

LEHRSTUHL FÜR INFORMATIK 2

RWTH Aachen · D-52056 Aachen

http://www-i2.informatik.rwth-aachen.de/

Prof. Dr. Ir. J.-P. Katoen C. Dehnert & F. Sher

Advanced Model Checking Summer term 2014

– Series 3 –

Hand in on May 6'th before the exercise class.

Exercise 1

(2+1 points)

Observational equivalence \approx_{obs} is a slight variant of stutter-bisimulation equivalence where state s_2 is allowed to perform a path fragment

$$\underbrace{\underbrace{s_2u_1...u_m}_{stuttersteps}}\underbrace{v_1...v_ks'_2}_{stuttersteps}$$

with arbitrary stutter steps at the beginning and at the end and $s'_1 \approx_{obs} s'_2$ to simulate a transition $s_1 \rightarrow s'_1$ of an observational equivalent state s_1 . I.e., it is not required that s_2 and states u_i are observationally equivalent, or that s'_2 and v_i are observationally equivalent. For the special case where $s_1 \rightarrow s'_1$ is a stutter step the path fragment of length 0 (consisting of state $s_2 = s'_2$) can be used to simulate $s_1 \rightarrow s'_1$.

The formal definition of observational equivalence is as follows. Let TS_1 and TS_2 be two transition systems with state-spaces S_1 and S_2 , respectively, and the same set AP of atomic propositions. A binary relation $\mathcal{R} \subseteq S_1 \times S_2$ is called an observational bisimulation for (TS_1, TS_2) iff that the following conditions (A) and (B) are satisfied:

(A) Every initial state of TS_1 is related to an initial state of TS_2 , and vice versa. That is,

$$\forall s_1 \in I_1 \ \exists s_2 \in I_2.(s_1, s_2) \in \mathcal{R} \quad \text{and} \quad \forall s_2 \in I_2 \ \exists s_1 \in I_1.(s_1, s_2) \in \mathcal{R}$$

(B) For all $(s_1, s_2) \in \mathcal{R}$, the following conditions (I),(II) and (III) hold:

(I) If $(s_1, s_2) \in \mathcal{R}$ then $L_1(s_1) = L_2(s_2)$.

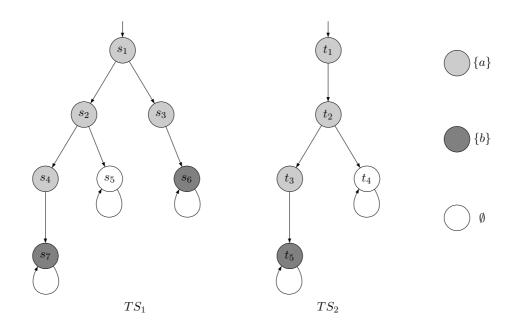
- (II) If $(s_1, s_2) \in \mathcal{R}$ and $s'_1 \in Post(s_1)$, then there exists a path fragment $u_0 u_1 ... u_n$ such that $n \ge 0$ and $u_0 = s_2$, $(s'_1, u_n) \in \mathcal{R}$ and, for some $m \le n$, $L_2(u_0) = L_2(u_1) = ... = L_2(u_m)$ and $L_2(u_{m+1}) = L_2(u_{m+2}) = ... = L_2(u_n)$.
- (III) If $(s_1, s_2) \in \mathcal{R}$ and $s'_2 \in Post(s_2)$, then there exists a path fragment $u_0 u_1 \dots u_n$ such that $n \ge 0$ and $u_0 = s_1, (u_n, s'_2) \in \mathcal{R}$ and, for some $m \le n, L_1(u_0) = L_1(u_1) = \dots = L_1(u_m)$ and $L_1(u_{m+1}) = L_1(u_{m+2}) = \dots = L_1(u_n)$.

 TS_1 and TS_2 are called observational equivalent, denoted $TS_1 \approx_{obs} TS_2$, if there exists an observational bisimulation for (TS_1, TS_2) .

Questions:

The goal of this exercise is to show that \approx_{obs} is strictly coarser than stutter-bisimulation equivalence \approx .

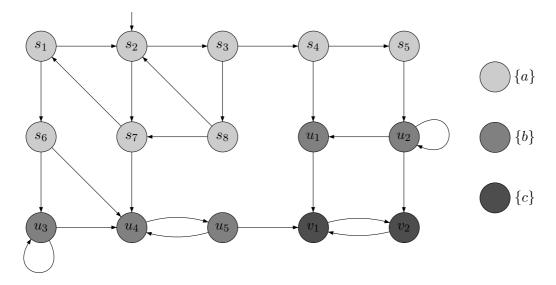
- (a) Show that $TS_1 \approx TS_2$ implies $TS_1 \approx_{obs} TS_2$.
- (b) Consider the two transition systems TS_1 and TS_2 shown in the following figure. Show that $TS_1 \approx TS_2$ and $TS_1 \approx_{obs} TS_2$.



Exercise 2

(1+2 points)

Given transition systems TS:



Questions:

- (a) Depict the divergence-sensitive expansion \overline{TS} .
- (b) Determine the divergence-stutter-bisimulation quotient $(\overline{TS})/\approx$ and dipict TS/\approx^{div} .

Exercise 3

(4 points)

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system. A stutter simulation for TS is a relation \mathcal{R} on S such that for all $(s_1, s_2) \in \mathcal{R}$:

- 1. $L(s_1) = L(s_2)$.
- 2. If $s'_1 \in Post(s_1)$ with $(s_1, s'_1) \notin \mathcal{R}$, then there exists a finite path fragment $s_2 u_1 \dots u_n s'_2$ with $n \ge 0$ and $(s_1, u_i) \in \mathcal{R}, i = 1, \dots, n$ and $(s'_1, s'_2) \in \mathcal{R}$.

 s_1 is said to be stutter simulated by s_2 , denoted $s_1 \leq_{st} s_2$, iff there exists a stutter simulation for (s_1, s_2) .

A stutter simulation \mathcal{R} for TS is called divergence-sensitive if for all pairs $(s_1, s_2) \in \mathcal{R}$ and each infinite path fragment $\pi_1 = s_{0,1} \ s_{1,1} \ s_{2,1} \dots$ in TS with $s_{0,1} = s_1$ and $(s_{i,1}, s_2) \in \mathcal{R}$ for all $i \ge 0$ there exists a transition $s'_2 \in Post(s_2)$ with $(s_{j,1}, s'_2) \in \mathcal{R}$ for some $j \ge 1$. We write $s_1 \preceq_{st}^{div} s_2$ iff there exists a divergence-sensitive stutter simulation \mathcal{R} for (s_1, s_2) .

Question:

Assume that for all $\forall \text{CTL}^*_{\bigcirc}$ formulae Φ and two states s_1 and s_2 in TS we have $s_2 \models \Phi \Rightarrow s_1 \models \Phi$. Show that $s_1 \preceq_{st}^{div} s_2$.

Hint:

Define $\mathcal{R} = \{(s_1, s_2) \in S \times S \mid \forall \Phi \in \forall CTL^*_{\setminus O} \cdot s_2 \models \Phi \Rightarrow s_1 \models \Phi\}$ and show that \mathcal{R} is a divergence-sensitive stutter simulation relation. This is proven by checking the conditions of the divergence-sensitive stutter simulation.