in the lecture (slide 199). Whenever there are multiple states k such that $\operatorname{Sim}_{\mathrm{old}}(k) \neq \operatorname{Sim}(k)$, then pick the **largest** such k.

Exercise 2

(7 points)

For a transition system $TS = (S, Act, \rightarrow, I, AP, L)$ without terminal states, a stutter simulation for TS is a binary relation $\mathcal{R} \subseteq S \times S$ such that for all $(s_1, s_2) \in \mathcal{R}$:

- (i) $L(s_1) = L(s_2)$.
- (ii) If $s'_1 \in Post(s_1)$ with $(s'_1, s_2) \notin \mathcal{R}$, then there exists a finite path fragment $s_2u_1 \dots u_n s'_2$ with $n \ge 0$, $(s_1, u_i) \in \mathcal{R}$ for $1 \le i \le n$ and $(s'_1, s'_2) \in \mathcal{R}$.

Let $s_1 \preceq_{\mathrm{TS}}^{\mathrm{st}} s_2$ if there exists a stutter simulation \mathcal{R} for TS such that $(s_1, s_2) \in \mathcal{R}$.

- (a) Show that $\preceq_{\text{TS}}^{\text{st}}$ is a preorder.
- (b) Which logical fragment A of CTL* characterizes¹ the kernel² of $\leq_{\text{TS}}^{\text{st}}$? Justify your answer.
- (c) Suppose for all $\Phi \in A$, we have $s_2 \models \Phi$ if and only if $s_1 \models \Phi$. Show that $L(s_1) = L(s_2)$.

¹That is, two states are equivalent if and only if they satisfy the same formulae of the logic.

²The kernel of a binary relation \mathcal{R} is defined as the intersection $\mathcal{R} \cap \mathcal{R}^{-1}$.