

LEHRSTUHL FÜR INFORMATIK 2

RWTH Aachen · D-52056 Aachen http://www-i2.informatik.rwth-aachen.de/ 1

Prof. Dr. Ir. J.-P. Katoen C. Dehnert & F. Sher

Advanced Model Checking Summer term 2014

– Series 5 –

Hand in on May 21'th before the exercise class.

Exercise 1

(7 points)

(3 points)

Let CTL_U be the subnlogic of CTL that does not premit the until operator. Similarly, CTL^*_U means CTL^* without U. Which of the following statements are correct for finite transition systems.

- a) CTL_U equivalence is finer than CTL_{\bigcirc} equivalence.
- b) CTL_U equivalence is finer than divergence-sensitive stutter trace equivalence.
- c) CTL \bigcirc equivalence is finer than LTL \bigcirc equivalence.
- d) Divergence-sensitive stutter bisimulation equivalence is finer than CTL_U equivalence.
- e) Stutter trace equivalence is finer than CTL_U equivalence.
- f) For AP-deterministic transition systems, stutter trace equivalence is finer than trace-equivalence.
- g) For AP-deterministic transition systems, trace equivalence is finer than $CTL^* \setminus_U$ equivalence.

Exercise 2

Consider the transition systems T_1 and T_2 in Figure .

- (a) Show that $T_2 \leq T_1$ by providing a simulation relation for (T_2, T_1) .
- (b) Show that $T_1 \not\preceq T_2$ by providing a $\forall CTL$ formula Φ_{\forall} and a $\exists CTL$ formula Φ_{\exists} such that $T_1 \not\models \Phi_{\forall}$, but $T_2 \models \Phi_{\forall}$ and $T_1 \models \Phi_{\exists}$, but $T_2 \not\models \Phi_{\exists}$.

