

LEHRSTUHL FÜR INFORMATIK 2

RWTH Aachen · D-52056 Aachen http://www-i2.informatik.rwth-aachen.de/

Prof. Dr. Ir. J.-P. Katoen C. Dehnert & F. Sher

Advanced Model Checking Summer term 2014

- Series 2 -

Hand in on April 30'th before the exercise class.

Exercise 1 (1+1 points)

(a) Given transition systems TS_1 and TS_2 , determine whether $Traces(TS_1) = Traces(TS_2)$.

(b) Provide two transition systems TS'_1 and TS'_2 such that $Traces_{fin}(TS'_1) = Traces_{fin}(TS'_2)$, but $Traces(TS'_1) \neq Traces(TS'_2)$.

Exercise 2 (1+1 points)

Consider the transition systems TS_1 , TS_2 , TS_3 over $AP = \{a, b\}$ shown in the following figure:

Questions:

- (a) for each $i, j \in \{1 \dots 3\} \times \{1 \dots 3\}, i \neq j$, determine whether $TS_i \leq TS_j$
- (b) for each case $TS_i \not\preceq TS_j$, give a $\forall \text{CTL}_{\setminus \mathsf{U}}$ formula that distinguishes TS_i and TS_j .

Exercise 3 (2 points)

Consider three transitions systems given on the next Figure:

For each $i, j \in \{1...3\} \times \{1...3\}$, $i \neq j$, determine whether $TS_i \cong TS_j$, $TS_i \subseteq TS_j$ or $TS_i \not\subseteq TS_j$. Justify your answer.

Exercise 4 (4 points)

Let φ be an LTL formula such that $Word(\varphi)$ is stutter insensitive. Show that φ is equivalent to some LTL $_{\bigvee}$ formula ψ .